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Abstract
This paper  introduces  a  novel  adaptive cascade bagging system designed for  real-time processing of  
complex,  dynamic  signals.  Leveraging  ensemble  learning  and  a  cascade  architecture,  the  system 
dynamically  adjusts  model  weighting  and  member  count  to  optimize  performance  in  non-stationary 
environments.  Simulation  results  demonstrate  a  progressive  reduction  in  forecasting  errors  on  each 
cascade, with the 4th submetamodel surpassing the best individual ensemble member and the 6th achieving a 
1.23-fold error reduction. This proves the proposed approach effectiveness and computational efficiency.
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1. Introduction

The field of Data Mining has witnessed a dramatic shift in recent years, with a growing reliance on  
sophisticated  computational  intelligence  techniques  to  tackle  complex  problems.  Traditional 
statistical methods, while still valuable, often struggle to effectively handle the sheer volume and 
complexity of modern datasets. Consequently, artificial neural networks (ANNs), in both their deep 
and more traditional shallow forms, alongside neuro-fuzzy systems, neo-fuzzy systems, wavelet-
neuro-fuzzy  networks,  and  other  hybrid  computational  intelligence  systems,  have  become 
increasingly prevalent tools for a wide range of Data Mining tasks. These systems are particularly  
effective  in  classification  problems,  pattern  recognition,  extrapolation,  regression  analysis, 
diagnostics, modeling, and more.

The  core  appeal  of  these  computational  intelligence  approaches  lies  in  their  universal 
approximation properties and the ability to adjust their internal parameters, and in some cases even 
their architecture, through a process of learning from training data. This adaptability allows them to 
tailor themselves to the specific characteristics of the problem at hand, leading to potentially superior 
performance. The training process involves feeding the system labeled data examples, allowing it to 
refine its internal workings to map inputs to desired outputs.

However,  the selection of  the right  computational  intelligence system for  a  particular Data 
Mining task is far from straightforward. While multiple systems may be capable of solving the same 
problem, determining which one will deliver the best results is often impossible a priori. Each system 
possesses its own strengths and weaknesses, making the choice a complex trade-off. For instance,  
deep neural networks (DNNs), the current favorites of many AI applications, are known for their 
potential to achieve extremely high accuracy. However, this performance comes at a significant cost. 
DNNs typically require massive amounts of training data – often tens of thousands or even millions 
of labeled examples – and can demand substantial computational resources and time for training. The 
training process can be iterative, requiring multiple passes through the data and careful tuning of  
hyperparameters. In contrast, Radial Basis Function Neural Networks (RBFNs) offer a considerably 
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faster learning process. This makes them attractive for applications where rapid deployment or real-
time performance is crucial. However, RBFNs are susceptible to the “curse of dimensionality”, which 
arises  when  dealing  with  high-dimensional  datasets.  As  the  dimensionality  increases,  the 
performance of RBFNs degrades significantly, requiring exponentially more neurons to maintain 
accuracy.

Neo-fuzzy systems,  another  option,  are  known for  their  high learning speed and ability  to 
incorporate human expertise through fuzzy logic principles. However, they don’t always guarantee 
the necessary approximation properties to accurately model complex relationships within the data. 
They might be fast to train, but the resulting model might not capture the underlying patterns 
effectively.

The  challenge,  therefore,  isn't  simply  about  applying  these  powerful  tools;  it's  about 
understanding their nuances and selecting the most appropriate system – or even a combination of 
systems – for the specific problem, dataset, and desired performance characteristics.  This often 
involves experimentation, careful evaluation of results, and a deep understanding of the strengths 
and  limitations  of  each  approach.  The  optimal  solution  frequently  emerges  through  iterative 
refinement and a willingness to explore different architectural choices and training methodologies.

When faced with complex challenges where individual systems exhibit varying strengths and 
weaknesses, the use of ensemble approaches can prove remarkably effective [1-8]. The core principle 
behind ensemble methods is to harness the collective intelligence of multiple models to achieve a 
superior outcome compared to any single model acting alone. 

