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Abstract
Despite recent breakthroughs in large language models (LLMs), current AI systems remain limited in their  
ability to engage with knowledge in ways that align with human cognition. While LLMs excel at syntactic  
and contextual processing, they often fall short in semantic interpretation, conceptual association, and 
memory-oriented reasoning. This gap underscores the need for cognitive interaction layers, which serve  
as human-AI interfaces that integrate structured knowledge with cognitive encoding strategies to support 
intuitive, interpretable, and memory-efficient learning.
This paper introduces a conceptual and technological  framework for cognitive interaction layers that  
function as mediators between AI systems and human users. By embedding mechanisms such as semantic  
cues,  associative representations,  visual metaphors,  and structured schemas,  these layers enable more 
human-aligned interaction and knowledge transfer. We discuss the theoretical foundations of cognitive 
scaffolding and neuro-symbolic reasoning, provide a mathematical formulation of cognitive encoding and 
retrieval  functions,  and  compare  existing  cognitive  architectures  with  the  proposed  approach.  The 
framework  opens  new  avenues  for  human–AI  interaction  by  transforming  static  knowledge 
representations  into  cognitively  enriched  environments  that  support  education,  skill  acquisition,  and 
interpretability in intelligent systems.
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1. Introduction

In  the  era  of  rapidly  advancing  artificial  intelligence,  the  challenge  of  enabling  machines  to 
comprehend  and  reason  in  ways  aligned  with  human  cognition  remains  unresolved.  Large 
language  models  (LLMs)  demonstrate  remarkable  performance  in  syntactic  and  contextual 
processing, yet they continue to fall short in semantic interpretation, conceptual association, and 
memory-oriented reasoning [1]. These limitations highlight the need for cognitive AI systems that  
can engage with knowledge not only statistically but also meaningfully, by reflecting how humans 
naturally encode, retrieve, and apply information.

The  study  of  human  cognition  provides  valuable  insights  into  how  such  systems  may  be 
designed.  Jean  Piaget  [2]  emphasized  the  stage-based  progression  of  cognitive  development, 
outlining  how learners  acquire  and  transform knowledge  through  structured  interactions.  Lev 
Vygotsky [3] further underscored the sociocultural dimensions of learning, introducing the Zone of 
Proximal Development as a space where guided interaction enables higher levels of reasoning.  
George Miller’s [4] seminal work on working memory revealed constraints in human information 
processing,  while Roger Schank and Robert Abelson [5] conceptualized scripts and schemas as 
memory-based  structures  guiding  comprehension.  Douglas  Hofstadter  [6]  highlighted analogy-
making as a central  mechanism of intelligence,  stressing the role of  conceptual resonance and 
associative  mapping.  From  a  computational  perspective,  John  Laird’s  Soar  architecture  [7] 
demonstrated how symbolic reasoning can be integrated with learning mechanisms, providing a 
foundation for cognitive architectures in AI.
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Contemporary advances extend these foundations through the development of cognitive and 
neuro-inspired models in artificial intelligence, such as ACT-R, SOAR, and NARS, as well as neural  
simulations  like  Spaun  and  Leabra.  Hybrid  approaches  in  neuro-symbolic  AI  [8]  combine 
structured  reasoning  with  subsymbolic  learning  [9]  to  address  tasks  that  demand  both 
interpretability and flexibility. In parallel, research in prompt engineering and cognitive scaffolding 
[10] has explored strategies for guiding large-scale generative models with structured cues [11].
Against this backdrop, we propose the concept of cognitive interaction layers, interfaces designed 
to  serve  as  cognitive  mediators  between humans  and AI.  Unlike  conventional  user  interfaces,  
which primarily support functional interaction, cognitive interaction layers reflect how humans 
encode,  retrieve,  and  associate  knowledge.  By  leveraging  mechanisms  such  as  semantic  cues, 
structured schemas, visual metaphors,  and conceptual clustering, these layers aim to transform 
static  representations  into  cognitively  enriched  environments  that  enhance  interpretability, 
personalization, and knowledge transfer in human-AI interaction.

