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Abstract

This paper focuses on contributing scalable LLM alignment approaches to generate outputs close to
human goals and values. As Al models become more advanced, alignment becomes increasingly critical.
This article explores a novel approach using agents and Retrieval-Augmented Generation (RAG) for
alignment. We create a custom knowledge graph based on the Flickr30k subset. Leverage a Neo4j
database to store predefined entities and their relationships, which serve as constraints for model outputs.
We use RAG to guide the model’s generation by focusing only on the relevant entities and relationships
detected in an image, ensuring alignment with structured knowledge while ignoring irrelevant details.
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1. Introduction

1.1. Problem statement

As large language models (LLMs) become more capable [1], the challenge of aligning their outputs
with human intent, ethical constraints, and factual accuracy becomes increasingly important.
While traditional alignment methods focus on reinforcement learning with human feedback
(RLHF) or prompt engineering, these approaches often lack fine-grained control over specific
aspects of model behavior. In particular, ensuring that an LLM only considers predefined entities
and relationships, especially when processing complex multimodal data like images, remains an
open challenge.

This paper focuses on contributing scalable LLM alignment approaches to generate outputs close to
human goals and values.

1.2. Overview of our method

In this work, we propose a novel approach to LLM alignment that leverages agents, Retrieval-
Augmented Generation (RAG), and knowledge graphs to enforce controlled generation. We store a
structured representation of allowed entities and their relationships in a Neo4j knowledge graph,
which acts as a constraint system. When analyzing an image, our method first detects the entities
present, retrieves only the corresponding allowed relationships from the database, and then guides
the LLM’s generation using RAG. This ensures that the model adheres strictly to the predefined
knowledge constraints, avoiding irrelevant or undesired outputs.

Our contributions are as follows:

* A knowledge-constrained alignment framework using Neo4j and RAG to regulate
model outputs.

* A multimodal alignment strategy that ensures only predefined entities and
relations are described from an image.
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*  Empirical validation demonstrates how this approach improves alignment
precision while reducing hallucination.

The rest of this paper is structured as follows: Section 2 discusses related work on LLM
alignment, knowledge-grounded generation systems, and agents. Section 3 describes our
methodology, including the role of LLMs, agents, RAG, and Neo4j. Section 4 presents our
experiments and results. Section 5 concludes with key insights and future research directions.
Section 6 outlines the limitations of the developed framework.

2. Relevant work

Large Language Models (LLMs) have advanced in structured reasoning through techniques like
Chain-of-Thought (the authors showed how such reasoning abilities emerge naturally in
sufficiently large language models via a simple prompting [2]), Self-Consistency (the authors
propose a new decoding strategy, self-consistency, to replace the naive greedy decoding used in
chain-of-thought prompting; it first samples a diverse set of reasoning paths instead of only taking
the greedy one, and then selects the most consistent answer by marginalizing out the sampled
reasoning paths [3]), and Tree-of-Thought (authors introduced a new framework for language
model inference, Tree of Thoughts (ToT), which generalizes over the popular Chain of Thought
approach to prompting language models, and enables exploration over coherent units of text
(thoughts) that serve as intermediate steps toward problem solving [4]), improving inference by
generating intermediate steps rather than relying on greedy decoding [5, 6, 7, 8, 9, 10]. In case the
amount of information is too big to fit into a prompt, prior works have used knowledge storage,
such as knowledge graphs.

Knowledge Graphs (KGs) are structured repositories of interconnected entities and
relationships, offering efficient graph-based knowledge representation and retrieval [11, 12, 13].

Prior work combining KGs with LLMs has primarily focused on tasks such as knowledge-based
question answering [14, 15, 16, 17], entity-centric retrieval [18, 19, 20], and fact-checking [21, 22,
23].

However, in the described applications, the obtained data was mainly used to extract the correct
answer or infer the answer from it. Our work focuses on utilizing the extracted data as supporting
information.

3. Agents with RAG (ARAG)

Our approach combines Neo4j knowledge graphs, Retrieval-Augmented Generation (RAG), and
agent-based processing to enforce alignment constraints in large language models (LLMs) (see Fig.
1). This section details our framework, outlining how entities and relationships are stored,
retrieved, and used to control LLM-generated descriptions of images.

3.1. Overview of our method
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Figure 1: System overview diagram



The proposed system consists of three main components:

*  Knowledge Graph: Stores predefined entities and relationships that outline the
allowed knowledge constraints.

*  Image Processing Module: Extracts entities from the image using the VLM.

*  RAG-Enhanced LLM Agent: Retrieves relevant entities and relationships from
Neo4j and conditions the model’s output within those constraints.

3.2. Knowledge graph

Representation. To build the alignment graph, we incorporated the Flickr30k dataset [24],
containing 29000 train, 1014 validation, and 1000 test samples. Each sample from the dataset has
the respective image and 5 English captions. Due to resource limitations, we built the graph on top
of the first 100 train samples from the dataset. We have checked two different setups:

*  Extracting entities and relations from the image captions (this turned out to
provide a small number of entities and relations and was not used for the full-size
experiments)

*  Extracting entities and relations directly from images (was used for the full-size
experiments)

The first approach led to the 184 entities and 226 relations, while the second one led to the 231
entities and 404 relations present in the DB. In both cases, GPT-40 was used as a base LLM to
generate the DB.

