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Abstract
This  paper  focuses  on contributing  scalable  LLM alignment  approaches  to  generate  outputs  close  to 
human goals and values. As AI models become more advanced, alignment becomes increasingly critical. 
This  article  explores  a  novel  approach using  agents  and Retrieval-Augmented  Generation (RAG)  for 
alignment.  We  create  a  custom  knowledge  graph  based  on  the  Flickr30k  subset.  Leverage  a  Neo4j 
database to store predefined entities and their relationships, which serve as constraints for model outputs. 
We use RAG to guide the model’s generation by focusing only on the relevant entities and relationships 
detected in an image, ensuring alignment with structured knowledge while ignoring irrelevant details.
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1. Introduction

1.1. Problem statement

As large language models (LLMs) become more capable [1], the challenge of aligning their outputs 
with  human  intent,  ethical  constraints,  and  factual  accuracy  becomes  increasingly  important. 
While  traditional  alignment  methods  focus  on  reinforcement  learning  with  human  feedback 
(RLHF)  or  prompt  engineering,  these  approaches  often  lack  fine-grained  control  over  specific 
aspects of model behavior. In particular, ensuring that an LLM only considers predefined entities  
and relationships, especially when processing complex multimodal data like images, remains an 
open challenge.
This paper focuses on contributing scalable LLM alignment approaches to generate outputs close to 
human goals and values.

1.2. Overview of our method

In this work, we propose a novel approach to LLM alignment that leverages agents, Retrieval-
Augmented Generation (RAG), and knowledge graphs to enforce controlled generation. We store a 
structured representation of allowed entities and their relationships in a Neo4j knowledge graph, 
which acts as a constraint system. When analyzing an image, our method first detects the entities 
present, retrieves only the corresponding allowed relationships from the database, and then guides 
the LLM’s generation using RAG. This ensures that the model adheres strictly to the predefined 
knowledge constraints, avoiding irrelevant or undesired outputs.

Our contributions are as follows:

 A knowledge-constrained alignment framework using Neo4j and RAG to regulate 
model outputs.

 A  multimodal  alignment  strategy  that  ensures  only  predefined  entities  and 
relations are described from an image.
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 Empirical  validation  demonstrates  how  this  approach  improves  alignment 
precision while reducing hallucination.

The  rest  of  this  paper  is  structured  as  follows:  Section  2  discusses  related  work  on  LLM 
alignment,  knowledge-grounded  generation  systems,  and  agents.  Section  3  describes  our 
methodology,  including  the  role  of  LLMs,  agents,  RAG,  and  Neo4j.  Section  4  presents  our 
experiments  and results.  Section 5  concludes with key insights  and future  research directions. 
Section 6 outlines the limitations of the developed framework.

2. Relevant work

Large Language Models (LLMs) have advanced in structured reasoning through techniques like 
Chain-of-Thought  (the  authors  showed  how  such  reasoning  abilities  emerge  naturally  in 
sufficiently  large  language  models  via  a  simple  prompting  [2]),  Self-Consistency  (the  authors 
propose a new decoding strategy, self-consistency, to replace the naive greedy decoding used in 
chain-of-thought prompting; it first samples a diverse set of reasoning paths instead of only taking  
the greedy one, and then selects the most consistent answer by marginalizing out the sampled 
reasoning paths [3]),  and Tree-of-Thought  (authors  introduced a  new framework for  language 
model inference, Tree of Thoughts (ToT), which generalizes over the popular Chain of Thought 
approach  to  prompting  language  models,  and  enables  exploration  over  coherent  units  of  text 
(thoughts) that serve as intermediate steps toward problem solving [4]), improving inference by 
generating intermediate steps rather than relying on greedy decoding [5, 6, 7, 8, 9, 10]. In case the 
amount of information is too big to fit into a prompt, prior works have used knowledge storage,  
such as knowledge graphs. 

Knowledge  Graphs  (KGs)  are  structured  repositories  of  interconnected  entities  and 
relationships, offering efficient graph-based knowledge representation and retrieval [11, 12, 13]. 

Prior work combining KGs with LLMs has primarily focused on tasks such as knowledge-based 
question answering [14, 15, 16, 17], entity-centric retrieval [18, 19, 20], and fact-checking [21, 22, 
23]. 

However, in the described applications, the obtained data was mainly used to extract the correct 
answer or infer the answer from it. Our work focuses on utilizing the extracted data as supporting 
information.