The  development  of  cognitive  artificial  intelligence  requires  not  only  large-scale  data  and 
computational  power  but  also  new  approaches  to  interaction  and  learning.  One  promising 
direction  lies  in  the  design  of  cognitive  interaction  layers  is  interfaces  that  support  memory-
oriented, associative, and categorization-based processes in human-AI collaboration.

Semantic encoding techniques have long been used in human learning to enhance memorability 
and recall. When integrated into adaptive digital environments [12], these strategies enable a form 
of semantic interaction [13] that is inherently bidirectional: it helps users acquire knowledge [14]  
while simultaneously enriching the cognitive models of the AI itself [15].Such interfaces provide a 
controlled yet flexible environment for supporting diverse information processing styles in people 
visual, auditory, and kinesthetic [16]. By embedding semantic cues and adaptive scaffolding into 
AI-driven systems,  static  knowledge representations can be transformed into dynamic learning 
experiences that promote both user comprehension and system adaptability.

This  paper  introduces  a  conceptual  and  technological  framework  for  building  cognitive  AI 
agents capable of learning and reasoning through semantically structured and cognitively enriched 
interaction  layers.  The  proposed  approach  supports  knowledge  formalization  while  fostering 
internal cognitive structures suitable for both symbolic and neuro-symbolic reasoning.

The  development  of  intelligent  interfaces  to  support  cognitive  interaction  has  advanced 
significantly  in  recent  years,  driven  by  breakthroughs  in  natural  language  processing  (NLP),  
cognitive science, and adaptive user systems. Cognitive encoding strategies,  long recognized as 
effective tools for memory and learning [17], have been increasingly embedded in digital platforms, 
where semantic scaffolds support personalized and adaptive education [18].  Human-in-the-loop 
learning has become a central paradigm [19],  allowing AI systems to refine responses through 
interaction, thereby enhancing personalization and alignment with human cognition.

Transformer-based models such as BERT [20], RoBERTa [21],  and GPT [22], have improved 
machine understanding of semantic and contextual relationships [23]. More recently, multimodal 
and  fine-tuned models  (e.g.,  MiniGPT-4,  Hugging Face’s  PEFT libraries)  have  enabled  systems 
capable  of  generating  adaptive  hints  and  feedback  in  real  time.  Adaptive  interfaces  [8]  can 
dynamically adjust modality and complexity to match learners’  cognitive load and style,  while  
research into cognitively rich environments suggests that exposure to metaphor, narrative, and 
structured reasoning fosters the emergence of cognitive intelligence in AI [16].

Within AI research, cognitive and neuro-inspired models have sought to emulate aspects of 
human  reasoning,  memory,  and  abstraction.  Symbolic  cognitive  architectures  such  as  ACT-R, 
SOAR, and NARS provide structured frameworks, while biologically inspired models like Spaun 
and  Leabra  simulate  neural  processes.  Hybrid  approaches  in  neuro-symbolic  AI  [24],  [8],  [9] 
combine statistical learning with structured reasoning, offering interpretability and adaptability.  
Emerging paradigms such as cognitive graph learning and hybrid reasoning in LLMs extend this 
trend, aiming to balance pattern recognition with conceptual modeling [25].

A  comparative  overview of  cognitive  and  neuro-inspired  models  relevant  to  the  design  of 
cognitive interaction layers is presented in Table 1. Symbolic cognitive architectures such as ACT-



R and Soar offer structured reasoning and interpretability, but limited integration with dynamic 
ontologies. Biologically inspired models, including Spaun and CLARION, capture aspects of human 
cognition such as implicit-explicit learning or spiking neural dynamics, though their scalability 
remains  challenging.  Hybrid  approaches,  including  neuro-symbolic  AI  and  cognitive  graph 
learning, provide promising pathways to combine statistical learning with structured knowledge 
[26]. Large language models with reasoning traits, while limited in formal integration, serve as 
effective adaptive interfaces. Together, these models highlight both opportunities and limitations in 
bridging structured knowledge representation, cognitive encoding, and user-centered interaction 
design.

