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Abstract

Despite recent breakthroughs in large language models (LLMs), current Al systems remain limited in their
ability to engage with knowledge in ways that align with human cognition. While LLMs excel at syntactic
and contextual processing, they often fall short in semantic interpretation, conceptual association, and
memory-oriented reasoning. This gap underscores the need for cognitive interaction layers, which serve
as human-Al interfaces that integrate structured knowledge with cognitive encoding strategies to support
intuitive, interpretable, and memory-efficient learning.

This paper introduces a conceptual and technological framework for cognitive interaction layers that
function as mediators between Al systems and human users. By embedding mechanisms such as semantic
cues, associative representations, visual metaphors, and structured schemas, these layers enable more
human-aligned interaction and knowledge transfer. We discuss the theoretical foundations of cognitive
scaffolding and neuro-symbolic reasoning, provide a mathematical formulation of cognitive encoding and
retrieval functions, and compare existing cognitive architectures with the proposed approach. The
framework opens new avenues for human-Al interaction by transforming static knowledge
representations into cognitively enriched environments that support education, skill acquisition, and
interpretability in intelligent systems.
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1. Introduction

In the era of rapidly advancing artificial intelligence, the challenge of enabling machines to
comprehend and reason in ways aligned with human cognition remains unresolved. Large
language models (LLMs) demonstrate remarkable performance in syntactic and contextual
processing, yet they continue to fall short in semantic interpretation, conceptual association, and
memory-oriented reasoning [1]. These limitations highlight the need for cognitive Al systems that
can engage with knowledge not only statistically but also meaningfully, by reflecting how humans
naturally encode, retrieve, and apply information.

The study of human cognition provides valuable insights into how such systems may be
designed. Jean Piaget [2] emphasized the stage-based progression of cognitive development,
outlining how learners acquire and transform knowledge through structured interactions. Lev
Vygotsky [3] further underscored the sociocultural dimensions of learning, introducing the Zone of
Proximal Development as a space where guided interaction enables higher levels of reasoning.
George Miller’s [4] seminal work on working memory revealed constraints in human information
processing, while Roger Schank and Robert Abelson [5] conceptualized scripts and schemas as
memory-based structures guiding comprehension. Douglas Hofstadter [6] highlighted analogy-
making as a central mechanism of intelligence, stressing the role of conceptual resonance and
associative mapping. From a computational perspective, John Laird’s Soar architecture [7]
demonstrated how symbolic reasoning can be integrated with learning mechanisms, providing a
foundation for cognitive architectures in AL
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Contemporary advances extend these foundations through the development of cognitive and
neuro-inspired models in artificial intelligence, such as ACT-R, SOAR, and NARS, as well as neural
simulations like Spaun and Leabra. Hybrid approaches in neuro-symbolic AI [8] combine
structured reasoning with subsymbolic learning [9] to address tasks that demand both
interpretability and flexibility. In parallel, research in prompt engineering and cognitive scaffolding
[10] has explored strategies for guiding large-scale generative models with structured cues [11].
Against this backdrop, we propose the concept of cognitive interaction layers, interfaces designed
to serve as cognitive mediators between humans and Al Unlike conventional user interfaces,
which primarily support functional interaction, cognitive interaction layers reflect how humans
encode, retrieve, and associate knowledge. By leveraging mechanisms such as semantic cues,
structured schemas, visual metaphors, and conceptual clustering, these layers aim to transform
static representations into cognitively enriched environments that enhance interpretability,
personalization, and knowledge transfer in human-Al interaction.

The development of cognitive artificial intelligence requires not only large-scale data and
computational power but also new approaches to interaction and learning. One promising
direction lies in the design of cognitive interaction layers is interfaces that support memory-
oriented, associative, and categorization-based processes in human-AI collaboration.

Semantic encoding techniques have long been used in human learning to enhance memorability
and recall. When integrated into adaptive digital environments [12], these strategies enable a form
of semantic interaction [13] that is inherently bidirectional: it helps users acquire knowledge [14]
while simultaneously enriching the cognitive models of the Al itself [15].Such interfaces provide a
controlled yet flexible environment for supporting diverse information processing styles in people
visual, auditory, and kinesthetic [16]. By embedding semantic cues and adaptive scaffolding into
Al-driven systems, static knowledge representations can be transformed into dynamic learning
experiences that promote both user comprehension and system adaptability.

