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Abstract
The quality of a face recognition system largely depends on the correct choice of threshold value when  
comparing vector features (embeddings). This paper investigates the impact of cosine distance thresholds 
on  the  performance  of  a  real-time  face  recognition  system.  The  proposed  approach  combines  face 
detection  using  MediaPipe  FaceMesh  and  feature  extraction  using  the  ArcFace  model.  A  series  of  
experiments with different threshold values was conducted, the results of which were evaluated using the  
following metrics: Accuracy, Precision, Recall, False Accept Rate (FAR), and False Reject Rate (FRR). The  
results  show  that  the  choice  of  threshold  directly  determines  the  trade-off  between  security  and 
convenience of the system. The optimal range of cosine distance threshold values was established as 0.05–
0.07,  which minimizes both FAR and FRR, which is important for practical  use in video surveillance, 
access control, and user authentication systems.
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1. Introduction

Biometric face recognition technologies are one of the most widespread and most researched areas 
in the field of computer vision. As a result of the development of deep neural networks, modern 
face recognition models have achieved a level of accuracy that is close to human perception on 
well-known test sets (LFW, MegaFace, IJB-C) [1]. Such systems are already widely used in video 
surveillance, access control, banking security, and mobile authentication.

A key step in the task of face recognition is calculating the distance between two embedding 
vectors representing faces in recognition models. Most often, cosine distance or its variations are 
used for this purpose [2]. However, the final decision on whether two samples match or differ 
depends on a threshold value that determines the balance between the False Accept Rate (FAR) and 
False Reject Rate (FRR) indicators [3]. A threshold value that is too low leads to frequent false 
rejections (failure to recognize even a real user), while a threshold value that is too high leads to  
false acceptances (identifying different people as the same person).  Thus,  the correct choice of 
threshold is crucial for the system's reliability.

The literature notes that optimal threshold values can vary significantly depending on the data 
set, shooting conditions, and even personal characteristics (race, age, gender) [4]. This creates a  
problem of threshold inconsistency, where the model demonstrates different effectiveness at the 
same threshold on different samples. For practical applications, a universal threshold is usually 
chosen, for example, one that provides an Equal Error Rate (EER) or a fixed FAR level, but accuracy 
may be reduced [5].

This work focused on an experimental study of the impact of cosine distance thresholds on face 
recognition quality. To this end, a pipeline was used that combines face detection with MediaPipe 
FaceMesh [6] and feature extraction using the ArcFace model [7]. A series of experiments with 

1 ProfIT AI’25: 5th International Workshop of IT-professionals on Artificial Intelligence, October 15–17, 2025, Liverpool, UK
 maksym.holikov@karazin.ua (M. Holikov); v.donets@karazin.ua (V. Donets); viktoria.strilets@karazin.ua (V. Strilets); 

k.korobchinskiy@karazin.ua (K. Korobchynskyi)
 0000-0003-4842-7823 (M. Holikov); 0000-0002-5963-9998 (V. Donets); 0000-0002-2475-1496 (V. Strilets); 0000-0002-

3676-6070 (K. Korobchynskyi)
© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). 

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

published 2026-02-07

mailto:k.korobchinskiy@karazin.ua


different  thresholds  was  conducted,  and  the  results  were  evaluated  using  standard  metrics 
(Accuracy, Precision, Recall, FAR, FRR) [5]. The results obtained allow determining the optimal 
range  of  thresholds  for  practical  use  and  show  the  compromise  between  security  and  the 
convenience of the system.

2. Related work

In face recognition systems, two images are converted into embedding vectors (e.g., using FaceNet, 
ArcFace, CosFace, etc.), and the similarity between them is usually assessed using cosine similarity 
(or the corresponding cosine distance) [8]. A pair is considered a ‘match’ (the same identifier) if the  
similarity  value  exceeds  a  certain  threshold;  otherwise,  it  is  considered  a  ‘non-match’. 
Classification errors are defined as False Accept (FA) – mistakenly accepting different individuals 
as one, and False Reject (FR) – mistakenly rejecting one individual as two. The corresponding FAR 
(False Accept Rate) and FRR (False Reject Rate) indicators depend on the selected threshold. The 
EER (Equal Error Rate) point corresponds to the threshold at which FAR = FRR [8].  The ROC 
(TPR–FPR) curve and the construction of DET nomograms are also obtained by searching through 
thresholds.  Therefore,  the  choice  of  threshold  value  directly  determines  the  quality  indicators 
(Accuracy, Precision, Recall, etc.) [8].