Historically, the vast majority of ensemble methods have relied on a batch (offline) approach. This 
involves providing the entire training dataset upfront and repeatedly analyzing it to train and refine 
the individual models and the ensemble.  While effective, this approach can be computationally 
expensive and less adaptable to dynamic data environments. However, there are several online 
ensemble methods [9-11] specifically designed to address Data Stream Mining problems, where data 
arrives sequentially and potentially at a very high rate.

Within the broader landscape of ensemble approaches, bagging procedures [12-14] have emerged 
as particularly powerful techniques. Bagging, short for “bootstrap aggregation,” involves training 
multiple individual models on different subsets of the training data. The results generated by each of 
these models are then fed into a metamodel, also sometimes referred to as a combiner or aggregator. 
This metamodel acts as a sophisticated decision-making engine, intelligently combining the output 
signals from all ensemble members to synthesize the final, optimal solution. 

A common challenge in implementing bagging is determining the optimal number of ensemble 
members. A small number of members might not provide sufficient diversity to capture the full  
complexity of  the problem, leading to limited accuracy gains.  Conversely,  an excessively large 
number  can  significantly  complicate  the  training  process  of  the  metamodel,  increasing 
computational cost and potentially leading to overfitting. A promising avenue of research addresses 
this challenge through evolutionary approaches [13-15].  These methods dynamically adjust the 
number of ensemble members during the metamodel learning process. This means the number of 
inputs to the metamodel is constantly changing, introducing a layer of complexity to both the 
metamodel itself and its learning process. 

To simplify and accelerate the bagging process, we apply a cascade approach. Instead of relying 
on  a  single,  complex  metamodel,  a  cascade  approach  employs  a  series  of  relatively  simple 
metamodels arranged in sequence. This significantly simplifies the synthesis of the metamodel and 
the subsequent tuning process. 

2. Cascade bagging system architecture

Fig.  1 shows the  cascade bagging system architecture consisting of a set of two-input bagging 
submetamodels.



Figure 1: Architecture of the cascade bagging system

The  ensemble  consists  of  p ensemble  subsystems  ES1 ,  ES2 ,  …,  ESr ,…, ES p   from  the 
simplest to the most complex. Thus, elementary Rosenblatt perceptrons, adalines, neo-fuzzy neurons, 
etc. can be used as ES1, and sufficiently complex deep neural networks as ES p. The inputs of these 

subsystems receive the same vector signal x (k )= (x1 (k ) ,…, xi (k ) ,…, xn (k ))T  (here k  is the current 

discrete time). Scalar output signals ŷ1 (k ) ,…, ŷr (k ) ,…, ŷ p (k ) are calculated at their outputs. If the 

output signal ŷ1 (k ) satisfies the a priori specified accuracy requirements, the bagging procedure is 

not required and the output of the system as a whole is the output signal ŷ1
* (k )= ŷ1 (k ). Otherwise, 

the signal ŷ1 (k ) is fed to the first input of the bagging submetamodel SMM 2, the second input of 

which is fed with the output signal of the second subsystems S2 – ŷ2 (k ). The SMM 2 output signal is 
formed as follows

ŷ2
* (k )=c2 ŷ2 (k )+ (1- c2) ŷ1

* (k ) ,

where c2 is the single tuned parameter of the submetamodel SMM 2. Signal ŷ2
* (k ) should be better in 

terms of accuracy than ŷ1
* (k ) and ŷ2 (k ).

Then,  signal  ŷ2
* (k ) is  fed  to  the  submetamodel  SMM 3,  whose  other  input  receives  ŷ3 (k ). 

SMM 3 produces the following result

ŷ3
* (k )=c3 ŷ3 (k )+ (1- c3) ŷ2

* (k ) ,

here ŷ3
* (k ) should be better in terms of accuracy than ŷ2

* (k ) and ŷ3 (k ).
And finally, the last submetamodel SMM p produces the following output signal

ŷ p
* (k )=c p ŷ p (k )+ (1- c p) ŷ p -1

* (k ) ,

which should be better in terms of accuracy than output signals of all previous submetamodels.
In  this  setup,  if  the  signal  of  any previous  submetamodel  SMM r satisfies  all  the  accuracy 

requirements, then the process of building up submetamodels can be stopped and only r  members of 
the ensemble will be activated in the system.