This paper introduces a conceptual and technological framework for building cognitive Al
agents capable of learning and reasoning through semantically structured and cognitively enriched
interaction layers. The proposed approach supports knowledge formalization while fostering
internal cognitive structures suitable for both symbolic and neuro-symbolic reasoning.

The development of intelligent interfaces to support cognitive interaction has advanced
significantly in recent years, driven by breakthroughs in natural language processing (NLP),
cognitive science, and adaptive user systems. Cognitive encoding strategies, long recognized as
effective tools for memory and learning [17], have been increasingly embedded in digital platforms,
where semantic scaffolds support personalized and adaptive education [18]. Human-in-the-loop
learning has become a central paradigm [19], allowing Al systems to refine responses through
interaction, thereby enhancing personalization and alignment with human cognition.

Transformer-based models such as BERT [20], RoBERTa [21], and GPT [22], have improved
machine understanding of semantic and contextual relationships [23]. More recently, multimodal
and fine-tuned models (e.g., MiniGPT-4, Hugging Face’s PEFT libraries) have enabled systems
capable of generating adaptive hints and feedback in real time. Adaptive interfaces [8] can
dynamically adjust modality and complexity to match learners’ cognitive load and style, while
research into cognitively rich environments suggests that exposure to metaphor, narrative, and
structured reasoning fosters the emergence of cognitive intelligence in AI [16].

Within Al research, cognitive and neuro-inspired models have sought to emulate aspects of
human reasoning, memory, and abstraction. Symbolic cognitive architectures such as ACT-R,
SOAR, and NARS provide structured frameworks, while biologically inspired models like Spaun
and Leabra simulate neural processes. Hybrid approaches in neuro-symbolic AI [24], [8], [9]
combine statistical learning with structured reasoning, offering interpretability and adaptability.
Emerging paradigms such as cognitive graph learning and hybrid reasoning in LLMs extend this
trend, aiming to balance pattern recognition with conceptual modeling [25].

A comparative overview of cognitive and neuro-inspired models relevant to the design of
cognitive interaction layers is presented in Table 1. Symbolic cognitive architectures such as ACT-



R and Soar offer structured reasoning and interpretability, but limited integration with dynamic
ontologies. Biologically inspired models, including Spaun and CLARION, capture aspects of human
cognition such as implicit-explicit learning or spiking neural dynamics, though their scalability
remains challenging. Hybrid approaches, including neuro-symbolic Al and cognitive graph
learning, provide promising pathways to combine statistical learning with structured knowledge
[26]. Large language models with reasoning traits, while limited in formal integration, serve as
effective adaptive interfaces. Together, these models highlight both opportunities and limitations in
bridging structured knowledge representation, cognitive encoding, and user-centered interaction
design.

Table 1
Comparative overview of cognitive and neuro-inspired models relevant to cognitive interaction
layers

Model/ Key Features Ontology/Structured  Interpretability Cognitive
Architectur Knowledge Relevance
e Integration
ACT-R Modular Limited, via symbolic High Strong for
symbolic model; encoding cognitive tasks
production rules
Soar Rule-based Possible via rule High Strong for
cognitive definitions problem-solving
architecture
Spaun Large-scale Difficult Moderate High biological
spiking neural plausibility
model
CLARION Dual-process: Good integration via High Models human
implicit & schemas learning styles
explicit
knowledge
OpenCog  Semantic graphs Native through High Supports analogy
+ probabilistic AtomSpace graph and reasoning
logic structure
Neuro- Combines neural ~ Excellent, supports Moderate Aligns with
Symbolic & symbolic hybrid pipelines semantic Al
Al reasoning
Cognitive ~ Enhances neural Good High Suitable for
Graph nets with conceptual
Learning semantic maps reasoning
LLMs with Transformer- Weak formal Moderate Useful as adaptive
reasoning  based; contextual integration front-end
traits fluency

Building on these models, we define the concept of a cognitive interaction layer as a cognitive
interaction layer is a cognitively oriented human computer interaction environment that leverages
cognitive encoding strategies to structure and present domain-specific knowledge. Grounded in
cognitive psychology, these layers incorporate principles such as visual metaphors, chunking, and
spatial schemas, which facilitate long-term memory formation and retrieval. These environments
are informed by established principles in cognitive psychology, including visual metaphors,
chunking, and spatial schemas, all of which facilitate long-term memory formation and retrieval.