3. Agents with RAG (ARAG)

Our approach combines Neo4j  knowledge graphs,  Retrieval-Augmented Generation (RAG),  and 
agent-based processing to enforce alignment constraints in large language models (LLMs) (see Fig. 
1).  This  section  details  our  framework,  outlining  how  entities  and  relationships  are  stored,  
retrieved, and used to control LLM-generated descriptions of images.

3.1. Overview of our method

Figure 1: System overview diagram



The proposed system consists of three main components:

 Knowledge  Graph:  Stores  predefined entities  and  relationships  that  outline  the 
allowed knowledge constraints.

 Image Processing Module: Extracts entities from the image using the VLM.
 RAG-Enhanced  LLM  Agent:  Retrieves  relevant  entities  and  relationships  from 

Neo4j and conditions the model’s output within those constraints.

3.2. Knowledge graph

Representation.  To  build  the  alignment  graph,  we  incorporated  the  Flickr30k  dataset  [24], 
containing 29000 train, 1014 validation, and 1000 test samples. Each sample from the dataset has 
the respective image and 5 English captions. Due to resource limitations, we built the graph on top 
of the first 100 train samples from the dataset. We have checked two different setups: 

 Extracting  entities  and  relations  from  the  image  captions  (this  turned  out  to 
provide  a  small  number  of  entities  and  relations  and  was  not  used  for  the  full-size 
experiments)

 Extracting entities and relations directly from images (was used for the full-size 
experiments)

The first approach led to the 184 entities and 226 relations, while the second one led to the 231  
entities and 404 relations present in the DB. In both cases, GPT-4o was used as a base LLM to  
generate the DB.

We structure our Neo4j database as a directed graph where:

 Nodes represent entities (e.g., "Person," "Vehicle").
 Edges define relationships between entities (e.g., "drives," "owns").

A sample knowledge graph structure:

(:Person)-[:OWNS]->(:Vehicle)
(:Vehicle)-[:IS_LOCATED_AT]→(:Building)

In the schema above, there are different relations: OWNS and IS_LOCATED_AT. We decided to 
store the relations under the single RELATES relation and to store the exact relation type as a type 
attribute. The same procedure was performed with the Person, Vehicle, and Building combined into 
a single Entity with the name attribute. The actual knowledge graph snapshot is depicted in Fig. 2.



Figure 1: Knowledge graph snapshot

Such a structure ensures that if a "Person" and "Vehicle" appear in an image, only the predefined 
"OWNS" relationship is considered during LLM generation. There could also be introduced a lot of  
additional attributes for each of the entities and relations, but for the sake of simplicity, we did not 
incorporate much metadata.

Querying. The  system queries  Neo4j  to  retrieve  only  the  relations  that  match  the  list  of 
entities.  We have implemented an optional strict mode to customize the retrieval process.  The 
strict case is when we extract two entities, cat and dog, then we extract only relations between 
them, like dog->bark->cat. An unstrict case would also return all the relations that match only one 
entity, like dog->eat->food, dog->is playing->ball. 

Extracted entities  matching. This  step is  optional  and is  used only during inference.  By 
utilizing the vector embeddings, we match the extracted entities for a particular image with the list 
of entities present in the DB. This step is required because some entities may not be consistently  
extracted every time (e.g., windows/window, man/human, building/house). Without handling such 
situations, the results may be much worse than expected. We utilize the vectors obtained using the  
OpenAI  Embeddings  API.  It  provides  us  with  64-dimensional  normalized  embeddings  that  are 
further compared using a cosine similarity score and a 0.7 threshold. 

In addition, we incorporated a caching procedure that pre-calculates embeddings for all the new 
strings and then uses them in case we face the same entity. Caching significantly reduces the actual 
costs for this operation. This is a local version of the semantic search that could be used on the 
Neo4j  side,  but  was  simplified  to  the  local  version.  In  the  production  scenario,  it  should  be 
performed by a single operation in Neo4j.

3.3. Image Processing

The image processing module detects objects and extracts their textual representations (e.g., "car,"  
"building"). Right now, we utilize the VLM for this task, including the input image and the prompt. 
This works fine for now, but can be substituted by any Zero-Shot model like Grounding DINO or  
something similar in the future, in case cost reduction is needed for production applications.

