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Abstract
Acute upper respiratory tract infections remain a leading cause of outpatient visits worldwide. In Ukraine, 
the Russian full-scale war has disrupted care and infrastructure, increasing the need for reliable near-term 
forecasts to support winter preparedness and resource planning. To develop and evaluate a deep learning  
approach for short-term URTI forecasting under conflict conditions. We built a three-layer LSTM (300–
1200–600 units) with a 16-step input window, Adam optimization, MSE loss, and a recursive multi-step 
strategy.  Inputs  were scaled to  [0,1].  We engineered seasonality  using trigonometric  month features. 
Training instabilities  linked to  gradient  explosion were  mitigated by normalization and learning-rate 
tuning.  Performance was assessed with MAPE,  MSE,  and RMSE on held-out  data.  Cumulative  target 
forecasting improved accuracy versus the raw series: MAPE fell from 6.05% to 3.23%, and RMSE from 
111,741.67 to 55,184.62. Seasonal features reduced error and improved fit, while training stabilized after 
preprocessing and optimizer tuning, despite residual MAPE oscillations during learning. An LSTM with 
explicit seasonality encoding and careful stabilization can provide actionable week-ahead URTI forecasts 
for Ukraine’s conflict-affected health system.
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1. Introduction

Acute upper  respiratory tract  infections  (URTIs),  including the common cold,  pharyngitis,  and 
sinusitis,  are among the most frequent acute illnesses worldwide and remain a major driver of 
outpatient  visits  and missed productivity  [1].  Recent  global  assessments  estimate  roughly  12.8 
billion new URTI episodes in 2021, underscoring their high incidence and health-system impact 
across all age groups [2]. Beyond their clinical burden, URTIs contribute substantially to healthcare 
utilization and costs, and inappropriate antibiotic use remains common despite predominantly viral 
etiology, reinforcing antimicrobial resistance concerns [3]. Seasonal dynamics further complicate 
planning: URTIs and other respiratory viruses display strong spatiotemporal patterns, with sentinel 
systems documenting waves that vary by timing and intensity across regions [4].

In Ukraine, the urgency of effective URTI forecasting has been heightened by the Russian full-
scale  invasion that  began on 24 February 2022,  which has  disrupted health services,  damaged 
critical infrastructure, and increased exposure to cold conditions that elevate respiratory disease 
risk [5]. WHO verified over 1,000 attacks on healthcare within the first 15 months of the war, with 
continued documentation through 2023, contributing to reduced access to care and strained service 
delivery [6]. Winter risk assessments for Ukraine warn that inadequate heating, damaged housing, 
and power outages can raise respiratory morbidity, particularly among older adults and people 
with  chronic  conditions.  Humanitarian  health  planning  for  the  2025-2026  winter  explicitly 
prioritizes managing acute respiratory infections, reflecting their expected seasonal surge under 
conflict-affected living conditions [7]. Despite these pressures, influenza/acute respiratory infection 
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(ARI) sentinel paradigms continue to provide a foundation for situational awareness in the broader 
WHO European Region, emphasizing the need for timely, locally adapted analytics that can operate 
amid data interruptions.

Artificial intelligence (AI) and machine learning methods, particularly sequence models, offer 
promising tools for forecasting and simulating infectious diseases when traditional assumptions are 
strained by conflict,  displacement,  and infrastructure damage [8].  Reviews of  AI for  infectious 
disease modeling highlight how deep learning can complement mechanistic frameworks, integrate 
heterogeneous data streams, and improve short-term predictive accuracy for respiratory pathogens 
[9-10].  Among deep learning approaches,  long short-term memory (LSTM) networks are  well-
suited to capture nonlinear temporal dependencies in surveillance time series and have shown 
competitive or superior performance in forecasting influenza and other respiratory virus activity 
across diverse settings [11]. Emerging scoping and systematic reviews also document growing use 
of AI-enabled early warning systems that fuse epidemiological indicators with contextual signals 
(e.g., mobility, weather, or health-service data) to anticipate near-term incidence [12].

Against this backdrop, we address the problem of near-term URTI forecasting in Ukraine under 
war conditions using an LSTM-based approach. The study aims to develop an LSTM framework to 
evaluate the forecast accuracy of URTIs.

The current research is part of a comprehensive information system for assessing the impact of 
emergencies on the spread of infectious diseases described in [13].

2. Materials and Methods

For the experimental study, we used monthly data on URTI morbidity in Ukraine from 2013 to  
2024, collected by the Center for Public Health of the Ministry of Health of Ukraine. The data  
distribution is presented in Figure 1.

