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Abstract

The quality of a face recognition system largely depends on the correct choice of threshold value when
comparing vector features (embeddings). This paper investigates the impact of cosine distance thresholds
on the performance of a real-time face recognition system. The proposed approach combines face
detection using MediaPipe FaceMesh and feature extraction using the ArcFace model. A series of
experiments with different threshold values was conducted, the results of which were evaluated using the
following metrics: Accuracy, Precision, Recall, False Accept Rate (FAR), and False Reject Rate (FRR). The
results show that the choice of threshold directly determines the trade-off between security and
convenience of the system. The optimal range of cosine distance threshold values was established as 0.05-
0.07, which minimizes both FAR and FRR, which is important for practical use in video surveillance,
access control, and user authentication systems.
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1. Introduction

Biometric face recognition technologies are one of the most widespread and most researched areas
in the field of computer vision. As a result of the development of deep neural networks, modern
face recognition models have achieved a level of accuracy that is close to human perception on
well-known test sets (LFW, MegaFace, IJB-C) [1]. Such systems are already widely used in video
surveillance, access control, banking security, and mobile authentication.

A key step in the task of face recognition is calculating the distance between two embedding
vectors representing faces in recognition models. Most often, cosine distance or its variations are
used for this purpose [2]. However, the final decision on whether two samples match or differ
depends on a threshold value that determines the balance between the False Accept Rate (FAR) and
False Reject Rate (FRR) indicators [3]. A threshold value that is too low leads to frequent false
rejections (failure to recognize even a real user), while a threshold value that is too high leads to
false acceptances (identifying different people as the same person). Thus, the correct choice of
threshold is crucial for the system's reliability.

The literature notes that optimal threshold values can vary significantly depending on the data
set, shooting conditions, and even personal characteristics (race, age, gender) [4]. This creates a
problem of threshold inconsistency, where the model demonstrates different effectiveness at the
same threshold on different samples. For practical applications, a universal threshold is usually
chosen, for example, one that provides an Equal Error Rate (EER) or a fixed FAR level, but accuracy
may be reduced [5].

This work focused on an experimental study of the impact of cosine distance thresholds on face
recognition quality. To this end, a pipeline was used that combines face detection with MediaPipe
FaceMesh [6] and feature extraction using the ArcFace model [7]. A series of experiments with
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different thresholds was conducted, and the results were evaluated using standard metrics
(Accuracy, Precision, Recall, FAR, FRR) [5]. The results obtained allow determining the optimal
range of thresholds for practical use and show the compromise between security and the
convenience of the system.

2. Related work

In face recognition systems, two images are converted into embedding vectors (e.g., using FaceNet,
ArcFace, CosFace, etc.), and the similarity between them is usually assessed using cosine similarity
(or the corresponding cosine distance) [8]. A pair is considered a ‘match’ (the same identifier) if the
similarity value exceeds a certain threshold; otherwise, it is considered a ‘non-match’.
Classification errors are defined as False Accept (FA) — mistakenly accepting different individuals
as one, and False Reject (FR) — mistakenly rejecting one individual as two. The corresponding FAR
(False Accept Rate) and FRR (False Reject Rate) indicators depend on the selected threshold. The
EER (Equal Error Rate) point corresponds to the threshold at which FAR = FRR [8]. The ROC
(TPR-FPR) curve and the construction of DET nomograms are also obtained by searching through
thresholds. Therefore, the choice of threshold value directly determines the quality indicators
(Accuracy, Precision, Recall, etc.) [8].

Lowering the threshold (a more ‘lenient’ matching criterion) leads to an increase in FAR, when
more impostors are mistakenly accepted, and a decrease in FRR, and vice versa when the threshold
is raised. For example, when evaluating on LFW or other benchmarks, the standard technique is 10-
fold cross-validation to select the optimal threshold, and most often it is the threshold value of
cosine similarity [9]. However, many studies note that a threshold selected for one sample may not
be suitable for another with a different origin, lighting, racial composition, etc. [9]. During training,
the model can be optimised based on both the distance between feature vectors and the angle
between them. In the case of the ArcFace and CosFace approaches, an additional angular or cosine
shift is introduced, which increases the resolution of the feature space. However, at the verification
stage, it is still necessary to determine the threshold value for making a decision. This threshold is
often set based on the desired level of FAR or EER. The literature states that traditional approaches
compare both classes (mated/impostor) with a fixed threshold, but ‘the best threshold for different
classes is often different’ [9]. It is argued that the optimal threshold is usually specific to a
particular dataset — the best thresholds for different datasets often differ. In practice, it is difficult to
find the optimal threshold without access to test data [9].

