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Abstract
Background: Human identification in forensic contexts becomes challenging when fingerprints, dental  
records, or DNA are unavailable. The sphenoid sinus, owing to its protected anatomical location and high 
inter-individual variability, offers potential as a biometric marker.
Methods:  We first  replicated  a  YOLOv8-nano segmentation experiment using annotated CT scans in 
DICOM data format. Images were preprocessed with soft-tissue windowing and converted into high-quality 
PNGs for  training.  Model  performance  was  evaluated with standard segmentation metrics.  Based on 
observed limitations, we decided for 3D modelling approaches involving manual,  semi-automatic,  and 
normalization-based segmentation pipelines.
Results: The YOLOv8 model achieved high validation performance (mAP50 = 0.921; true positive rate = 91%; 
true negative rate = 100%), which is promising for the future implementation. However, its reliability for  
consistent sphenoid sinus segmentation was limited by anatomical complexity and heterogeneous datasets. 
In contrast, 3D modelling methods produced more robust and accurate reconstructions of the sphenoid  
sinus.
Conclusion: While deep learning-based 2D segmentation provides a strong baseline for sinus analysis, 3D 
modelling approaches currently offer greater reliability for forensic applications. Combining both strategies 
may pave the way toward fully automated, scalable identification frameworks based on sphenoid sinus 
morphology. 
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1. Introduction

The accurate identification of human remains is  a critical  challenge in forensic medicine is  an 
endeavor often impeded when conventional methods such as fingerprints, dental records, or DNA 
analysis are unavailable due to decomposition, trauma, or resource limitations. In such situations,  
skeletal structures, particularly the paranasal sinuses, offer valuable alternatives. Among them, the 
sphenoid sinus is  an anatomically deep-seated and highly variable paranasal cavity,  which has 
emerged as a promising biomarker for forensic identification due to its structural uniqueness and 
resilience to external damage [1].  

The  sphenoid  sinus  demonstrates  remarkable  inter-individual  variability  in  terms  of 
pneumatization, shape, size, and septal asymmetry [2]. Its location deep within the sphenoid bone  
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renders  it  less  susceptible  to  external  trauma,  enhancing  its  reliability  as  a  potential  forensic 
identifier. Historically, forensic experts have relied on manual or semi-automatic methods to analyze 
sphenoid sinus morphology, but these approaches are time-consuming, operator-dependent, and 
subject to considerable variability [3].

In  response,  recent  advances  in  computational  methods  have  yielded  promising  results  in 
automating both segmentation and recognition of the sphenoid sinus. One seminal study proposed a 
fully automatic 3D reconstruction pipeline, combining fuzzy c-means clustering and mathematical 
morphology for sphenoid segmentation, followed by feature extraction via a stacked convolutional 
auto-encoder. This approach achieved perfect identification accuracy (100%) on a dataset of 85 CT 
scans from 72 individuals [1]. More recently, deep learning techniques have been leveraged with even 
larger datasets. For example, a convolutional neural network trained on 1,475 noncontrast thin-slice 
CT scans achieved a Rank-1 accuracy of 93.94% and Rank-5 accuracy of 99.24%, performing each 
identification in under a minute [4].

Along a parallel trajectory, point cloud methods have been applied to enhance the robustness of 
sphenoid sinus-based identification. A geometric self-attention network (GSA-Net) operating on 3D 
point cloud representations achieved Top-1 accuracy of 99.55% and Top-3 accuracy of 100% across 
220 individuals, demonstrating strong resilience to rotational transformations [5].