3.4. Vanilla LLM

In our setup, Vanilla LLM calls do not use DB or any other tools to perform the task.



3.5. Agent Processing

There are two different types of agents that we could use: tool-calling agents and code agents. After 
preliminary experiments, we found out that code agents perform better in planning and aligning 
with the step-by-step nature of the instructions.

During the  implementations,  we utilized  the smolagents  framework as  a  core  of  the  agent 
backend. ReAct was used as the agent’s planning strategy.

RAG-Enhanced  Generation.  The  agent  conditions  the  LLM  using  retrieved  knowledge, 
ensuring it describes only the allowed entities and relationships. Furthermore, we prompted the 
model to identify the exact positions of the entities in the image. The are nine available values for 
position: top-left, top-center, top-right, center-left, center, center-right, bottom-left, bottom-center, 
and bottom-right. After the initial description generation, the agent defines the positions for each 
entity and verifies its answer with the DB to minimize the possible hallucinations.

4. Experiments

To  accept  or  reject  the  alignment  improvements,  we  compared  10  head-to-head  approaches 
utilizing 50 samples and three different metrics.

4.1. Data

To accept or reject  the alignment improvements,  we compared 10 head-to-head approaches 
utilizing 50 samples and three different metrics.

4.2. Models

We  have  utilized  two  different  API  providers:  OpenAI  and  Google.  GPT-4o-mini  and 
Gemini-2.0-flash-lite were selected as candidates. On top of vanilla LLMs, we introduced different 
modifications for them. ARAG suffix means that the models utilize Agentic flow with RAG. The EM 
suffix means this setup uses the entities matching option, and the SR means that we included the 
strict relations option. 

Regular LLM calls (without agentic flow) did not have access to the tools/DB. All the agentic 
flow  setups  were  equipped  with  three  tools  (load_initial_image,  extract_entities,  and 
get_data_from_neo4j), a code interpreter, and a maximum of 7 steps to accomplish the task.

For the LLM-as-a-judge purpose,  we utilize the same model we used during the knowledge 
graph creation – gpt-4o. This will mitigate the bias of inference and evaluation using the same 
model. To calculate the BERTScore, we incorporate bert-base-uncased.

4.3. Metrics

To evaluate the experiment results,  we need to be able to understand how good the model  
performs at describing the image and to what extent it aligns with the DB reference. We focused  
on the following metrics:

 Answer Relevance [0 - 10] – Measures how well the generated response aligns 
with the expected content of the image. It is assessed based on the LLM judgment of the 
generated descriptions of the image. A higher score indicates that the response remains  
applicable and contextually appropriate despite alignment constraints.

 Groundedness [0 – 10] – Evaluates the extent to which the model’s output is based 
on retrieved knowledge rather than hallucinated information. A higher groundedness score 
indicates better alignment with structured knowledge and reduced model hallucination.



 BERTScore [0 – 1]  – A widely used text  similarity metric  based on contextual 
embeddings from a pre-trained BERT model. It compares the generated description with 
reference captions by computing cosine similarity between token embeddings.

5. Results

The overall prediction time took ~4.5 hours to accomplish. The evaluation took ~14.5 hours due to 
the GPT-4o’s degraded performance stated by OpenAI in the last few days. We have highlighted 
the best results per model in bold because we have to evaluate the models separately compared to  
the vanilla LLM setup. The final results are depicted in Table 1 below.

Table 1. 
ARAG vs vanilla LLM performance

Approach Relevance Groundedness BERTScore

GPT-4o-mini 8.72 5.0 0.560

GPT-4o-mini-ARAG 7.06 6.0 0.538

GPT-4o-mini-ARAG-EM 6.74 6.34 0.542

GPT-4o-mini-ARAG-SR 6.44 5.88 0.536

GPT-4o-mini-ARAG-EM-SR 6.14 6.18 0.536

Gemini-2.0-flash-lite 8.52 5.92 0.607

Gemini-2.0-flash-lite-ARAG 6.40 6.82 0.592

Gemini-2.0-flash-lite-ARAG-EM 5.82 7.68 0.587

Gemini-2.0-flash-lite-ARAG-SR 6.20 6.60 0.593

Gemini-2.0-flash-lite-ARAG-EM-SR 5.94 6.92 0.589

As we can see, all the somehow aligned setups obtained higher groundedness scores compared 
to the vanilla LLM approach. The final groundedness score also significantly depends on the base 
model capabilities. In our results, we can state the significant difference between the Gemini-2.0-
flash-lite and the gpt-4o-mini alignment capabilities. 