Table 1
Comparative overview of cognitive and neuro-inspired models relevant to cognitive interaction 
layers

Model/
Architectur

e

Key Features Ontology/Structured 
Knowledge 
Integration

Interpretability Cognitive 
Relevance

ACT-R Modular 
symbolic model; 
production rules

Limited, via symbolic 
encoding

High Strong for 
cognitive tasks

Soar Rule-based 
cognitive 

architecture

Possible via rule 
definitions

High Strong for 
problem-solving

Spaun Large-scale 
spiking neural 

model

Difficult Moderate High biological 
plausibility

CLARION Dual-process: 
implicit & 

explicit 
knowledge

Good integration via 
schemas

High Models human 
learning styles

OpenCog Semantic graphs 
+ probabilistic 

logic

Native through 
AtomSpace graph 

structure

High Supports analogy 
and reasoning

Neuro-
Symbolic 

AI

Combines neural 
& symbolic 
reasoning

Excellent, supports 
hybrid pipelines

Moderate Aligns with 
semantic AI

Cognitive 
Graph 

Learning

Enhances neural 
nets with 

semantic maps

Good High Suitable for 
conceptual 
reasoning

LLMs with 
reasoning 

traits

Transformer-
based; contextual 

fluency

Weak formal 
integration

Moderate Useful as adaptive 
front-end

Building on these models, we define the concept of a cognitive interaction layer as a cognitive  
interaction layer is a cognitively oriented human computer interaction environment that leverages 
cognitive encoding strategies to structure and present domain-specific knowledge. Grounded in 
cognitive psychology, these layers incorporate principles such as visual metaphors, chunking, and 
spatial schemas, which facilitate long-term memory formation and retrieval. These environments 
are  informed  by  established  principles  in  cognitive  psychology,  including  visual  metaphors, 
chunking, and spatial schemas, all of which facilitate long-term memory formation and retrieval.

When integrated  into  knowledge-based  systems,  cognitive  interaction  layers  act  as  bridges 
between  formal  representations  of  knowledge  and  intuitive  human  understanding,  thereby 
enhancing accessibility, interpretability, and learning in complex domains.

Cognitive intelligence refers to the ability of a system to interpret, associate, and manipulate  
abstract meanings rather than relying solely on statistical correlations or surface-level data [27]. In 



human  cognition,  this  encompasses  semantic  integration,  analogical  reasoning,  conceptual 
blending, and contextual understanding [28]. For artificial systems, achieving cognitive intelligence 
entails  building  internal  structures  that  capture  conceptual  relationships  and  enable  adaptive, 
meaning-based reasoning [8]. The development of such capacities requires moving beyond purely 
neural models toward architectures that support structured memory, symbol manipulation, and 
goal-directed learning [29].

The intersection of semantic knowledge representation, cognitive encoding, and neuro-symbolic 
modeling outlines a new paradigm for AI systems capable of reasoning in ways that resemble 
human cognition. Ontologies and structured knowledge graphs provide the semantic backbone, 
cognitive encoding strategies translate abstract representations into intuitive forms accessible to 
users and neuro-symbolic systems integrate statistical learning with symbolic manipulation. This 
layered integration fosters the emergence of meaning-aware agents that can interpret language, 
learn from contextual cues, and form adaptive associations.

In our approach, the semantic representation layer serves as the conceptual core, the cognitive 
interaction  layer  provides  accessibility  and  alignment  with  human  learning,  and  the  neuro-
symbolic component supports reasoning and adaptation. Together, these elements contribute to the 
development of AI agents with cognitive intelligence.

2. Mathematical Formulation

To formalize the concept of cognitive interaction layers, we define a minimal set of functions that  
capture the relationship between structured knowledge, cognitive encodings, and user interaction.

O= {o1 , o2 ,… ,on} (1)

The knowledge base O is defined as a set of domain concepts (e.g., terms, entities, or structured 
nodes).

ƒ :O→C ,ci=ƒ (oi),C = {c1 , c2 ,…,cn} (2)

A mapping function f assigns each concept oi a cognitive representation, ci such as a semantic 
cue, metaphor, or associative prompt.