In  the  realm  of  segmentation,  the  U-Net  architecture  has  revolutionized  biomedical  image 
processing through its encoder–decoder structure, facilitating highly precise segmentation even with 
limited training data. Its variants have since been widely adopted across medical imaging tasks.  
However,  most  work  applying  deep  learning  to  paranasal  sinuses  focuses  on  CT images  and 
maxillary or frontal sinuses [6]. Recently, an nnU-Net v2 model was developed to segment sphenoid 
sinus and adjacent skull base structures in cone-beam CT (CBCT) volumes. This model reached a 
Dice coefficient of 0.96 for the sphenoid sinus demonstrating exceptional segmentation accuracy and 
moderate performance on other nearby anatomical structures [7].
Collectively, these findings underscore the potential of combining high-fidelity segmentation with 
advanced recognition models such as U-Net–based or point cloud–based neural networks to develop 
an end-to-end, automated framework for human identification via sphenoid sinus morphology [8].  
Such  a  framework would  offer  high  accuracy,  operator  independence,  and  scalability  qualities 
paramount in forensic contexts where rapid and reliable identification is required. 

The aim of  this  study was  to  perform 2D segmentation  using the  YOLOv8 model  and  to 
investigate preprocessing of 3D data of the sphenoid sinus for the person recognition task using 
manual, semi-automatic and normalization methods

2. Material and Methods

This study investigated the segmentation of the sphenoid sinus from cranial CT scans as a potential 
biometric structure for forensic human identification. The study was approved by the Bioethics 
Committee of Kharkiv National Medical University (Minutes of the meeting of the commission No. 5 
dated November 11, 2018). Data were collected from two sources: (i) heterogeneous CT datasets 
provided by collaborating institutions, characterized by variable image quality, slice thickness, and 
orientations, and the publicly available NasalSeg dataset comprising 130 expert-annotated CT scans. 
While NasalSeg does not directly annotate the sphenoid sinus, it provided a standardized reference 
dataset for testing preprocessing and segmentation pipelines.

As a preliminary step, we conducted experiments based on nasal sinus segmentation with YOLO 
v8 [10]. A dataset of 24 patient DICOM scans (12-bit depth) with JSON annotations was processed. 
Soft-tissue windowing was applied to the raw DICOM data to enhance anatomical contrast, and the 
images were converted into high-quality, lossless 8-bit PNGs. These were used to train a YOLOv8-
HD95 segmentation model (yolo v8n-seg) for 100 epochs at 512×512 resolution on an NVIDIA RTX 
3060 GPU. All experiments and evaluation pipelines were implemented within a structured project  
environment,  which  is  publicly  available  for  reproducibility.  The  finalized  submission  package 
(“BIKO_UA_Nasal_Sinus_Segmentation_via_DeepLearning.zip”)  includes  the  complete,  cleaned 



project directory with two main modules: 3D_Attention_UNet and YOLOv8_Segment. Each module 
contains its full source code (/src), training and evaluation results (CSV format under /results), and 
corresponding dependency files (requirements.txt). The trained model files (best_dice_model.pth and 
best.pt) exceed 300 MB and were therefore not included in the ZIP archive. All versioned code and  
model  weights  are  hosted  publicly  on  GitHub:  https://github.com/Simsalasigsauer/Sinus-
Segmentation-UNet-vs-YOLO.

Detailed quantitative evaluation tables for both models (Dice, IoU, Hausdorff Distance HD95, 

Average Surface Distance ASSD) are included in the project README.Additionally, the README 
outlines follow-up analyses regarding generalization across sites and downstream identification 

tasks.Some  advanced  experiments  (Rank-1/Rank-5  accuracy,  cross-site  inference)  were  not 
conducted, as the current project stage focused on segmentation benchmarking rather than full 
identification pipelines.

Then three complementary preprocessing approaches for 3D data were evaluated:
1. Manual  segmentation.  Expert  annotations  of  the  sphenoid  sinus  were  processed  using 

custom Python scripts. DICOM images and JSON-based masks were converted into 3D volumetric 
data  and point  clouds.  These were subsequently  meshed in Blender using metaball  algorithms 
combined  with  marching  cubes  reconstruction  [11].  This  workflow allowed  the  generation  of 
anatomically plausible sinus models but required significant computational and manual effort.