Lowering the threshold (a more ‘lenient’ matching criterion) leads to an increase in FAR, when 
more impostors are mistakenly accepted, and a decrease in FRR, and vice versa when the threshold 
is raised. For example, when evaluating on LFW or other benchmarks, the standard technique is 10-
fold cross-validation to select the optimal threshold, and most often it is the threshold value of  
cosine similarity [9]. However, many studies note that a threshold selected for one sample may not 
be suitable for another with a different origin, lighting, racial composition, etc. [9]. During training,  
the model can be optimised based on both the distance between feature vectors and the angle  
between them. In the case of the ArcFace and CosFace approaches, an additional angular or cosine 
shift is introduced, which increases the resolution of the feature space. However, at the verification 
stage, it is still necessary to determine the threshold value for making a decision. This threshold is  
often set based on the desired level of FAR or EER. The literature states that traditional approaches 
compare both classes (mated/impostor) with a fixed threshold, but ‘the best threshold for different 
classes  is  often  different’  [9].  It  is  argued  that  the  optimal  threshold  is  usually  specific  to  a  
particular dataset – the best thresholds for different datasets often differ. In practice, it is difficult to 
find the optimal threshold without access to test data [9].

Some works  propose  adaptive  or  coordinated  threshold  selection  strategies  that  implement 
adaptive thresholding for each registered face in the database: instead of a single global threshold,  
they store  a  separate  threshold  for  each sample,  which leads  to  a  significant  improvement  in  
accuracy (up to a 22% increase on LFW in their protocol) [9]. In [5], the authors highlight the  
discrepancy  in  thresholds  across  different  domains  and  propose  a  new  protocol  called  ‘One-
Threshold-for-All’, which utilizes a single fixed threshold (referred to as the Calibration Threshold) 
for  evaluating  multiple  datasets  simultaneously.  They  show  that  the  traditional  approach  of 
selecting a separate threshold for each dataset is inconsistent with the practical scenario of a single 
threshold  and  slows  down  the  implementation  of  models.  In  [10],  the  concept  of  threshold 
inconsistency  is  introduced:  even  if  the  model  is  very  accurate,  different  thresholds  may  be 
required for different classes to maintain the same FAR/FRR level, and the OPIS metric is proposed  
to  measure  the  discrepancy of  thresholds  across  classes,  showing that  solutions  optimized  for 
accuracy alone often worsen threshold consistency [10].

Other approaches focus on the selected operating mode. For example, in [11], the focus is on a 
fixed FAR level (‘Anchor FAR’) as a key criterion for practical FR systems: they optimize the goal of  
maximising TAR (True Accept Rate) at a given FAR, showing that different models are optimally 
different at different target FAR values [11]. Thus, the choice of threshold (and, accordingly, FAR)  
determines which model gives the best result.



A number of studies specifically investigate the role of cosine similarity in verification tasks. 
Work [12] analyses the distribution of cosine distances between positive and negative pairs in the 
complex DFW2019 dataset: it turns out that many ‘real’ pairs have low cosine similarity (due to 
face masking), which complicates threshold selection. This demonstrates that a fixed threshold on 
hard data can generate false rejections. Similarly, work [13] indicates that after training, the model 
has a fixed ‘cut-off level’  of cosine similarity,  which is not entirely consistent with the testing 
procedure  (where  the  threshold  is  strictly  fixed).  New  loss  functions  also  explicitly  take  the 
threshold  into  account:  for  example,  [14]  introduces  USS  Loss,  which  trains  a  single  unified 
threshold for all pairs. Using 20 random identities as an example, it  is shown that the optimal 
thresholds for them almost coincide with a single ‘unified’ threshold (about 0.4896). This indicates 
that this approach provides a more compact distribution of threshold values and simplifies the 
decision on a match.

3. Problem statement

The task of face verification is formulated as determining whether two images belong to the same  
person.  To do this,  each image is  converted into  a  vector  embedding using a  neural  network 

f (x)∈Rd, where d  - the dimensionality of features (e.g., 512 in the case of ArcFace). For a pair of 

embeddings f (xi), f (x j)  the cosine distance is calculated using the formula:
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The system decides on a ‘match’ (1) or ‘no match’ (0) based on the threshold value τ : 

decision={1 , D ( f (xi) , f (x j))<τ
0 , D ( f (xi) , f (x j))≥τ

. (2)

The problem lies in choosing the optimal threshold value τ . Depending on its value, the system 
indicators change:

• False Accept Rate (FAR) – the proportion of cases in which different people are mistakenly 
identified as the same person;

• False Reject Rate (FRR) – the proportion of cases where a genuine user is rejected by the  
system;

• Accuracy, Precision, Recall – integral quality indicators;
• Equal Error Rate (EER) – the point where FAR = FRR,  often used as a benchmark for 

selecting τ .
In practical systems, it is impossible to find a universal threshold that will be equally effective 

for all scenarios and data sets. Too low a value reduces FAR but increases FRR, which degrades 
usability. Conversely, too high a value reduces FRR but increases FAR. Thus, the balance depends 
directly on the chosen threshold.