Figure 1: Morbidity by URTI in Ukraine (2013-2024).



We designed a three-layer LSTM network to model non-linear temporal dependencies in the 
URTI surveillance series. The input to the network is a window of the most recent 16 time steps 
with nfeatures covariates per step (tensor shape (16, nfeatures)). The first LSTM layer has 300 units and 
returns a sequence (16, 300), followed by dropout to limit overfitting. The second LSTM layer has  
1200  units  (also  returning  sequences)  to  expand  capacity  for  complex  patterns,  followed  by 
dropout. The third LSTM layer reduces dimensionality to 600 units and returns only the final state  
(vector of length 600). After a final dropout, a dense layer with one neuron produces the next-step  
forecast.  The model  has  approximately 11.89  million trainable  parameters,  concentrated in  the 
LSTM layers, which balances expressive power with training stability (Figure 2).

Figure 2: The model architecture.

Data are converted into supervised learning pairs using a sliding-window generator: for each 
time t, the feature tensor aggregates the previous 16 steps, and the target is the value at t+1. We 
implement  this  with  a  standard  time  series  generator  that  creates  batched  windows  with 
configurable length, stride, and sampling rate. All continuous inputs are scaled to [0,1] using a 
transformation fit on the training split. Predictions are inverse-transformed to the original scale for 
evaluation and visualization.  This  improves numerical  stability  during optimization and allows 
direct comparison of predicted and observed series on plots.

To  obtain  multi-step  horizons,  we  use  a  recursive  (auto-regressive)  strategy.  The  model  is 
trained for one-step-ahead prediction and then applied iteratively, feeding each forecast back into 
the input window to predict the next point. Although errors may accumulate with horizon length,  
this approach is data-efficient and leverages the strong one-step learner. Forecasts are generated 
for the desired horizon and then compared with ground truth. Predicted and observed series are 
plotted on the original scale to assess fit to trends and seasonal patterns.

Training uses the Adam optimizer for stochastic gradient-based updates, with mean squared 
error (MSE) as the loss.  We monitor mean absolute percentage error (MAPE) and MSE during 
training. Regularization includes dropout after each recurrent block, before the output layer, and 
early stopping on validation loss to prevent overfitting. Hyperparameters (batch size, learning rate, 
dropout rate) are selected by grid search with a time-ordered validation split.

To encode annual seasonality without discontinuities between December and January, we add 
cyclical month features using trigonometric transforms sin(2*π*m/12) and cos(2*π*m/12), where m 
is  the month index.  These features  help  the network capture  recurring annual  structures  that 
simple categorical month encodings may fragment. A before-and-after comparison shows lower 
RMSE and MAE when these seasonal terms are included, indicating improved short-term accuracy 
for URTI dynamics (Figure 3).



Figure 3: The comparison between seasonality and the input data.

3. Results

During testing, we observed episodes in which the loss became undefined (NaN). Diagnostic checks 
indicated  a  gradient  explosion  as  the  underlying  cause,  resulting  from  insufficient  input 
normalization, an unsuitable loss choice, or a poorly tuned learning rate. To address this, we first  
normalized all inputs to the [0,1] range before training, which reduced numerical instability. We 
then tuned the learning rate of the Adam optimizer to stabilize weight updates without abrupt 
jumps.  After  these  changes,  training  proceeded  without  NaNs,  though  the  error  trajectory 
sometimes remained sensitive. As shown in Figure 4, the MAPE curve exhibits marked oscillations 
across epochs, indicating forecast instability and periods with large deviations during learning.

Figure 4: Metrics optimization.



Next, we analyzed forecasts generated in the cumulative form of the series. Unlike point-by-
point  prediction  of  the  raw  series,  the  cumulative  forecast  aggregates  values  over  time.  This 
aggregation smooths random fluctuations and noise, revealing long-term tendencies more clearly.  
In  settings  where the cumulative  effect  is  of  interest,  such as  financial  forecasts  (accumulated 
revenue or costs), product-demand analysis, or assessment of the overall impact of a process, this  
representation  can  improve  interpretability  and  short-term  robustness.  At  the  same  time, 
cumulative  values  may  blur  local  changes  and  mask  critical  breaks  in  trend  because  the 
accumulated trajectory has inherent inertia. Sharp jumps or structural shifts can be less visible than 
in the raw series. Visual inspection is consistent with these properties: the pre-invasion cumulative 
forecast  tracks  the  general  trajectory  with  damped  variability  (Figure  5),  while  the  full-series  
cumulative forecast preserves the broad trend despite conflict-related shocks (Figure 6).