D (oi , o j)=α ∙d sem (oi , o j)+ β ∙dcog (ci , c j) (3)

A composite distance function D evaluates the similarity between concepts, combining semantic 
distance  in  the  ontology  with  cognitive  dissimilarity  between  encodings.  Parameters  α and  β 
determine the weighting.

U (ci)= γ ∙ R (ci) - λ ∙ L (ci) (4)

A  utility  function  U measures  the  effectiveness  of  a  cognitive  interaction  layer,  balancing 
retrieval success  R against cognitive load  L.  Coefficients  γ and  λ control the trade-off between 
performance and mental effort. 

Together,  these  equations  provide  a  formal  foundation  for  representing  how knowledge  is 
encoded, compared, and evaluated in a cognitive interaction environment.



3. Materials and Methods

Building on the formal definitions above, this section details the methodological framework and 
computational implementation.

The structured knowledge base O (Eq. 1) was instantiated as an ontology or graph. Each node 
represents a domain concept, which is mapped to a cognitive encoding ci (Eq. 2). Encodings are 
realized as semantic cues, spatial metaphors, or multimodal prompts to enhance interpretability.

The  composite  distance  function (Eq.  3)  was  used to  evaluate  the  alignment  of  knowledge 
structures with human-oriented encodings.
d sem  (oi , o j) - semantic distance, calculated using graph-based ontology metrics.

dcog  (ci , c j) - cognitive distance, representing dissimilarity in the chosen encodings (e.g., visual or  

semantic  clustering).This  formulation  ensures  that  similarity  is  judged  not  only  on  formal 
relationships but also on user-oriented cognitive associations. 

To enable hybrid reasoning, a neuro-symbolic integration function was implemented:

Φ (x )= λ ∙ NN (x )+ (1- λ )KB (x ) (5)

The function  Φ(x) balances statistical inference from a neural network  NN(x) with structured 
reasoning from a symbolic  knowledge base  KB(x).  The parameter  λ∈[0,1] adjusts  their  relative 
contributions.

This  architecture  allows  flexible  switching  between  data-driven  pattern  recognition  and 
symbolic interpretation. Adaptive Reinforcement Encodings are updated dynamically based on user 
interaction:

ci
t +1 =ci

t +η ∙∇ U (cit ) (6)

Each encoding ci is reinforced or modified according to the gradient of the utility function U. 
The learning rate η controls how strongly user performance influences the update.

This  adaptive  mechanism ensures  that  the  system remains  responsive  to  human  feedback, 
progressively aligning representations with cognitive preferences.

The prototype of the cognitive interaction layer was developed as a conceptual visualization 
and interaction environment designed to enhance semantic accessibility and support associative 
learning.  An  algorithmic  pipeline  was  constructed  to  map  structured  knowledge  units  into 
cognitive cues, including visual metaphors, conceptual clusters, and spatial organization. Particular 
emphasis  was placed on ensuring consistency between semantic categories and their  cognitive 
encodings,  thereby  aligning  the  interface  with  principles  of  cognitive  psychology  and  human 
information processing.

The  system architecture  follows  a  modular  design,  enabling  seamless  integration  of  future 
neuro-inspired and neuro-symbolic  components.  Although the current  implementation remains 
symbolic  and  rule-based,  it  was  intentionally  structured  to  support  extensions  with  attention 
mechanisms,  memory-augmented  neural  networks,  and  transformer-based  models  for  context-
sensitive adaptation. This modularity ensures scalability and flexibility, positioning the system as a 
foundation for next-generation cognitive AI frameworks.