4. Face recognition system model

The input data for the face recognition system is a video stream from a camera. Each frame is sent  
to a pre-processing module, where image normalisation and basic transformations are performed to 
improve the stability of  subsequent analysis stages.  In particular,  procedures for conversion to 
standard colour space, scaling, and noise filtering are applied.

The sequence diagram for face identification is shown in Figure 1:



Figure 1: Diagram showing the sequence of data flow and interaction between components in a  
facial recognition system.

As can be seen in Figure 1, the system's operation sequence unfolds in several main stages. Pre-
processing of the frame is implemented in steps 2–3, where conversion to the standard colour 
space and key point detection are performed. Further face region selection (step 4) ensures the  
formation  of  an  ROI  for  each  face  found.  In  step  4.2.1,  the  ROI  is  transferred  to  the  vector  
representation  formation  service,  where  a  512-dimensional  embedding  is  calculated  using  the 
ArcFace model. Next, depending on the state of the user base (whether the database is empty or the 
database is not empty branch), the embedding is either added as a new record or compared with 
existing vectors based on cosine distance. The final step is to return the closest user or add a new 
one, which is consistent with the subsequent text description.

Face detection in a frame is performed using key point analysis and facial geometry methods.  
The use of a topological grid allows not only to highlight the region of interest (ROI), but also to 
increase accuracy by taking into account variations in poses, expressions, and partial overlaps.

This method provides significantly greater accuracy and stability compared to classic trackers 
such as CSRT, MOSSE, or KCF. Traditional trackers focus on local patterns or pixel movement 
between frames and work well in relatively static conditions. However, they have a number of  



limitations in dynamic environments: with partial overlaps, sudden changes in head position or 
facial expressions, trackers can lose the object, and the bounding box ‘slides’, leading to incorrect  
ROI formation and reduced accuracy of subsequent identification.

The use of a topological grid allows for the identification of over 400 key facial points, including 
the contours of the eyes, nose, mouth, and outer contour of the head. This ensures accurate ROI 
selection, which includes only the most relevant facial pixels, avoiding the background, hair, or 
other  extraneous  elements.  High ROI  detail  directly  affects  the  quality  of  the  resulting  vector 
representations (embeddings), increasing the accuracy of comparison and verification.

Another advantage of this approach is that classic trackers are often prone to ‘shifts’ when the 
user moves closer to or further away from the camera or when the lighting angle changes. Face 
Mesh,  on  the  other  hand,  provides  stable  ROI  detection  regardless  of  such  variations,  and 
subsequent normalization of the region of interest ensures uniformity of vector representations for  
all frames.

In addition,  this  method of  determining ROI does not  depend on the initial  frame or  prior 
initialization. Unlike trackers, which lose the object when it disappears from the frame and require  
re-initialization,  Face  Mesh processes  each  frame independently.  This  makes  the  system more 
reliable in dynamic environments where users appear or disappear from the camera's field of view.

Thus, the use of a topological grid to determine ROI provides more accurate face detection, high 
resistance to changes in pose, lighting, and partial overlaps, as well as stability of the resulting 
embeddings.  Compared to  classical  trackers,  this  approach increases  the  reliability  of  the  face 
verification system and improves the quality of the final result, which is critical in real-time tasks 
and interactive user monitoring.

After  ROI  selection,  the  face  image  is  converted  into  a  compact  vector  representation  — 
embedding.  This  is  a  multidimensional  vector  that  encodes  the  most  important  features  for 
identifying a person. The vector space is chosen so that the distances between points correspond to 
semantic proximity: two images of the same person are located close to each other, while images of 
different people are located at a relatively large distance.

In the proposed system, embeddings are used as a universal format that allows comparisons to 
be made regardless of lighting conditions, head position, or changes in appearance. This approach 
makes the method more generalised and less dependent on a specific data set, which is especially 
important for systems that need to work with new users without retraining.

Cosine distance is  used to assess the degree of similarity between face embeddings.  Cosine 
distance was chosen because it is invariant to the absolute length of feature vectors and can more  
accurately  reflect  the  similarity  between  multidimensional  representations  of  faces.  Unlike 
Euclidean metrics, which can be sensitive to scale variations, cosine distance only evaluates the 
angle  between  vectors,  making  it  more  reliable  in  conditions  of  changing  lighting  or  small  
variations in facial expressions.

Thanks to this approach, verification is reduced to the task of comparing numerical values and 
can be performed at high speed, which meets the requirements for real-time systems.

The final stage is the integration of verification results into the video stream. For each face 
detected in the frame, the system applies a corresponding label with the user ID or a ‘new’ mark.

The proposed approach has the following advantages:
• resistance to environmental dynamics;
• the algorithm operates in real time using vector distance calculations.