Some works propose adaptive or coordinated threshold selection strategies that implement
adaptive thresholding for each registered face in the database: instead of a single global threshold,
they store a separate threshold for each sample, which leads to a significant improvement in
accuracy (up to a 22% increase on LFW in their protocol) [9]. In [5], the authors highlight the
discrepancy in thresholds across different domains and propose a new protocol called ‘One-
Threshold-for-All’, which utilizes a single fixed threshold (referred to as the Calibration Threshold)
for evaluating multiple datasets simultaneously. They show that the traditional approach of
selecting a separate threshold for each dataset is inconsistent with the practical scenario of a single
threshold and slows down the implementation of models. In [10], the concept of threshold
inconsistency is introduced: even if the model is very accurate, different thresholds may be
required for different classes to maintain the same FAR/FRR level, and the OPIS metric is proposed
to measure the discrepancy of thresholds across classes, showing that solutions optimized for
accuracy alone often worsen threshold consistency [10].

Other approaches focus on the selected operating mode. For example, in [11], the focus is on a
fixed FAR level (‘Anchor FAR’) as a key criterion for practical FR systems: they optimize the goal of
maximising TAR (True Accept Rate) at a given FAR, showing that different models are optimally
different at different target FAR values [11]. Thus, the choice of threshold (and, accordingly, FAR)
determines which model gives the best result.



A number of studies specifically investigate the role of cosine similarity in verification tasks.
Work [12] analyses the distribution of cosine distances between positive and negative pairs in the
complex DFW2019 dataset: it turns out that many ‘real’ pairs have low cosine similarity (due to
face masking), which complicates threshold selection. This demonstrates that a fixed threshold on
hard data can generate false rejections. Similarly, work [13] indicates that after training, the model
has a fixed ‘cut-off level’ of cosine similarity, which is not entirely consistent with the testing
procedure (where the threshold is strictly fixed). New loss functions also explicitly take the
threshold into account: for example, [14] introduces USS Loss, which trains a single unified
threshold for all pairs. Using 20 random identities as an example, it is shown that the optimal
thresholds for them almost coincide with a single ‘unified’ threshold (about 0.4896). This indicates
that this approach provides a more compact distribution of threshold values and simplifies the
decision on a match.

3. Problem statement

The task of face verification is formulated as determining whether two images belong to the same
person. To do this, each image is converted into a vector embedding using a neural network

f (X)ERd, where d - the dimensionality of features (e.g., 512 in the case of ArcFace). For a pair of
embeddings f(xi), f(x j) the cosine distance is calculated using the formula:
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The system decides on a ‘match’ (1) or ‘no match’ (0) based on the threshold value T:
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The problem lies in choosing the optimal threshold value T. Depending on its value, the system
indicators change:
* False Accept Rate (FAR) - the proportion of cases in which different people are mistakenly
identified as the same person;

decision=

* False Reject Rate (FRR) — the proportion of cases where a genuine user is rejected by the
system;

* Accuracy, Precision, Recall - integral quality indicators;

* Equal Error Rate (EER) — the point where FAR = FRR, often used as a benchmark for
selecting 7.

In practical systems, it is impossible to find a universal threshold that will be equally effective
for all scenarios and data sets. Too low a value reduces FAR but increases FRR, which degrades
usability. Conversely, too high a value reduces FRR but increases FAR. Thus, the balance depends
directly on the chosen threshold.

4. Face recognition system model

The input data for the face recognition system is a video stream from a camera. Each frame is sent
to a pre-processing module, where image normalisation and basic transformations are performed to
improve the stability of subsequent analysis stages. In particular, procedures for conversion to
standard colour space, scaling, and noise filtering are applied.