The  advantage  of  this  approach  is  the  simplicity  of  its  implementation,  since  in  each 
submetamodel only one parameter cr is being tuned, which can be calculated in online real-time 
mode,  while  the  ensemble  itself  contains  only  the  required  number  of  members  –  ensemble 



subsystems. Also note that in non-stationary situations the number of activated submetamodels can 
both decrease and increase during the operation depending on the required solution accuracy.

3. Submetamodels online learning

The process of training submetamodels consists in adjusting the parameters c2 ,  c3 ,…,c p in each of 
the system cascades.

Let us write the output signal of the p-th cascade in the form

ŷ p
* (k )=c p ŷ p (k )+ (1- c p) ŷ p -1

* (k )=c p ( ŷ p (k ) - ŷ p -1
* (k ))+ ŷ p -1

* (k ) ,

and introduce the error signal

e p (k )= y (k ) - ŷ p
* (k )= y (k ) - c p ( ŷ p (k ) - ŷ p -1

* (k )) - ŷ p -1
* (k )=e p -1 (k ) - c p ( ŷ p (k ) - ŷ p -1

* (k )) ,

where y (k ) is a reference signal.
The squared error has the form

e p
2 (k )=e p -1

2 (k ) - 2e p -1 (k )c p ( ŷ p (k ) - ŷ p -1
* (k ))+c p2 ( ŷ p (k ) - ŷ p -1

* (k ))2
.

And after summing up over the training set

∑
k

e p
2 (k )=∑

k

e p -1
2 (k ) - 2c p∑

k

e p -1 (k )( ŷ p (k ) - ŷ p -1
* (k ))+c p2∑

k
( ŷ p (k ) - ŷ p -1

* (k ))2
.

Then we solve a differential equation

∂∑
k

e p
2 (k )

∂c p
=- 2∑

k

e p -1 (k )( ŷ p (k ) - ŷ p -1
* (k ))+2c p∑

k
( ŷ p (k ) - ŷ p -1

* (k ))2
=0 ,

and get a rather simple relation

c p (k )=
∑
k

e p -1 (k )( ŷ p (k ) - ŷ p -1
* (k ))

∑
k

( ŷ p (k ) - ŷ p -1
* (k ))2 ,

which in a single-step form can be written as

c p (k )=
e p -1 (k )

ŷ p (k ) - ŷ p -1
* (k )

.

Also note that when processing nonstationary signals disturbed by noise, it is appropriate to 
organize the process of the parameters  c2 ,  c3 ,…,c p tuning over a sliding window. This would 
provide a trade-off between the following and filtering properties of the bagging procedure.

4. Simulation results

To validate the effectiveness and practicality of the proposed adaptive cascade bagging system, we 
applied  it  to  a  challenging  real-world  problem:  short-term  electric  load  forecasting  (STLF).  



Specifically, our test case focuses on 1-step ahead forecasting of the daily electric load for a regional 
power system in Ukraine. This application presents a particularly demanding scenario due to the 
inherent complexities and non-stationarities commonly found in electric load data.

The dataset utilized for this simulation comprises an original time series containing  N =337 
samples of daily electric load data used as a reference signal represented in Figure 2. It exhibits a 
complex pattern characterized by several discernible trends corresponding to different seasons. The 
data also reveals periodic components, predominantly weekly fluctuations reflecting variations in 
energy consumption across the week. Furthermore, the series is punctuated by sudden changes and 
outliers, indicative of unexpected events impacting energy demand. A strong random component is 
also evident, which is a common characteristic of electric load data in large systems. This randomness 
arises from the multitude of external factors influencing energy consumption, many of which possess 
inherently random or chaotic behavior. Weather conditions, for instance, are a prime example of a 
factor significantly impacting energy demand and exhibiting complex fluctuations [16].

Figure 2: The original electric load time series

These trends, periodicities, sudden changes, outliers, and the significant random component bring 
non-stationarity  and  noisiness  to  the  time  series.  Consequently,  its  forecasting  presents  a 
considerable challenge. In such scenarios, it is frequently observed that different forecasting models 
or methods demonstrate superior performance on particular segments of the series, while exhibiting 
inferior performance on others. It’s rare for a single model or method to consistently outperform all 
others  across  the  entire  series.  This  is  precisely  the  situation  where  bagging  methods,  and 
particularly our adaptive cascade bagging system, can prove useful. By combining the forecasts from 
multiple models, the bagging approach aims to extract the best predictions from each individual 
model, ultimately improving the overall forecasting accuracy and robustness.