Meanwhile, answer relevance dropped significantly during alignment, the answers provided by 
the aligned models are still valid (but, of course, less detailed). The most important thing is that we 
see a correlation between the extent of alignment and the answer relevance.

BERTScore is almost the same, meaning both models provide captions that partially align with 
the labels. This can be explained by low-detail captions describing the Flickr30k dataset. They are 
right to the point and were initially focused on much less capable models.

From the above experiments, we can say that for a more optimal performance entities matching 
should be set to True while the strict relations should be set to False.

6. Conclusion

The  scientific  novelty  of  the  presented  system  lies  in  contributing  scalable  LLM  alignment 
approaches to generate outputs close to human goals and values. We introduced an approach for  
improving  LLM  alignment  using  Neo4j  knowledge  graphs,  Retrieval-Augmented  Generation 



(RAG), and agent-based processing. Our method ensures that an LLM describes only predefined 
entities  and relationships extracted from an image,  enforcing structured alignment constraints. 
Using  vector-based  entity  matching,  strict  relationship  retrieval,  and  agentic  execution,  we 
successfully constrained the model’s output while maintaining relevant and coherent responses.

Our  experimental  results  demonstrate  that  the  aligned  agent-based  approach  significantly 
improves groundedness compared to a vanilla LLM with prompting. The trade-off is a slight drop 
in  answer  relevance,  but  overall,  the  method  remains  effective  for  structured  and  controlled 
generation.  Importantly,  BERTScore  results  suggest  that  despite  these  constraints,  the  aligned 
model’s responses still align with human-annotated captions at approximately the same level.

While our approach has proven effective, there are several avenues for future work:

 Scaling predictions to larger models such as GPT-4o or fine-tuned open-weight 
LLMs to reduce hallucinations.

 Expanding  the  dataset  beyond  the  first  100  samples  of  Flickr30k  to  increase 
generalization.

 Verifying the performance using the Ukrainian multi30k dataset [25].
 Verify  the  framework  performance  on  the  specific  domains,  like  Autonomous 

Driving.
 Integrating  Neo4j-side  semantic  search  for  more  efficient  and  scalable  entity 

matching.
 Exploring techniques to enhance the alignment of  vision-language models with 

structured knowledge.
 Researching the capabilities of image-based alignment instead of the entities and 

relations DB [26, 27, 28].

By combining custom constraints from knowledge graphs with retrieval-enhanced generation, 
our  work  demonstrates  a  promising  pathway  for  more  controllable,  aligned,  and  factually 
grounded LLMs. This methodology can be extended to other alignment-sensitive applications, such 
as medical AI, legal document analysis, and explainable AI systems.

Source code is available on GitHub [29].

6.1. Limitations

This research was conducted as part of the master’s thesis at the Kharkiv National University of  
Radio Electronics. That is the reason why the KG sizes and the evaluation sizes are not that big. 
The overall experiment budget was around 30$. We tested only the GPT-4o, GPT-4o-mini, and the 
Gemini-2.0-flash-lite models in our tests because of their affordability. We expect our approach to 
scale even better using the more prominent models like Gemini-2.0-pro and Claude-sonnet-3.7.

The obtained framework sometimes faces the output token limits during the evaluations. These 
are just being retried for now.

We have conducted full-size experiments only using the Code Agent.  After the preliminary 
tests, the Tool Calling Agent almost always showed worse results.

We did not evaluate our framework on the new data samples that were not used to build the  
KG.

Image size is limited to 20MB (current OpenAI limitation).

Acknowledgements

This publication is based upon work from COST Action GOBLIN - Global Network on Large-Scale, 
Cross-domain  and  Multilingual  Open  Knowledge  Graphs  (CA23147),  supported  by  COST 
(European Cooperation in Science and Technology).



Declaration on Generative AI

During the preparation of  this  work,  the author(s)  used  Gemini-2.5  in order to:  Grammar and 
spelling check.