The sequence diagram for face identification is shown in Figure 1:
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Figure 1: Diagram showing the sequence of data flow and interaction between components in a
facial recognition system.

As can be seen in Figure 1, the system's operation sequence unfolds in several main stages. Pre-
processing of the frame is implemented in steps 2-3, where conversion to the standard colour
space and key point detection are performed. Further face region selection (step 4) ensures the
formation of an ROI for each face found. In step 4.2.1, the ROI is transferred to the vector
representation formation service, where a 512-dimensional embedding is calculated using the
ArcFace model. Next, depending on the state of the user base (whether the database is empty or the
database is not empty branch), the embedding is either added as a new record or compared with
existing vectors based on cosine distance. The final step is to return the closest user or add a new
one, which is consistent with the subsequent text description.

Face detection in a frame is performed using key point analysis and facial geometry methods.
The use of a topological grid allows not only to highlight the region of interest (ROI), but also to
increase accuracy by taking into account variations in poses, expressions, and partial overlaps.

This method provides significantly greater accuracy and stability compared to classic trackers
such as CSRT, MOSSE, or KCF. Traditional trackers focus on local patterns or pixel movement
between frames and work well in relatively static conditions. However, they have a number of



limitations in dynamic environments: with partial overlaps, sudden changes in head position or
facial expressions, trackers can lose the object, and the bounding box ‘slides’, leading to incorrect
ROI formation and reduced accuracy of subsequent identification.

The use of a topological grid allows for the identification of over 400 key facial points, including
the contours of the eyes, nose, mouth, and outer contour of the head. This ensures accurate ROI
selection, which includes only the most relevant facial pixels, avoiding the background, hair, or
other extraneous elements. High ROI detail directly affects the quality of the resulting vector
representations (embeddings), increasing the accuracy of comparison and verification.

Another advantage of this approach is that classic trackers are often prone to ‘shifts” when the
user moves closer to or further away from the camera or when the lighting angle changes. Face
Mesh, on the other hand, provides stable ROI detection regardless of such variations, and
subsequent normalization of the region of interest ensures uniformity of vector representations for
all frames.

In addition, this method of determining ROI does not depend on the initial frame or prior
initialization. Unlike trackers, which lose the object when it disappears from the frame and require
re-initialization, Face Mesh processes each frame independently. This makes the system more
reliable in dynamic environments where users appear or disappear from the camera's field of view.

Thus, the use of a topological grid to determine ROI provides more accurate face detection, high
resistance to changes in pose, lighting, and partial overlaps, as well as stability of the resulting
embeddings. Compared to classical trackers, this approach increases the reliability of the face
verification system and improves the quality of the final result, which is critical in real-time tasks
and interactive user monitoring.

After ROI selection, the face image is converted into a compact vector representation —
embedding. This is a multidimensional vector that encodes the most important features for
identifying a person. The vector space is chosen so that the distances between points correspond to
semantic proximity: two images of the same person are located close to each other, while images of
different people are located at a relatively large distance.

In the proposed system, embeddings are used as a universal format that allows comparisons to
be made regardless of lighting conditions, head position, or changes in appearance. This approach
makes the method more generalised and less dependent on a specific data set, which is especially
important for systems that need to work with new users without retraining.

Cosine distance is used to assess the degree of similarity between face embeddings. Cosine
distance was chosen because it is invariant to the absolute length of feature vectors and can more
accurately reflect the similarity between multidimensional representations of faces. Unlike
Euclidean metrics, which can be sensitive to scale variations, cosine distance only evaluates the
angle between vectors, making it more reliable in conditions of changing lighting or small
variations in facial expressions.

Thanks to this approach, verification is reduced to the task of comparing numerical values and
can be performed at high speed, which meets the requirements for real-time systems.

The final stage is the integration of verification results into the video stream. For each face
detected in the frame, the system applies a corresponding label with the user ID or a ‘new’ mark.

The proposed approach has the following advantages:

* resistance to environmental dynamics;
* the algorithm operates in real time using vector distance calculations.