The  implementation  was  carried  out  using  Python  as  the  primary  programming  language. 
Structured knowledge bases were managed through RDFLib and semantic web standards, while the 
cognitive interaction layer was prototyped as a web application using HTML, CSS, and JavaScript.  
Natural language processing and semantic similarity computations were supported by transformer-
based models (e.g., BERT variants from Hugging Face). The backend was implemented with Flask-
based  REST  APIs,  providing  interoperability  and  extensibility  for  integration  into  larger 
ecosystems.The diagram below illustrates the flow of information within a cognitive interaction 
layer.  The  architecture  can  be  conceptualized  as  a  dynamic  process  that  links  structured 
knowledge, cognitive encodings, and adaptive updates. As shown in Figure 1, formal knowledge 



(e.g., ontologies or structured graphs) is mapped into cognitive representations such as semantic  
cues  or  associative  prompts.  These  representations  are  then  evaluated  through  an  interaction 
utility  function,  balancing  retrieval  success  and  cognitive  load,  and  are  updated  via  adaptive 
reinforcement to reflect user performance and feedback.

Figure 1: Flow of information in a cognitive interaction layer.

From an HCI perspective, the role of the human user becomes central in shaping and adapting 
the  system.  This  human-in-the-loop perspective  is  illustrated  in  Figure  2,  where  the  cognitive 
interaction layer aligns human memory and perception with AI reasoning through a bidirectional 
exchange. The user contributes memory, associations, and perceptual styles, while the AI provides  
statistical and symbolic reasoning capabilities. The cognitive interaction layer ensures alignment 
between  these  two,  dynamically  adapting  to  optimize  comprehension,  retention,  and 
interpretability.

Figure 2: Human-in-the-loop perspective of cognitive interaction layers.

4. Results

A domain-independent knowledge base was formalized to capture key concepts and their semantic 
interrelations, incorporating hierarchical classifications,  associative links,  and metadata. On this 
foundation, a functional prototype of the cognitive interaction layer (Figure 1) was implemented to 
simulate user engagement and cognitive accessibility.  The system maps structured concepts to 
cognitive cues using visual metaphors, conceptual clusters, and associative prompts designed to 
enhance recall and conceptual understanding. The interface provides an interactive visualization of 
conceptual networks, highlighting semantic coherence and logical structure, and allows simulated 
navigation  through  conceptual  clusters  and  semantic  pathways  in  an  intuitive  manner  that 
supports associative learning and interpretability.

A cognitive agent model was developed to interpret domain-specific terms and infer contextual 
meaning using both structured knowledge and cognitive  encodings.  This  model  was  tested  in 
simulation  scenarios,  serving  as  a  foundation  for  future  empirical  validation  with  human 
participants. The modular architecture supports integration of neuro-symbolic reasoning models, 
enabling adaptive learning and enhanced interpretability in subsequent iterations.



To illustrate  applicability,  the prototype was also  instantiated on a  pharmacology ontology 
containing  domain-specific  concepts  and  semantic  relations.  This  demonstration  shows  how 
structured domain knowledge can be transformed into cognitively enriched interaction formats 
[30]. 

To provide a proof-of-concept evaluation of the proposed framework, we conducted simulation-
based assessments in two benchmark scenarios a semantic similarity task and a recall-oriented 
learning task.

For semantic evaluation, the cognitive distance function was applied to standard benchmarks 
such  as  WordSim-353  and  SimLex-999,  measuring  the  alignment  between  machine-generated 
distances  and  published  human  similarity  judgments.  Simulation  results  suggest  that  the 
integration of cognitive encodings improves correlation with human ratings compared to purely 
semantic baselines.

For  recall-oriented  evaluation,  a  simulated  learning  task  was  implemented  to  model  user 
interaction under two conditions a baseline interface and a prototype cognitive interaction layer 
enriched with semantic cues and visual metaphors. The simulation monitored recall accuracy and 
estimated  cognitive  load  using  NASA-TLX–inspired  parameters.  The  proof-of-concept  results 
indicate the potential of cognitive interaction layers to reduce cognitive load and improve recall 
compared to standard presentation formats.

These simulation-based evaluations are intended as  illustrative demonstrations of  feasibility 
rather than controlled user studies.  They provide a conceptual foundation for more systematic 
experimental validation in future work.