References

[1] Erkut Erdem, Menekse Kuyu, Semih Yagcioglu, Anette Frank, Letitia Parcalabescu, Barbara 
Plank, Andrii Babii, Oleksii Turuta, Aykut Erdem, Iacer Calixto, Elena Lloret, Elena-Simona 
Apostol, Ciprian-Octavian Truică, Branislava Šandrih, Sanda Martinčić-Ipšić, Gábor Berend, 
Albert  Gatt,  and  Grăzina  Korvel,  Neural  Natural  Language  Generation:  A  Survey  on 
Multilinguality, Multimodality, Controllability and Learning. J. Artif. Int. Res. 73 (2022).

[2] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou et al., Chain-of-
thought prompting elicits reasoning in large language models. In: Advances of the 36th Neural  
Information Processing Systems (NeurIPS), Curran Associates, Inc., pp. 24824-24837 (2022).

[3] X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, S. Narang, A. Chowdhery, and D. Zhou, Self-
consistency improves chain of thought reasoning in language models. In: Proceedings of the 
11th International Conference on Learning Representations (ICLR) (2023).

[4] S. Yao, D. Yu, J. Zhao, I. Shafran, T. Griffiths, Y. Cao, and K. Narasimhan, Tree of thoughts:  
Deliberate problem solving with large language models.  In:   Advances of  the 37th Neural  
Information Processing Systems (NeurIPS), pp. 11809-11822 (2023).

[5] S.  Zhou,  U.  Alon,  F.  F.  Xu,  Z.  Jiang,  and  G.  Neubig,  Docprompting:  Generating  code  by 
retrieving  the  docs.  In:  Proceedings  of  the  11th  Conference  on  Learning  Representations 
(ICLR) (2023).

[6] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, Large language models are zero-shot 
reasoners. In: Advances of the 36th Neural Information Processing Systems (NeurIPS), Curran 
Associates, Inc., pp. 22199–22213 (2022).

[7] A.  Creswell,  M.  Shanahan,  and  I.  Higgins,  Selection-inference:  Exploiting  large  language 
models for interpretable logical reasoning. In: Proceedings of the 11th Conference on Learning 
Representations (ICLR) (2023).

[8] N. Shinn, B. Labash, and A. Gopinath, Reflexion: an autonomous agent with dynamic memory 
and self-reflection. In: Proceedings of the 37th International Conference on Neural Information 
Processing Systems (NIPS), Curran Associates Inc., Red Hook, NY, USA, Article 377, pp. 8634–
8652 (2023).

[9] M. Besta,  N.  Blach,  A.  Kubicek,  R.  Gerstenberger,  L.  Gianinazzi,  J.  Gajda,  T.  Lehmann, M. 
Podstawski, H. Niewiadomski, P. Nyczyk et al., Graph of thoughts: Solving elaborate problems 
with large language models. In: Proceedings of the AAAI Conference on Artificial Intelligence 
(AAAI) (2024).

[10] E. Zelikman, Y. Wu, J. Mu, and N. Goodman, STaR: Bootstrapping Reasoning With Reasoning.  
In: Advances of the 36th Neural Information Processing Systems (NeurIPS), Curran Associates,  
Inc., pp. 15476–15488 (2022).

[11] H. Paulheim, Knowledge graph refinement: A survey of approaches and evaluation methods. 
In: 17th international semantic web conference (ISWC), IOS Press, NLD, pp. 489–508 (2017).

[12] Q. Wang, Z. Mao, B. Wang, and L. Guo, Knowledge graph embedding: A survey of approaches 
and applications, IEEE Transactions on Knowledge and Data Engineering, vol. 29, no. 12, pp. 
2724–2743 (2017).

[13] Y. Jing, Y. Yang, X. Wang, M. Song, and D. Tao, Meta-aggregator: Learning to aggregate for 1-
bit  graph  neural  networks.  In:  Proceedings  of  the  IEEE/CVF  international  conference  on 
computer vision (ICCV), pp. 5281–5290 (2021).

[14] D.  Sanmartin,  Kg-rag:  Bridging the gap between knowledge and creativity,  arXiv preprint 
(2024).



[15] Y. Wang, N. Lipka, R. A. Rossi, A. Siu, R. Zhang, and T. Derr, Knowledge graph prompting for 
multi-document  question  answering.  In:  Proceedings  of  the  38th  AAAI  Conference  on 
Artificial Intelligence (AAAI), pp. 19206–19214 (2024).