5. Results and discussion

The experiments were conducted on the LFW (Labelled Faces in the Wild) dataset [15], which is
widely used to evaluate face verification algorithms. The dataset contains over 13,000 photographs
of people taken in uncontrolled conditions, allowing for the simulation of real-life scenarios. The
images show significant variations in lighting, head position, accessories (glasses, headwear), and



image quality, making LFW one of the most widely used standards for evaluating face recognition
algorithms.

To construct test pairs, both positive examples (images of one person) and negative examples
(different people) were selected.

The results for different threshold values of the cosine distance are given in Table 1.

Table 1
System performance indicators at different cosine distance threshold values

Threshold Accuracy Precision Recall FAR FRR
0.02 0.6579 1.0 0.6579 0.0 0.3421
0.03 0.8684 1.0 0.8684 0.0 0.1316
0.04 0.8947 1.0 0.8947 0.0 0.1053
0.05 09211 1.0 09211 0.0 0.0789
0.06 0.9737 1.0 0.9737 0.0 0.0263
0.07 1.000 1.0 1.000 0.0 0.0000
0.08 1.000 1.0 1.000 0.0 0.0000

As can be seen from the table, the choice of threshold value directly affects the accuracy of the
system and the FAR/FRR error ratio.

Low threshold values (0.02 — 0.03) are too strict. At a threshold of 0.02, the FRR value reaches
34.2%, which means that one-third of genuine users fail the verification. Despite the absence of
false acceptances (FAR = 0), this mode is unsuitable for real-world applications due to its low
usability. Raising the threshold to 0.03 significantly reduces the FRR to 13.2% and increases
accuracy to 86.8%, but the number of false rejections is still too high.

In the middle range (0.04-0.05), performance gradually stabilises. FRR decreases to 10.5% and
7.9% respectively, while accuracy increases to 92.1%. This already makes the system suitable for use
in relatively controlled scenarios (e.g., office entrance with regular users). However, there is still a
risk that some users will be falsely rejected.

At a threshold of 0.06, the system demonstrates very high performance: Accuracy = 97.4%, FRR
= 2.6%, FAR = 0. This means that only 1 in 38 genuine users may be rejected, with no false
acceptances recorded. This result is the most balanced and practically significant: the system
becomes user-friendly while maintaining a high level of security.

Starting from a threshold of 0.07, the system achieves perfect results — Accuracy, Precision, and
Recall are 100%, and FAR and FRR are zero. From a technical point of view, this means that no
errors were recorded in the test sample. However, as previous research shows, achieving ‘perfect’
results is often explained by the limited or homogeneous nature of the sample. In real-life scenarios
— with different lighting, poses, accessories (glasses, masks) — it is practically impossible to avoid
errors. Therefore, such a result should be considered more as an artefact of a specific experiment
rather than a guarantee of absolute reliability.

However, the obtained ‘ideal zone’ (0.07-0.08) can be partially explained by the specifics of the
test data set, since in practice there is always noise, variations in lighting, poses, and appearance,
which make it impossible to achieve absolute indicators. This is consistent with the well-known



problem of threshold inconsistency, where the optimal threshold depends on the conditions of use
and sample characteristics.

Thus, the optimal operating range for the system can be defined as 0.05-0.07, where the best
compromise between minimizing FRR and maintaining zero FAR is achieved. This result is
important for practical real-time applications such as video surveillance, where even a single
impostor acceptance error can have critical consequences.

6. Conclusions

This paper investigated the impact of cosine distance threshold values on the performance of real-
time face recognition systems. Experimental results showed that the choice of threshold directly
determines the balance between FAR and FRR metrics, as well as the overall accuracy of the
system.

It was established that:

* thresholds that are too low (0.02-0.03) result in high FRR, which reduces usability;

* in the range of 0.05-0.06, the system demonstrates an optimal compromise between
security and accessibility, ensuring high Accuracy values and zero FAR;

* starting from a threshold of 0.07, the test set shows perfect results (100% Accuracy,
Precision, and Recall), but this result is likely due to the characteristics of the sample and
requires additional verification on more heterogeneous data.

Thus, the optimal operating threshold for the system under study can be determined as 0.05-
0.07, which minimises the number of false rejections without the risk of accepting an imposter. The
conclusions obtained are important for the practical implementation of face verification
technologies in video surveillance, access control, and user authentication tasks.