When integrated into knowledge-based systems, cognitive interaction layers act as bridges
between formal representations of knowledge and intuitive human understanding, thereby
enhancing accessibility, interpretability, and learning in complex domains.

Cognitive intelligence refers to the ability of a system to interpret, associate, and manipulate
abstract meanings rather than relying solely on statistical correlations or surface-level data [27]. In



human cognition, this encompasses semantic integration, analogical reasoning, conceptual
blending, and contextual understanding [28]. For artificial systems, achieving cognitive intelligence
entails building internal structures that capture conceptual relationships and enable adaptive,
meaning-based reasoning [8]. The development of such capacities requires moving beyond purely
neural models toward architectures that support structured memory, symbol manipulation, and
goal-directed learning [29].

The intersection of semantic knowledge representation, cognitive encoding, and neuro-symbolic
modeling outlines a new paradigm for Al systems capable of reasoning in ways that resemble
human cognition. Ontologies and structured knowledge graphs provide the semantic backbone,
cognitive encoding strategies translate abstract representations into intuitive forms accessible to
users and neuro-symbolic systems integrate statistical learning with symbolic manipulation. This
layered integration fosters the emergence of meaning-aware agents that can interpret language,
learn from contextual cues, and form adaptive associations.

In our approach, the semantic representation layer serves as the conceptual core, the cognitive
interaction layer provides accessibility and alignment with human learning, and the neuro-
symbolic component supports reasoning and adaptation. Together, these elements contribute to the
development of Al agents with cognitive intelligence.

2. Mathematical Formulation

To formalize the concept of cognitive interaction layers, we define a minimal set of functions that
capture the relationship between structured knowledge, cognitive encodings, and user interaction.

0=(0,,0,,...,0, 1)

The knowledge base O is defined as a set of domain concepts (e.g., terms, entities, or structured
nodes).

f:o—>C,Ci:f(oi):C:{Cl)CZ""’Cn} (2)

A mapping function f assigns each concept 0; a cognitive representation, C; such as a semantic
cue, metaphor, or associative prompt.
D(o,.,oj)za'd
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A composite distance function D evaluates the similarity between concepts, combining semantic
distance in the ontology with cognitive dissimilarity between encodings. Parameters « and f
determine the weighting.

Ulc;)=y-R(c;)-A-Lc) (4)

A utility function U measures the effectiveness of a cognitive interaction layer, balancing
retrieval success R against cognitive load L. Coefficients y and A control the trade-off between
performance and mental effort.

Together, these equations provide a formal foundation for representing how knowledge is
encoded, compared, and evaluated in a cognitive interaction environment.



3. Materials and Methods

Building on the formal definitions above, this section details the methodological framework and
computational implementation.

The structured knowledge base O (Eq. 1) was instantiated as an ontology or graph. Each node
represents a domain concept, which is mapped to a cognitive encoding ci (Eq. 2). Encodings are
realized as semantic cues, spatial metaphors, or multimodal prompts to enhance interpretability.

The composite distance function (Eq. 3) was used to evaluate the alignment of knowledge
structures with human-oriented encodings.

d, (Oi, o j) - semantic distance, calculated using graph-based ontology metrics.
dcog (Ci, C j) - cognitive distance, representing dissimilarity in the chosen encodings (e.g., visual or
semantic clustering).This formulation ensures that similarity is judged not only on formal

relationships but also on user-oriented cognitive associations.
To enable hybrid reasoning, a neuro-symbolic integration function was implemented:

®(x)=A-NN(x)+(1-1)KB|(x) (5)

The function &(x) balances statistical inference from a neural network NN(x) with structured
reasoning from a symbolic knowledge base KB(x). The parameter A€[0,1] adjusts their relative
contributions.