[16] X.  He,  Y.  Tian,  Y.  Sun,  N.  V.  Chawla,  T.  Laurent,  Y.  LeCun,  X.  Bresson,  and B.  Hooi,  G-
retriever:  Retrieval-augmented  generation  for  textual  graph  understanding  and  question 
answering. In: Proceedings of the Advances in 37th Neural Information Processing Systems 
(NeurIPS), Curran Associates, Inc., pp. 132876-132907 (2024).

[17] X.  Li,  R.  Zhao,  Y.  K.  Chia,  B.  Ding,  S.  Joty,  S.  Poria,  and  L.  Bing,  Chain-of-knowledge: 
Grounding  large  language  models  via  dynamic  knowledge  adapting  over  heterogeneous 
sources.  In:  Proceedings of  the 12th International Conference on Learning Representations 
(ICLR) (2024).

[18] L. Luo, Y.-F. Li, G. Haffari, and S. Pan, Reasoning on graphs: Faithful and interpretable large 
language model reasoning. In: Proceedings of the 12th International Conference on Learning 
Representations (ICLR) (2024).

[19] J. Sun, C. Xu, L. Tang, S. Wang, C. Lin, Y. Gong, H.-Y. Shum, and J. Guo, Think-on-graph: Deep 
and responsible reasoning of large language model with knowledge graph. In: Proceedings of 
the 12th International Conference on Learning Representations (ICLR) (2024).

[20] H. Liu, S. Wang, Y. Zhu, Y. Dong, and J. Li, Knowledge graph-enhanced large language models 
via path selection. In: Findings of the 62nd Association for Computational Linguistics (ACL), 
Bangkok, Thailand, pp. 6311-6321 (2024).

[21] R.-C.  Chang  and  J.  Zhang,  CommunityKG-RAG:  Leveraging  Community  Structures  in 
Knowledge Graphs for Advanced Retrieval-Augmented Generation in Fact-Checking, arXiv 
preprint (2024).

[22] Y. Mu, P. Niu, K. Bontcheva, and N. Aletras, Predicting and analyzing the popularity of false 
rumors in weibo, Expert Systems with Applications, vol. 243, p. 122791 (2024).

[23] A.  Kau,  X.  He,  A.  Nambissan,  A.  Astudillo,  H.  Yin,  and A.  Aryani,  Combining knowledge 
graphs and large language models, arXiv preprint (2024).

[24] Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier, From image descriptions to 
visual  denotations:  New similarity  metrics  for  semantic  inference  over  event  descriptions, 
Transactions of the Association for Computational Linguistics, pp. 67–78 (2014).

[25] Nataliia Saichyshyna, Daniil Maksymenko, Oleksii Turuta, Andriy Yerokhin, Andrii Babii, and 
Olena Turuta, Extension Multi30K: Multimodal Dataset for Integrated Vision and Language 
Research in Ukrainian. In:  Proceedings of  the 2nd Ukrainian Natural  Language Processing 
Workshop (UNLP), pp. 54–61 (2023).

[26] Kyrychenko, I., Tereshchenko, G., & Smelyakov, K., Optimized Indexing Method in a Hybrid 
Image  Storage  Model  for  Efficient  Storage  and  Access  in  Big  Data  Environments.  In: 
Proceedings of the 17th International Conference on Advanced Trends in Radioelectronics, 
Telecommunications and Computer Engineering (TCSET), 1-4 (2024).

[27] Gorokhovatskyi, V., Chmutov, Y., Tvoroshenko, I. and Kobylin, O., Reducing computational 
costs  by compressing the structural  description in image classification methods,  Advanced 
Information Systems 9, 5-12 (2025).

[28] Gorokhovatskyi, Volodymyr, et al. "Search for visual objects by request in the form of a cluster 
representation for  the structural  image description."  Advances in  Electrical  and Electronic 
Engineering 21.1 (2023).

[29] Implementation  of  the  paper,  https://github.com/Vlad-Fliahin/LLM-alignment-with-ARAG, 
last accessed 2025/04/20.


	1. Introduction
	1.1. Problem statement
	1.2. Overview of our method

	2. Relevant work
	3. Agents with RAG (ARAG)
	3.1. Overview of our method
	3.2. Knowledge graph
	3.3. Image Processing
	3.4. Vanilla LLM
	3.5. Agent Processing

	4. Experiments
	4.1. Data
	4.2. Models
	4.3. Metrics

	5. Results
	6. Conclusion
	6.1. Limitations

	Acknowledgements
	Declaration on Generative AI
	References