Further research could focus on testing the stability of the optimal threshold on different data
sets, developing adaptive thresholding methods for specific users, and integrating additional factors
(lighting conditions, dynamic scenes, changes in appearance) that affect the accuracy of the system.

References

[1] Y. Wu, “Rotation consistent margin loss for efficient low-bit face recognition,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 6866—
6876.

[2] Datacamp, “What is Cosine Distance?”, 2024. URL: https://www.datacamp.com/tutorial/cosine-
distance.

[3] Zaidi, A.Z., Chong, C.Y., Jin, Z., Parthiban, R., and Sadiq, A.S., Touch-based continuous mobile
device authentication: State-of-the-art, challenges and opportunities, J. Network Comput.
Appl., 2021, vol. 191,p. 103162. https://doi.org/10.1016/j.jnca.2021.103162.

[4] Cavazos, J. G., Phillips, P. J., Castillo, C. D., and O’Toole, A. J. (2019). Accuracy comparison
across face recognition algorithms: where are we on measuring race bias? arXiv preprint
arXiv:1912.07398. doi: 10.48550/arXiv.1912.07398.

[5] Jiaheng Liu, Zhipeng Yu, Haoyu Qin, Yichao Wu, Ding Liang, Gangming Zhao, and Ke Xu.
2022. OneFace: One Threshold for All. In Eur. Conf. Comput. Vis. Springer.

[6] GitHub, Google AI Edge MediaPipe Face Mesh, 2020. URL: https://github.com/google-ai-
edge/mediapipe/wiki/MediaPipe-Face-Mesh.

[7] Huang, Y. H., & Chen, H. H. (2022). Deep face recognition for dim images. Pattern Recognition,
126, 108580.

[8] S. Kilany and A. Mahfouz, “A comprehensive survey of deep face verification systems
adversarial attacks and defense strategies”, Scientific Reports, vol. 15, no. 1, Aug. 2025. doi:
10.1038/s41598-025-15753-8.


https://github.com/google-ai-edge/mediapipe/wiki/MediaPipe-Face-Mesh
https://github.com/google-ai-edge/mediapipe/wiki/MediaPipe-Face-Mesh
https://doi.org/10.1016/j.jnca.2021.103162
https://www.datacamp.com/tutorial/cosine-distance
https://www.datacamp.com/tutorial/cosine-distance

[9] H.-R. Chou, J.-H. Lee, Y.-M. Chan, and C.-S. Chen, “Data-specific adaptive threshold for face
recognition and authentication”, 2019 IEEE Conference on Multimedia InformationProcessing
and Retrieval (MIPR), Mar 2019. doi: 10.1109/MIPR.2019.00034.

[10] Q. Zhang, L. Xu, Q. Tang, J. Fang, Y. N. Wu, J. Tighe, and Y. Xing, “Threshold-consistent
margin loss for open-world deep metric learning”, arXiv, 2023. doi: 10.48550/arXiv.2307.04047.

[11] Liu, J.; Qin, H.; Wu, Y.; Liang, D. Anchorface: Boosting tar@far for practical face recognition.
In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 22
February—-1 March 2022.

[12] Deng, J., Zafeririou, S.: ArcFace for disguised face recognition. In: 2019 IEEE/CVF International
Conference on Computer Vision Workshop (ICCVW), pp. 485-493. IEEE, Piscataway (2019).

[13] Liu, L.; Chen, M.; Chen, X.; Zhu, S.; Tan, P. GB-CosFace: Rethinking softmax-based face
recognition from the perspective of openset classification. arXiv 2021, arXiv:2111.11186.

[14] Q. Li, X. Jia, J. Zhou, L. Shen, and J. Duan, “UniTSFace: Unified threshold integrated sample-to-
sample loss for face recognition”, arXiv, 2023. doi: 10.48550/arXiv.2311.02523.

[15] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled Faces in the Wild: A
Database for Studying Face Recognition in Unconstrained Environments. University of
Massachusetts, Amherst, Technical Report 07-49, 2007.


http://dx.doi.org/10.1109/MIPR.2019.00034

	1. Introduction
	2. Related work
	3. Problem statement
	4. Face recognition system model
	5. Results and discussion
	6. Conclusions
	References