2. Semi-automatic segmentation. Semi-automated region-growing algorithms were applied in 
Materialise Mimics [12] and 3D Slicer [13]. Mimics provided an intuitive interface and fast processing 
(3–10 minutes per case), while 3D Slicer, as an open-source tool, required more manual refinement 
but offered broader functionality and flexibility. Comparative evaluations focused on segmentation 
accuracy, mesh quality, processing time, and software accessibility [14, 15].

3. Image normalization. To address variability in CT quality, multiple preprocessing methods 
were implemented [16]. Percentile normalization (5–98%) was used to suppress outlier intensities 
such as those caused by dental implants, while preserving relevant anatomical detail. Windowing 
was applied to improve the visibility of soft tissue and bone structures within defined Hounsfield 
ranges. Finally, an extended Nyúl-Shah normalization method was explored but not fully optimized 
within  the  project  timeframe.  These  methods  aimed  to  harmonize  heterogeneous  datasets  for 
downstream learning-based analyses.
In addition, anatomical distinctiveness of paranasal sinuses has been reported in prior studies [17], 
and volumetric evaluations of sphenoid sinus morphology have highlighted their forensic potential  
[18]. 

3. Results

Figure 1: Result for images in axial plane using YOLOv8

Manual segmentation successfully reconstructed the sphenoid sinus in three dimensions, confirming 
the feasibility of this approach as a ground truth reference. 



However,  the  process  was  labor-intensive  and  limited  by  mesh  artifacts  such  as  unnatural 
connections and excessive smoothing in Blender reconstructions. Consequently, this method was 
deemed impractical for large-scale dataset generation. 

The YOLOv8 model converged stably and achieved strong segmentation performance on the 
validation set. The predicted masks were smooth and anatomically precise, with a mask mAP50 of 
0.921. The model reached a true positive rate of 91% and a true negative rate of 100%. These results 
confirmed the technical feasibility of using deep learning for sinus segmentation.

Figure 2: Mesh results for 3D Slicer (left) and Materialize Mimics (right)

Semi-automatic  segmentation  provided  more  efficient  results.  Mimics  consistently  produced 
accurate 3D reconstructions with minimal user intervention, albeit at high licensing costs. 3D Slicer 
required  more  extensive  manual  correction  but  yielded  smoother  and  more  organic  meshes, 
particularly when slice thickness was small. Across both tools, 63 segmentations were completed (23 
from the local dataset, 40 from NasalSeg). While the NasalSeg data enabled clean reconstructions, 
scans from the local dataset were often compromised by poor resolution, orientation errors, and 
incomplete fields of view.

Normalization  markedly  improved  data  quality  and  comparability.  Percentile  normalization 
reduced histogram variability and mitigated the effects of overexposure artifacts, while windowing 
enhanced  contrast  within  the  sinus  cavities.  Optimal  results  were  achieved  using  percentile 
thresholds of 5–98% combined with window values between 8,000 and 40,000 HU, producing sharper 
anatomical boundaries while maintaining tissue differentiation. Attempts to implement Nyúl-Shah 
normalization  suggested  potential  advantages  for  standardizing  multi-center  data,  but  further 
refinement was required.

4. Discussions

This work demonstrates the potential of the sphenoid sinus as a biometrically distinctive and resilient 
structure  for  forensic  human  identification.  Manual  segmentation  confirmed  the  anatomical 
uniqueness  of  the  sinus  but  was  not  scalable  due  to  its  high  time  demands.  Semi-automatic  
approaches proved to be a practical compromise, combining acceptable accuracy with efficiency. The 
comparison between Mimics and 3D Slicer highlights a trade-off between commercial accessibility 
and open-source flexibility: Mimics excelled in usability and speed, while 3D Slicer provided broader 
functionality and cost-free access, albeit with higher operator involvement [19, 20]. 

While the YOLOv8-based segmentation demonstrated high accuracy, its direct application to the 
sphenoid sinus proved less effective for our forensic identification goals. The method was highly 
optimized for general  nasal  sinus segmentation,  but  the sphenoid’s  deep location and complex 
anatomical variation limited reliability in practice. Additionally, despite strong validation metrics,  
qualitative inspection revealed inconsistencies  when working with heterogeneous CT data and 
variable acquisition parameters.  These limitations motivated us to move beyond 2D slice-based 
segmentation toward more robust 3D modelling strategies.