Figure 5: Forecast of cumulative morbidity before the Russian full-scale invasion.

Figure 6: Forecast of cumulative morbidity including the data after the Russian full-scale invasion.

Quantitatively, cumulative modeling yielded lower error when the post-invasion period was 
included. As summarized in Table 1, MAPE decreased from 6.05% (cumulative data, pre-invasion) to 
3.23% (cumulative  data,  including post-invasion),  a  relative reduction of  ~46.6%.  MSE fell  from 



12,486,199,938 to 3,045,342,366 (−75.6%), and RMSE declined from 111,741.67 to 55,184.62 (−50.6%). 
These differences align with the visual patterns noted above: aggregation enhances signal-to-noise 
for  medium-term tendencies,  though  it  can  attenuate  abrupt  local  shifts.  The  diagnostics  and 
comparative  evaluation  indicate  that  careful  normalization  and  learning-rate  tuning  mitigate 
training pathologies linked to gradient explosion, training dynamics remain somewhat volatile as 
reflected by MAPE oscillations in Figure 4, and cumulative forecasts improve headline accuracy 
while requiring cautious interpretation of short-lived changes, as illustrated in Figures 5 and 6.

Table 1
Results of the experimental study

Metric Before the war Including the war data

MAPE 6.05 3.23

MSE 12486199938 3045342366

RMSE 111741.67 55184.62

4. Discussion

This study shows that an LSTM configured as a deep, three-layer sequence model can produce 
stable short-term forecasts of acute URTI activity in Ukraine when inputs are carefully normalized 
and  the  optimizer  is  tuned.  However,  that  training  remains  sensitive,  with  periods  of  loss  of  
stability and oscillating MAPE during learning. The reduction in error for the cumulative series,  
MAPE from 6.05% to 3.23%, MSE from 12.49×10^9 to 3.05×10^9, and RMSE from 111,742 to 55,185, 
indicates  that  aggregating  the  signal  improves  headline  accuracy,  consistent  with  its  noise-
suppressing effect. At the same time, visual inspection confirms that cumulative trajectories can 
mask local regime shifts, especially around conflict-related shocks. The observed benefits of cyclical 
month encodings align with prior  evidence that  Fourier-type terms capture annual  periodicity 
without artificial breaks between December and January.

These  findings  fit  broader  results  in  infectious  disease  forecasting.  Deep  learning  can 
complement classical models by learning non-linear dependencies and combining heterogeneous 
signals, but it is sensitive to nonstationarity and evaluation choices. Recent reviews highlight that 
LSTM-based and related deep architectures improve short-term forecasts for respiratory infections 
when the data pipeline is well specified and exogenous context is available [9]. The empirical gain 
we see for cumulative modeling is also consistent with the literature’s emphasis on smoothing to  
stabilize near-term predictions, while cautioning that aggregation can hide abrupt shifts requiring 
separate detection [14].

From a modeling perspective, the architecture’s capacity is high relative to the monthly data 
length,  which  explains  the  training  sensitivity  and  NaN  episodes  before  normalization  and 
learning-rate  tuning [15].  Beyond the  steps  we used,  practical  stability  can be  improved with 
gradient-norm or adaptive gradient  clipping,  which have theoretical  and empirical  support  for  
controlling exploding updates in deep networks, including recurrent models [16]. Given the depth 
and  parameter  count,  additional  regularization  and  early  stopping  remain  advisable.  A  leaner 
recurrent  backbone  or  dilated  temporal  convolutions  may  reduce  variance  without  sacrificing 
accuracy.  Comparative  studies  and  hybrid  LSTM-Transformer  designs  in  epidemic  forecasting 
suggest that architectures with attention and mobility cues can enhance 1-4-week horizons [12].

Using a recursive multi-step strategy is data-efficient and straightforward, but it accumulates 
error as the horizon grows. Alternative strategies, including direct, multi-input–multi-output, or 
hybrid schemes, can mitigate compounding error and deserve testing in this setting. Recent work 
unifies these approaches and shows when each is advantageous, suggesting that hybridization may 



outperform pure recursion under distribution shift [17]. In parallel, evaluation should follow best  
practices for time-ordered splits and rolling origins and report metrics that are robust to scale and 
near-zero  denominators.  While  MAPE  offers  interpretability,  it  can  misbehave  when  values 
approach zero.  Complementing it  with  RMSE/MAE and scale-free  measures  such  as  MASE or 
interval scores will give a fuller picture of forecast quality for URTIs [18].