This architecture allows flexible switching between data-driven pattern recognition and
symbolic interpretation. Adaptive Reinforcement Encodings are updated dynamically based on user
interaction:

cl=cl+n- v U(cﬁ) (6)

1

Each encoding c; is reinforced or modified according to the gradient of the utility function U.
The learning rate 5 controls how strongly user performance influences the update.

This adaptive mechanism ensures that the system remains responsive to human feedback,
progressively aligning representations with cognitive preferences.

The prototype of the cognitive interaction layer was developed as a conceptual visualization
and interaction environment designed to enhance semantic accessibility and support associative
learning. An algorithmic pipeline was constructed to map structured knowledge units into
cognitive cues, including visual metaphors, conceptual clusters, and spatial organization. Particular
emphasis was placed on ensuring consistency between semantic categories and their cognitive
encodings, thereby aligning the interface with principles of cognitive psychology and human
information processing.

The system architecture follows a modular design, enabling seamless integration of future
neuro-inspired and neuro-symbolic components. Although the current implementation remains
symbolic and rule-based, it was intentionally structured to support extensions with attention
mechanisms, memory-augmented neural networks, and transformer-based models for context-
sensitive adaptation. This modularity ensures scalability and flexibility, positioning the system as a
foundation for next-generation cognitive Al frameworks.

The implementation was carried out using Python as the primary programming language.
Structured knowledge bases were managed through RDFLib and semantic web standards, while the
cognitive interaction layer was prototyped as a web application using HTML, CSS, and JavaScript.
Natural language processing and semantic similarity computations were supported by transformer-
based models (e.g., BERT variants from Hugging Face). The backend was implemented with Flask-
based REST APIs, providing interoperability and extensibility for integration into larger
ecosystems.The diagram below illustrates the flow of information within a cognitive interaction
layer. The architecture can be conceptualized as a dynamic process that links structured
knowledge, cognitive encodings, and adaptive updates. As shown in Figure 1, formal knowledge



(e.g., ontologies or structured graphs) is mapped into cognitive representations such as semantic
cues or associative prompts. These representations are then evaluated through an interaction
utility function, balancing retrieval success and cognitive load, and are updated via adaptive
reinforcement to reflect user performance and feedback.

Ontology / Knowledge Graph Cognitive Encoding Interaction Utility
0O = {ol, 02, ..., on} f0O-C U(c)

{

Adaptive Reinforcement
c”(t+1) = c”~t + nVU(c™t)

Figure 1: Flow of information in a cognitive interaction layer.

From an HCI perspective, the role of the human user becomes central in shaping and adapting
the system. This human-in-the-loop perspective is illustrated in Figure 2, where the cognitive
interaction layer aligns human memory and perception with Al reasoning through a bidirectional
exchange. The user contributes memory, associations, and perceptual styles, while the Al provides
statistical and symbolic reasoning capabilities. The cognitive interaction layer ensures alignment
between these two, dynamically adapting to optimize comprehension, retention, and
interpretability.

Human User Cognitive Interaction Layer Al System
(memory, associations, (semantic cues, (LLMs, neuro-symbolic,
perception styles) scaffoldingl, schemas) knowledge graphs)

Adaptive Feedback & Reinforcement
(dynamic update of encodings)

Figure 2: Human-in-the-loop perspective of cognitive interaction layers.

4. Results

A domain-independent knowledge base was formalized to capture key concepts and their semantic
interrelations, incorporating hierarchical classifications, associative links, and metadata. On this
foundation, a functional prototype of the cognitive interaction layer (Figure 1) was implemented to
simulate user engagement and cognitive accessibility. The system maps structured concepts to
cognitive cues using visual metaphors, conceptual clusters, and associative prompts designed to
enhance recall and conceptual understanding. The interface provides an interactive visualization of
conceptual networks, highlighting semantic coherence and logical structure, and allows simulated
navigation through conceptual clusters and semantic pathways in an intuitive manner that
supports associative learning and interpretability.

A cognitive agent model was developed to interpret domain-specific terms and infer contextual
meaning using both structured knowledge and cognitive encodings. This model was tested in
simulation scenarios, serving as a foundation for future empirical validation with human
participants. The modular architecture supports integration of neuro-symbolic reasoning models,
enabling adaptive learning and enhanced interpretability in subsequent iterations.