Normalization  emerged  as  a  critical  step  for  ensuring  comparability  across  heterogeneous  CT 
datasets. Percentile normalization effectively reduced variability, while windowing provided targeted 
contrast  enhancement.  These  methods  collectively  improved  segmentation  performance  and 
prepared  the  datasets  for  integration  into  machine  learning  frameworks.  Although  Nyúl-Shah 
normalization was not fully realized, its theoretical potential suggests it could further standardize 
data across institutions and scanners.

Table 1
Comparison of Materialize Mimics and 3D Slicer

Materialize Mimics 3D Slicer

Good  user  interface;  easy  to 
understand and intuitive

Requires more familiarization, but offers 
many features

Efficient  algorithms  for  region 
growing and post-processing

More manual  post-processing required 
and somewhat more labor-intensive 

3D  mesh  quality  somewhat  more 
precise but more angular; scans with 
large  slice  thickness  appear 
unnatural; higher accuracy expected 
with high resolution

3D mesh more smoothed, appears more 
organic; some loss of detail expected

Faster  processing  time  per  image 
(approx. 3–10 minutes)

Longer  processing  time  per  image, 
though likely improves with experience

Commercial software – associated 
with high costs

Freely available

A comparison between Mimics and 3D Slicer (see table 1) highlighted clear trade-offs between 
commercial and open-source approaches. Mimics offered an intuitive and user-friendly interface (see 
Fig. 3) with efficient algorithms for both region growing and post-processing. Processing times were 
shorter  (approximately  3–10  minutes  per  image),  and  mesh  accuracy  was  higher,  though 
reconstructions tended to appear angular, particularly with scans of larger slice thickness. Its main 
drawback was the high licensing cost. By contrast, 3D Slicer required more familiarization and 
greater manual effort for post-processing, which initially increased segmentation time. However, it  
provided a broader range of features and the advantage of being freely available. Reconstructions 
generated with 3D Slicer appeared more smoothed and organic, albeit with some expected loss of fine 
detail [20]. Overall, Mimics proved advantageous for speed and precision at high resolution, while 3D 
Slicer offered flexibility and accessibility for extended research use.

The study underscores the importance of preprocessing and segmentation as foundational 
steps toward automated identification pipelines. Future work should integrate these methods into 
deep learning frameworks, such as GSA-Net, which have demonstrated near-perfect accuracy in 
sphenoid sinus–based identification tasks [21, 22]. By coupling robust normalization with advanced 
segmentation and classification models, fully automated and scalable forensic identification based on 
sinus morphology may become feasible.



 
Figure 3: Materialize Mimics and 3D Slicer comparison

The YOLOv8 segmentation experiments established a strong technical baseline, confirming that deep 
learning  can  generate  anatomically  coherent  masks  of  the  paranasal  sinuses.  However,  the 
limitations observed when focusing on the sphenoid sinus highlighted the need for alternative 
methods. Consequently, we transitioned to 3D reconstruction and modelling approaches, which 
offered greater anatomical fidelity and potential for forensic identification. 

5. Conclusions

This study represents an initial attempt to use sphenoid sinus morphology from CT imaging as a 
biometric marker for human identification. Through the evaluation of manual, semi-automatic, and 
preprocessing-based segmentation methods, we demonstrated both the feasibility and the limitations 
of current approaches. While manual segmentation provides accurate anatomical references, it is not 
scalable;  semi-automatic  tools  such as  Mimics  and 3D Slicer  offer a  practical  balance between 
usability and accuracy, though with different trade-offs. Image normalization proved essential for 
harmonizing heterogeneous datasets and improving the comparability of scans. Together, these 
findings establish a methodological foundation for future research aimed at integrating advanced 
deep learning models for fully automated and scalable forensic identification.
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