5. Discussion

The proposed framework can be interpreted as a cognitive interaction layer, an interaction design 
paradigm  that  intentionally  aligns  computational  processes  with  human  memory  structures, 
semantic  associations,  and  retrieval  mechanisms.  By  integrating  structured  knowledge 
representation  with  cognitive  encoding  strategies  and  cognitive  modeling,  this  approach 
constitutes a novel direction in the development of interpretable AI systems. Unlike conventional  
semantic networks, it emphasizes meaning-making through human-oriented cues, enabling more 
intuitive and human-aligned interaction between users and AI agents.

Encoding complex terminology and abstract concepts through semantic cues, visual metaphors, 
and  associative  representations  enhances  recall  and  conceptual  clarity  for  users,  while 
simultaneously structuring information in a form that supports symbolic reasoning and contextual 
understanding for AI systems. In this way, the framework functions as a bidirectional scaffold: it  
facilitates  human  learning  while  enriching  machine  reasoning  with  cognitively  meaningful 
representations.

Such an approach has strong potential for professional education and training contexts, where 
complex conceptual  domains  demand both precise  recall  and meaningful  associations.  Medical 
education is a prominent example, but the framework is equally applicable to engineering, law, or 
any field requiring semantic precision combined with cognitive support.  Beyond education, the 
framework also contributes to explainability in intelligent systems by embedding interpretability at 
the level of interaction design.

At the same time, the current prototype remains limited by the scope of its knowledge base and 
by  the  preliminary  stage  of  neuro-symbolic  integration.  Future  development  will  focus  on 
extending  structured  knowledge  resources,  refining  cognitive  encoding  strategies,  and 
incorporating  neuro-inspired  architectures  capable  of  context-sensitive  reasoning  and  adaptive 
learning. These advancements will further support the emergence of cognitive intelligence in AI 
agents, bridging the gap between statistical processing and meaning-oriented interaction.

While the proposed framework demonstrates promising outcomes in simulation, it is important 
to note its limitations. No controlled user studies were conducted, and the current evaluations are 
simulation-based  demonstrations  designed  to  illustrate  feasibility.  Future  work  will  focus  on 



empirical  validation  with  human participants,  including  systematic  experiments,  larger  sample 
sizes, and full statistical analysis of cognitive load measures such as NASA-TLX.

6. Conclusion

This paper has outlined a novel approach to the development of cognitive artificial intelligence 
through the design of cognitive interaction layers interfaces that align structured knowledge with 
human-oriented  encoding  strategies.  The  proposed  framework  provides  a  semantic  and 
interpretable foundation that enhances both user comprehension and system-level reasoning. By 
embedding  cognitive  encoding  mechanisms  such  as  semantic  cues,  visual  metaphors,  and 
associative structures into interaction design, the framework supports the emergence of meaning-
aware AI agents capable of more intuitive and human-aligned communication.

The results demonstrate the feasibility of integrating structured knowledge with cognitively 
enriched interaction, laying the groundwork for future integration with neuro-inspired and neuro-
symbolic models. Such extensions will further enable the development of AI systems that combine 
statistical learning with symbolic reasoning and contextual understanding, thereby advancing the 
pursuit of cognitive intelligence in artificial agents.

Declaration on Generative AI

During the preparation of this work, the authors used ChatGPT-5 (OpenAI) in order to: Grammar 
and spelling check.  After  using these service,  the  authors  reviewed and edited  the  content  as 
needed and takes full responsibility for the publication’s content. 

References

[1] B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman, ‘Building machines that learn 
and  think  like  people’,  Behav.  Brain  Sci.,  vol.  40,  p.  e253,  Jan.  2017,  doi: 
10.1017/S0140525X16001837.

[2] S.  Mcleod,  ‘Piaget’s  Theory and Stages  of  Cognitive  Development’,  Aug.  05,  2009,  Simply 
Psychology. Accessed: Aug. 28, 2025. [Online]. Available: https://zenodo.org/records/15241970

[3] L. S.  Vygotsky, Mind in Society:  Development of Higher Psychological  Processes.  Harvard 
University Press, 1978. doi: 10.2307/j.ctvjf9vz4.