5. Results and discussion

The experiments were conducted on the LFW (Labelled Faces in the Wild) dataset [15], which is 
widely used to evaluate face verification algorithms. The dataset contains over 13,000 photographs 
of people taken in uncontrolled conditions, allowing for the simulation of real-life scenarios. The 
images show significant variations in lighting, head position, accessories (glasses, headwear), and 



image quality, making LFW one of the most widely used standards for evaluating face recognition 
algorithms.

To construct test pairs, both positive examples (images of one person) and negative examples 
(different people) were selected.

The results for different threshold values of the cosine distance are given in Table 1.

Table 1
System performance indicators at different cosine distance threshold values

Threshold Accuracy Precision Recall FAR FRR

0.02 0.6579 1.0 0.6579 0.0 0.3421

0.03 0.8684 1.0 0.8684 0.0 0.1316

0.04 0.8947 1.0 0.8947 0.0 0.1053

0.05 0.9211 1.0 0.9211 0.0 0.0789

0.06 0.9737 1.0 0.9737 0.0 0.0263

0.07 1.000 1.0 1.000 0.0 0.0000

0.08 1.000 1.0 1.000 0.0 0.0000

As can be seen from the table, the choice of threshold value directly affects the accuracy of the 
system and the FAR/FRR error ratio.

Low threshold values (0.02 – 0.03) are too strict. At a threshold of 0.02, the FRR value reaches 
34.2%, which means that one-third of genuine users fail the verification. Despite the absence of  
false acceptances (FAR = 0),  this mode is  unsuitable for real-world applications due to its  low 
usability.  Raising  the  threshold  to  0.03  significantly  reduces  the  FRR  to  13.2%  and  increases  
accuracy to 86.8%, but the number of false rejections is still too high.

In the middle range (0.04–0.05), performance gradually stabilises. FRR decreases to 10.5% and 
7.9% respectively, while accuracy increases to 92.1%. This already makes the system suitable for use 
in relatively controlled scenarios (e.g., office entrance with regular users). However, there is still a 
risk that some users will be falsely rejected.

At a threshold of 0.06, the system demonstrates very high performance: Accuracy = 97.4%, FRR 
= 2.6%,  FAR = 0.  This  means that  only  1  in  38  genuine users  may be rejected,  with no false 
acceptances  recorded.  This  result  is  the  most  balanced  and  practically  significant:  the  system 
becomes user-friendly while maintaining a high level of security.

Starting from a threshold of 0.07, the system achieves perfect results — Accuracy, Precision, and 
Recall are 100%, and FAR and FRR are zero. From a technical point of view, this means that no 
errors were recorded in the test sample. However, as previous research shows, achieving ‘perfect’ 
results is often explained by the limited or homogeneous nature of the sample. In real-life scenarios 
— with different lighting, poses, accessories (glasses, masks) — it is practically impossible to avoid 
errors. Therefore, such a result should be considered more as an artefact of a specific experiment  
rather than a guarantee of absolute reliability.

However, the obtained ‘ideal zone’ (0.07–0.08) can be partially explained by the specifics of the  
test data set, since in practice there is always noise, variations in lighting, poses, and appearance,  
which make it impossible to achieve absolute indicators. This is consistent with the well-known 



problem of threshold inconsistency, where the optimal threshold depends on the conditions of use  
and sample characteristics.

Thus, the optimal operating range for the system can be defined as 0.05–0.07, where the best  
compromise  between  minimizing  FRR  and  maintaining  zero  FAR  is  achieved.  This  result  is 
important  for  practical  real-time  applications  such  as  video  surveillance,  where  even  a  single 
impostor acceptance error can have critical consequences.

6. Conclusions

This paper investigated the impact of cosine distance threshold values on the performance of real-
time face recognition systems. Experimental results showed that the choice of threshold directly 
determines  the balance between FAR and FRR metrics,  as  well  as  the overall  accuracy of  the  
system.

It was established that:
• thresholds that are too low (0.02–0.03) result in high FRR, which reduces usability;
• in  the  range  of  0.05–0.06,  the  system  demonstrates  an  optimal  compromise  between 

security and accessibility, ensuring high Accuracy values and zero FAR;
• starting  from  a  threshold  of  0.07,  the  test  set  shows  perfect  results  (100%  Accuracy, 

Precision, and Recall), but this result is likely due to the characteristics of the sample and 
requires additional verification on more heterogeneous data.

Thus, the optimal operating threshold for the system under study can be determined as 0.05–
0.07, which minimises the number of false rejections without the risk of accepting an imposter. The 
conclusions  obtained  are  important  for  the  practical  implementation  of  face  verification 
technologies in video surveillance, access control, and user authentication tasks.

Further research could focus on testing the stability of the optimal threshold on different data 
sets, developing adaptive thresholding methods for specific users, and integrating additional factors 
(lighting conditions, dynamic scenes, changes in appearance) that affect the accuracy of the system.
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