Seasonality  engineering  appears  important  for  this  application.  The  improvement  observed 
when adding trigonometric month encodings accords with established guidance on Fourier terms 
for seasonal effects, which avoid discontinuities introduced by categorical month dummies [19]. 
Future experiments could expand these seasonal bases or allow time-varying seasonality to capture 
changes in school calendars, heating disruptions, or mobility during wartime winters.

Contextual signals could further strengthen forecasts. Studies show that integrating mobility,  
meteorology,  and  digital  trace  indicators  improves  early  warning  and  near-term  accuracy  for 
respiratory infections by explaining deviations from historical seasonal patterns [20]. For Ukraine, 
candidate covariates include local temperature, humidity, outages of power or heat, displacement 
flows,  and  mobility  between  oblasts.  LSTM/Transformer  hybrids  leveraging  mobility  have 
improved  1-4-week  predictions  elsewhere,  and  reviews  of  early-warning  systems  point  to 
consistent  gains  when  such  context  is  added  to  surveillance  baselines.    A  spatiotemporal 
extension could also capture diffusion between oblasts under displacement.

Uncertainty quantification is essential for decision support. Point forecasts alone can overstate 
confidence,  especially  under  conflict-driven  shocks  [21].  Conformal  prediction  methods  offer 
distribution-free intervals that adapt under nonstationarity and can be wrapped around existing 
LSTM predictors [22]. This would allow planners to set risk-aware thresholds for surge staffing and 
supplies.  In  parallel,  ensembles  that  blend statistical,  machine-learning,  and deep models  have 
improved influenza forecasts and could stabilize week-ahead URTI predictions in Ukraine.

Several limitations temper interpretation. First, monthly data constrain sample size and can hide 
rapid  shifts  in  consultation  behavior  or  reporting  during  attacks  on  infrastructure.  Higher-
frequency data would help. Second, the gains observed for cumulative targets do not guarantee 
better detection of local peaks. Operational monitoring should pair cumulative forecasts with raw 
series nowcasts and anomaly detection. The present results support the feasibility of LSTM-based 
forecasting for URTIs in a conflict-affected health system, provided that training stability is secured 
and seasonality is encoded explicitly. The main practical lessons are: aggressive preprocessing and 
optimizer  tuning  are  necessary  but  may  be  insufficient  without  gradient  clipping;  cumulative 
targets can improve headline accuracy but must be paired with raw-series monitoring to avoid  
missing  abrupt  changes;  and  adding  contextual  and  spatial  signals,  uncertainty  intervals,  and 
ensemble baselines is a promising path to robust, actionable forecasts for winter-season planning in 
Ukraine.

5. Conclusions

We developed and evaluated a three-layer LSTM model to forecast acute URTIs in Ukraine under 
war  conditions.  The pipeline  used feature  scaling  to  [0,1],  Adam optimization  with  MSE loss,  
recursive  multi-step  prediction,  and  cyclical  month  features.  Normalization  and  learning  rate 
tuning mitigated training instabilities linked to gradient explosion. Cumulative target forecasting 
improved accuracy relative to the raw series, with MAPE falling from 6.05% to 3.23%, MSE from 
12,486,199,938 to 3,045,342,366, and RMSE from 111,741.67 to 55,184.62.

The  paper  contributes  a  deep  LSTM  configuration  tailored  to  conflict-affected  surveillance 
streams  with  explicit  safeguards  for  training  stability;  an  empirical  comparison  showing  that 
cumulative modeling can materially reduce short-horizon error for URTI forecasting in this setting; 
and a simple, effective seasonality encoding with trigonometric month features that improves fit 
while avoiding discontinuities between calendar years.

The  approach  provides  forecasts  that  can  inform  staffing,  supply  planning,  and  winter 
preparedness in a health system stressed by infrastructure damage and displacement. The pipeline 



is lightweight, reproducible, and compatible with routine surveillance. Its outputs (point forecasts 
and error metrics) are easily integrated into operational dashboards.

Next  steps  include  adding  gradient  clipping and weight  decay  to  stabilize  training further, 
testing alternative forecasting strategies and model families, incorporating contextual and spatial 
covariates, and reporting uncertainty via conformal prediction or ensemble methods. Extending 
from monthly to weekly data and performing rolling-origin evaluations with a richer metric set 
will strengthen external validity and operational readiness.
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