[4] R. Harris, ‘George A. Miller & Philip N. Johnson-Laird Language and perception. Cambridge: 
Cambridge University Press, 1976. Pp. viii + 760.’, J. Linguist., vol. 14, no. 2, pp. 342–347, Sept.  
1978, doi: 10.1017/S0022226700006010.

[5] C.  W.  Welin,  ‘Scripts,  plans,  goals  and understanding,  an  inquiry  into  human knowledge 
structures: Roger C. Schank and Robert P. Abelson Hillsdale: Lawrence Erlbaum Associates, 
1977.  248  pp.  £  10.60  hardcover’,  J.  Pragmat.,  vol.  3,  no.  2,  pp.  211–217,  Apr.  1979,  doi: 
10.1016/0378-2166(79)90031-6.

[6] D. Hofstadter, Ambigrammia: Between Creation and Discovery. Yale University Press, 2025.
[7] J. E. Laird, The Soar Cognitive Architecture. Cambridge, MA, USA: MIT Press, 2019.
[8] M.  Hersche,  M.  Zeqiri,  L.  Benini,  A.  Sebastian,  and  A.  Rahimi,  ‘A  neuro-vector-symbolic 

architecture for solving Raven’s progressive matrices’, Nat. Mach. Intell., vol. 5, no. 4, pp. 363–
375, Apr. 2023, doi: 10.1038/s42256-023-00630-8.

[9] J.  Zhang,  K.  Nie,  and  H.  Li,  ‘Based  on  Ontology  Construction  for  Personalized  Learning 
Resource Recommendation Research’, presented at the Proceedings of the 3rd International 
Conference on Internet Technology and Educational Informatization,  ITEI 2023,  November 
24–26,  2023,  Zhengzhou,  China,  Apr.  2024.  Accessed:  May  16,  2025.  [Online].  Available: 
https://eudl.eu/doi/10.4108/eai.24-11-2023.2343624

[10] N. Zhao, G. Zhou, M. Wei, and D. L. Vogel, ‘Investigating the cognitive and affective dynamics 
of social media addiction: Insights from peer contexts’, J. Couns. Psychol., vol. 71, no. 5, pp. 
430–446, 2024, doi: 10.1037/cou0000747.

https://eudl.eu/doi/10.4108/eai.24-11-2023.2343624
https://zenodo.org/records/15241970


[11] M.  P.  White  et  al.,  ‘Nature-based  biopsychosocial  resilience:  An  integrative  theoretical  
framework for research on nature and health’, Environ. Int., vol. 181, p. 108234, Nov. 2023, doi: 
10.1016/j.envint.2023.108234.

[12] C. Kang, J. Prokop, L. Tong, H. Zhou, Y. Hu, and D. Novak, ‘InA: Inhibition Adaption on pre-
trained  language  models’,  Neural  Netw.,  vol.  178,  p.  106410,  Oct.  2024,  doi: 
10.1016/j.neunet.2024.106410.

[13] C.  Merriman  and  D.  Freeth,  ‘SIN-BARRSS  –  Developing  a  mnemonic  to  support  nurses’ 
participation in interprofessional ward rounds in intensive care: An appreciative inquiry for 
quality  improvement’,  Intensive  Crit.  Care  Nurs.,  vol.  81,  p.  103609,  Apr.  2024,  doi:  
10.1016/j.iccn.2023.103609.

[14] C. D. Jaldi, E. Ilkou, N. Schroeder, and C. Shimizu, ‘Education in the era of Neurosymbolic AI’, 
J. Web Semant., vol. 85, p. 100857, May 2025, doi: 10.1016/j.websem.2024.100857.

[15] V. Presutti, E. Motta, and M. Sabou, ‘Opportunities for Knowledge Graphs in the AI landscape 
—  An  application-centric  perspective’,  J.  Web  Semant.,  p.  100867,  May  2025,  doi: 
10.1016/j.websem.2025.100867.

[16] R. Salas-Guerra, ‘Cognitive AI framework: advances in the simulation of human thought’, Feb. 
06, 2025, arXiv: arXiv:2502.04259. doi: 10.48550/arXiv.2502.04259.