We structure our Neo4j database as a directed graph where:

*  Nodes represent entities (e.g., "Person,"” "Vehicle").

*  Edges define relationships between entities (e.g., "drives,” "owns").

A sample knowledge graph structure:

(:Person)-[:OWNS]->(:Vehicle)
(:Vehicle)-[:IS_LOCATED_AT]—(:Building)

In the schema above, there are different relations: OWNS and IS LOCATED_AT. We decided to
store the relations under the single RELATES relation and to store the exact relation type as a type
attribute. The same procedure was performed with the Person, Vehicle, and Building combined into
a single Entity with the name attribute. The actual knowledge graph snapshot is depicted in Fig. 2.
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Figure 1: Knowledge graph snapshot

Such a structure ensures that if a "Person" and "Vehicle" appear in an image, only the predefined
"OWNS" relationship is considered during LLM generation. There could also be introduced a lot of
additional attributes for each of the entities and relations, but for the sake of simplicity, we did not
incorporate much metadata.

Querying. The system queries Neo4j to retrieve only the relations that match the list of
entities. We have implemented an optional strict mode to customize the retrieval process. The
strict case is when we extract two entities, cat and dog, then we extract only relations between
them, like dog->bark->cat. An unstrict case would also return all the relations that match only one
entity, like dog->eat->food, dog->is playing->ball.

Extracted entities matching. This step is optional and is used only during inference. By
utilizing the vector embeddings, we match the extracted entities for a particular image with the list
of entities present in the DB. This step is required because some entities may not be consistently
extracted every time (e.g., windows/window, man/human, building/house). Without handling such
situations, the results may be much worse than expected. We utilize the vectors obtained using the
OpenAl Embeddings APL It provides us with 64-dimensional normalized embeddings that are
further compared using a cosine similarity score and a 0.7 threshold.

In addition, we incorporated a caching procedure that pre-calculates embeddings for all the new
strings and then uses them in case we face the same entity. Caching significantly reduces the actual
costs for this operation. This is a local version of the semantic search that could be used on the
Neo4j side, but was simplified to the local version. In the production scenario, it should be
performed by a single operation in Neo4;.

3.3. Image Processing

The image processing module detects objects and extracts their textual representations (e.g., "car,"
"building"). Right now, we utilize the VLM for this task, including the input image and the prompt.
This works fine for now, but can be substituted by any Zero-Shot model like Grounding DINO or

something similar in the future, in case cost reduction is needed for production applications.
3.4. Vanilla LLM

In our setup, Vanilla LLM calls do not use DB or any other tools to perform the task.



3.5. Agent Processing

There are two different types of agents that we could use: tool-calling agents and code agents. After
preliminary experiments, we found out that code agents perform better in planning and aligning
with the step-by-step nature of the instructions.

During the implementations, we utilized the smolagents framework as a core of the agent
backend. ReAct was used as the agent’s planning strategy.

RAG-Enhanced Generation. The agent conditions the LLM using retrieved knowledge,
ensuring it describes only the allowed entities and relationships. Furthermore, we prompted the
model to identify the exact positions of the entities in the image. The are nine available values for
position: top-left, top-center, top-right, center-left, center, center-right, bottom-left, bottom-center,
and bottom-right. After the initial description generation, the agent defines the positions for each
entity and verifies its answer with the DB to minimize the possible hallucinations.

4. Experiments

To accept or reject the alignment improvements, we compared 10 head-to-head approaches
utilizing 50 samples and three different metrics.

4.1. Data

To accept or reject the alignment improvements, we compared 10 head-to-head approaches
utilizing 50 samples and three different metrics.

4.2. Models

We have utilized two different API providers: OpenAl and Google. GPT-40-mini and
Gemini-2.0-flash-lite were selected as candidates. On top of vanilla LLMs, we introduced different
modifications for them. ARAG suffix means that the models utilize Agentic flow with RAG. The EM
suffix means this setup uses the entities matching option, and the SR means that we included the
strict relations option.

Regular LLM calls (without agentic flow) did not have access to the tools/DB. All the agentic
flow setups were equipped with three tools (load_initial image, extract_entities, and
get_data_from_neo4j), a code interpreter, and a maximum of 7 steps to accomplish the task.

For the LLM-as-a-judge purpose, we utilize the same model we used during the knowledge
graph creation — gpt-4o. This will mitigate the bias of inference and evaluation using the same
model. To calculate the BERTScore, we incorporate bert-base-uncased.

4.3. Metrics

To evaluate the experiment results, we need to be able to understand how good the model
performs at describing the image and to what extent it aligns with the DB reference. We focused
on the following metrics:

*  Answer Relevance [0 - 10] — Measures how well the generated response aligns
with the expected content of the image. It is assessed based on the LLM judgment of the
generated descriptions of the image. A higher score indicates that the response remains
applicable and contextually appropriate despite alignment constraints.