To illustrate applicability, the prototype was also instantiated on a pharmacology ontology
containing domain-specific concepts and semantic relations. This demonstration shows how
structured domain knowledge can be transformed into cognitively enriched interaction formats
[30].

To provide a proof-of-concept evaluation of the proposed framework, we conducted simulation-
based assessments in two benchmark scenarios a semantic similarity task and a recall-oriented
learning task.

For semantic evaluation, the cognitive distance function was applied to standard benchmarks
such as WordSim-353 and SimLex-999, measuring the alignment between machine-generated
distances and published human similarity judgments. Simulation results suggest that the
integration of cognitive encodings improves correlation with human ratings compared to purely
semantic baselines.

For recall-oriented evaluation, a simulated learning task was implemented to model user
interaction under two conditions a baseline interface and a prototype cognitive interaction layer
enriched with semantic cues and visual metaphors. The simulation monitored recall accuracy and
estimated cognitive load using NASA-TLX-inspired parameters. The proof-of-concept results
indicate the potential of cognitive interaction layers to reduce cognitive load and improve recall
compared to standard presentation formats.

These simulation-based evaluations are intended as illustrative demonstrations of feasibility
rather than controlled user studies. They provide a conceptual foundation for more systematic
experimental validation in future work.

5. Discussion

The proposed framework can be interpreted as a cognitive interaction layer, an interaction design
paradigm that intentionally aligns computational processes with human memory structures,
semantic associations, and retrieval mechanisms. By integrating structured knowledge
representation with cognitive encoding strategies and cognitive modeling, this approach
constitutes a novel direction in the development of interpretable Al systems. Unlike conventional
semantic networks, it emphasizes meaning-making through human-oriented cues, enabling more
intuitive and human-aligned interaction between users and Al agents.

Encoding complex terminology and abstract concepts through semantic cues, visual metaphors,
and associative representations enhances recall and conceptual clarity for users, while
simultaneously structuring information in a form that supports symbolic reasoning and contextual
understanding for Al systems. In this way, the framework functions as a bidirectional scaffold: it
facilitates human learning while enriching machine reasoning with cognitively meaningful
representations.

Such an approach has strong potential for professional education and training contexts, where
complex conceptual domains demand both precise recall and meaningful associations. Medical
education is a prominent example, but the framework is equally applicable to engineering, law, or
any field requiring semantic precision combined with cognitive support. Beyond education, the
framework also contributes to explainability in intelligent systems by embedding interpretability at
the level of interaction design.

At the same time, the current prototype remains limited by the scope of its knowledge base and
by the preliminary stage of neuro-symbolic integration. Future development will focus on
extending structured knowledge resources, refining cognitive encoding strategies, and
incorporating neuro-inspired architectures capable of context-sensitive reasoning and adaptive
learning. These advancements will further support the emergence of cognitive intelligence in Al
agents, bridging the gap between statistical processing and meaning-oriented interaction.

While the proposed framework demonstrates promising outcomes in simulation, it is important
to note its limitations. No controlled user studies were conducted, and the current evaluations are
simulation-based demonstrations designed to illustrate feasibility. Future work will focus on



empirical validation with human participants, including systematic experiments, larger sample
sizes, and full statistical analysis of cognitive load measures such as NASA-TLX.

6. Conclusion

This paper has outlined a novel approach to the development of cognitive artificial intelligence
through the design of cognitive interaction layers interfaces that align structured knowledge with
human-oriented encoding strategies. The proposed framework provides a semantic and
interpretable foundation that enhances both user comprehension and system-level reasoning. By
embedding cognitive encoding mechanisms such as semantic cues, visual metaphors, and
associative structures into interaction design, the framework supports the emergence of meaning-
aware Al agents capable of more intuitive and human-aligned communication.

The results demonstrate the feasibility of integrating structured knowledge with cognitively
enriched interaction, laying the groundwork for future integration with neuro-inspired and neuro-
symbolic models. Such extensions will further enable the development of Al systems that combine
statistical learning with symbolic reasoning and contextual understanding, thereby advancing the
pursuit of cognitive intelligence in artificial agents.
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