[17] N. Elabd, Z. M. Rahman, S. I. A. Alinnin, S. Jahan, L. A. Campos, and O. C. Baltatu, ‘Designing 
Personalized Multimodal Mnemonics With AI: A Medical Student’s Implementation Tutorial’,  
JMIR Med. Educ., vol. 11, no. 1, p. e67926, May 2025, doi: 10.2196/67926.

[18] R. E. Mayer and L. Fiorella, Eds, The Cambridge Handbook of Multimedia Learning, 3rd edn. in 
Cambridge  Handbooks  in  Psychology.  Cambridge:  Cambridge  University  Press,  2021.  doi: 
10.1017/9781108894333.

[19] B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman, ‘Building machines that learn 
and  think  like  people’,  Behav.  Brain  Sci.,  vol.  40,  p.  e253,  Jan.  2017,  doi: 
10.1017/S0140525X16001837.

[20] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘BERT: Pre-training of Deep Bidirectional 
Transformers  for  Language  Understanding’,  May  24,  2019,  arXiv:  arXiv:1810.04805.  doi: 
10.48550/arXiv.1810.04805.

[21] Y. Liu et al.,  ‘RoBERTa: A Robustly Optimized BERT Pretraining Approach’,  July 26, 2019, 
arXiv: arXiv:1907.11692. doi: 10.48550/arXiv.1907.11692.

[22] T.  B.  Brown  et  al.,  ‘Language  Models  are  Few-Shot  Learners’,  July  22,  2020,  arXiv: 
arXiv:2005.14165. doi: 10.48550/arXiv.2005.14165.

[23] C. Tippareddy, N. Faraji, and O. A. Awan, ‘The Application of ChatGPT to Enhance Medical  
Education’,  Acad.  Radiol.,  vol.  31,  no.  5,  pp.  2185–2187,  May  2024,  doi: 
10.1016/j.acra.2023.04.015.

[24] T. R. Besold et al., ‘Neural-Symbolic Learning and Reasoning: A Survey and Interpretation’,  
Nov. 10, 2017, arXiv: arXiv:1711.03902. doi: 10.48550/arXiv.1711.03902.

[25] S.  Ghidalia,  O.  L.  Narsis,  A.  Bertaux,  and  C.  Nicolle,  ‘Combining  Machine  Learning  and 
Ontology:  A  Systematic  Literature  Review’,  arXiv.org.  Accessed:  May  16,  2025.  [Online]. 
Available: https://arxiv.org/abs/2401.07744v2

[26] A. S. Maida, ‘Cognitive Computing and Neural Networks’, in Handbook of Statistics, vol. 35,  
Elsevier, 2016, pp. 39–78. doi: 10.1016/bs.host.2016.07.011.

[27] F. Fonseca, ‘The double role of ontologies in information science research’, J. Am. Soc. Inf. Sci.  
Technol., vol. 58, no. 6, pp. 786–793, 2007, doi: 10.1002/asi.20565.

[28] Z. Wan et al., ‘Towards Cognitive AI Systems: a Survey and Prospective on Neuro-Symbolic 
AI’, CoRR, vol. abs/2401.01040, 2024, doi: 10.48550/ARXIV.2401.01040.

[29] B. Abu-Salih and S. Alotaibi, ‘A systematic literature review of knowledge graph construction 
and  application  in  education’,  Heliyon,  vol.  10,  no.  3,  p.  e25383,  Feb.  2024,  doi: 
10.1016/j.heliyon.2024.e25383.

[30] Y. Babenko, ‘Mnemonic Interfaces for Cognitive AI: Ontology-Based Knowledge and Neuro- 
Symbolic Reasoning’, Jun. 2025, doi: 10.5281/zenodo.15651442.

https://arxiv.org/abs/2401.07744v2

	1. Introduction
	2. Mathematical Formulation
	3. Materials and Methods
	4. Results
	5. Discussion
	6. Conclusion
	Declaration on Generative AI
	References