. Groundedness [0 — 10] — Evaluates the extent to which the model’s output is based
on retrieved knowledge rather than hallucinated information. A higher groundedness score
indicates better alignment with structured knowledge and reduced model hallucination.



*  BERTScore [0 — 1] - A widely used text similarity metric based on contextual
embeddings from a pre-trained BERT model. It compares the generated description with
reference captions by computing cosine similarity between token embeddings.

5. Results

The overall prediction time took ~4.5 hours to accomplish. The evaluation took ~14.5 hours due to
the GPT-40’s degraded performance stated by OpenAl in the last few days. We have highlighted
the best results per model in bold because we have to evaluate the models separately compared to
the vanilla LLM setup. The final results are depicted in Table 1 below.

Table 1.

ARAG vs vanilla LLM performance
Approach Relevance Groundedness BERTScore
GPT-40-mini 8.72 5.0 0.560
GPT-40-mini-ARAG 7.06 6.0 0.538
GPT-40-mini-ARAG-EM 6.74 6.34 0.542
GPT-40-mini-ARAG-SR 6.44 5.88 0.536
GPT-40-mini-ARAG-EM-SR 6.14 6.18 0.536
Gemini-2.0-flash-lite 8.52 5.92 0.607
Gemini-2.0-flash-lite-ARAG 6.40 6.82 0.592
Gemini-2.0-flash-lite-ARAG-EM 5.82 7.68 0.587
Gemini-2.0-flash-lite-ARAG-SR 6.20 6.60 0.593
Gemini-2.0-flash-lite-ARAG-EM-SR 5.94 6.92 0.589

As we can see, all the somehow aligned setups obtained higher groundedness scores compared
to the vanilla LLM approach. The final groundedness score also significantly depends on the base
model capabilities. In our results, we can state the significant difference between the Gemini-2.0-
flash-lite and the gpt-4o0-mini alignment capabilities.

Meanwhile, answer relevance dropped significantly during alignment, the answers provided by
the aligned models are still valid (but, of course, less detailed). The most important thing is that we
see a correlation between the extent of alignment and the answer relevance.

BERTScore is almost the same, meaning both models provide captions that partially align with
the labels. This can be explained by low-detail captions describing the Flickr30k dataset. They are
right to the point and were initially focused on much less capable models.

From the above experiments, we can say that for a more optimal performance entities matching
should be set to True while the strict relations should be set to False.

6. Conclusion

The scientific novelty of the presented system lies in contributing scalable LLM alignment
approaches to generate outputs close to human goals and values. We introduced an approach for
improving LLM alignment using Neo4j knowledge graphs, Retrieval-Augmented Generation



(RAG), and agent-based processing. Our method ensures that an LLM describes only predefined
entities and relationships extracted from an image, enforcing structured alignment constraints.
Using vector-based entity matching, strict relationship retrieval, and agentic execution, we
successfully constrained the model’s output while maintaining relevant and coherent responses.
Our experimental results demonstrate that the aligned agent-based approach significantly
improves groundedness compared to a vanilla LLM with prompting. The trade-off is a slight drop
in answer relevance, but overall, the method remains effective for structured and controlled
generation. Importantly, BERTScore results suggest that despite these constraints, the aligned
model’s responses still align with human-annotated captions at approximately the same level.
While our approach has proven effective, there are several avenues for future work:

*  Scaling predictions to larger models such as GPT-40 or fine-tuned open-weight
LLM:s to reduce hallucinations.

*  Expanding the dataset beyond the first 100 samples of Flickr30k to increase
generalization.

*  Verifying the performance using the Ukrainian multi30k dataset [25].

*  Verify the framework performance on the specific domains, like Autonomous
Driving.

*  Integrating Neod4j-side semantic search for more efficient and scalable entity
matching.

*  Exploring techniques to enhance the alignment of vision-language models with
structured knowledge.

*  Researching the capabilities of image-based alignment instead of the entities and
relations DB [26, 27, 28].

By combining custom constraints from knowledge graphs with retrieval-enhanced generation,
our work demonstrates a promising pathway for more controllable, aligned, and factually
grounded LLMs. This methodology can be extended to other alignment-sensitive applications, such
as medical Al legal document analysis, and explainable Al systems.

Source code is available on GitHub [29].

6.1. Limitations

This research was conducted as part of the master’s thesis at the Kharkiv National University of
Radio Electronics. That is the reason why the KG sizes and the evaluation sizes are not that big.
The overall experiment budget was around 30$. We tested only the GPT-40, GPT-40-mini, and the
Gemini-2.0-flash-lite models in our tests because of their affordability. We expect our approach to
scale even better using the more prominent models like Gemini-2.0-pro and Claude-sonnet-3.7.

The obtained framework sometimes faces the output token limits during the evaluations. These
are just being retried for now.

We have conducted full-size experiments only using the Code Agent. After the preliminary
tests, the Tool Calling Agent almost always showed worse results.

We did not evaluate our framework on the new data samples that were not used to build the
KG.

Image size is limited to 20MB (current OpenAlI limitation).
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