We employed q=6 distinct and independent ensemble subsystems – computational intelligence 
models  of  various  structures  and  complexity  [17]  –  to  produce  six  corresponding  forecasts 
ŷ1 (k ) ,…, ŷ6 (k ) to be further fed into the corresponding submetamodels. For the purpose of this 
study, we sorted the ensemble subsystems in terms of increasing complexity. Such a diversity is 
aimed at capturing different properties of different parts of the series under consideration. Figure 3  
shows  the  last  30  days  of  the  original  time  series  and  the  ensemble  subsystems’  forecasts 
ŷ1 (k ) ,…, ŷ6 (k ). We can see that long-term trends are more or less well captured by all subsystems, 
but short-term changes pose a problem to all of them so that no single subsystem is significantly 
better than the others for all data points.

The corresponding forecasts demonstrate a decreasing trend of the forecasting errors presented in 
Table 1. We used a set of error measures widely adopted in time series forecasting: 
1. Mean Absolute Error (MAE);
2. Mean Absolute Scaled Error, scaled by a 1-step ahead naive forecast (MASE1);



3. Mean Absolute Scaled Error, scaled by a 7-step ahead (as the original time series has a weekly 
seasonality) naive forecast (MASE7);
4. Mean Absolute Percentage Error (MAPE);
5. Symmetric Mean Absolute Percentage Error (SMAPE);
6. Root Mean Square Error (RMSE);
7.  Normalized Root Mean Square Error (NRMSE),  normalized by the standard deviation of  the 
original time series.

Figure 3: Illustration of the last 30 days of the dataset: original electric load y (k ) (black line) and 6 

independent 1-day ahead forecasts ŷ1 (k ) ,…, ŷ6 (k ) (color lines).

Table 1
Forecasting errors at all the adaptive cascade bagging system inputs and outputs

System input # #1 #2 #3 #4 #5 #6
MAE 0.8598 0.7829 0.5886 0.5802 0.5663 0.5641
MASE1 1.6377 1.4912 1.1211 1.1052 1.0786 1.0744
MASE7 1.2288 1.1189 0.8412 0.8293 0.8093 0.8062
MAPE 7.5066 6.8171 5.1015 5.0311 4.8827 4.8580
SMAPE 7.5078 6.8376 5.0851 5.0169 4.8576 4.8534
RMSE 1.0975 0.9682 0.7756 0.7721 0.7513 0.7279
NRMSE 0.7327 0.6464 0.5179 0.5155 0.5016 0.4860

System output # #1 #2 #3 #4 #5 #6
MAE 0.8598 0.7156 0.5869 0.5131 0.4811 0.4550
MASE1 1.6377 1.3631 1.1178 0.9773 0.9164 0.8667
MASE7 1.2288 1.0227 0.8387 0.7333 0.6876 0.6503
MAPE 7.5066 6.2362 5.1075 4.4706 4.1881 3.9552
SMAPE 7.5078 6.2571 5.1038 4.4553 4.1686 3.9408
RMSE 1.0975 0.9284 0.7483 0.6690 0.6305 0.5951
NRMSE 0.7327 0.6198 0.4996 0.4467 0.4210 0.3973

During the simulation, we applied the proposed adaptive cascade bagging system to generate six 

forecasts ŷ1
* (k ) ,…, ŷ6

* (k ), where ŷ1
* (k ) actually duplicates ŷ1 (k ) and ŷ2

* (k ) ,…, ŷ6
* (k ) are produced 

by the corresponding submetamodels. We treated the forecasting process as an online operation, 
mirroring the real-time nature of electric load management. This means the entire dataset was 
processed sequentially, sample by sample, without the traditional division into training, validation, 
and test sets. This online processing approach reflects a core design principle of the adaptive cascade 
bagging system – its ability to learn and adapt in real-time as new data arrives.



Figure  4  plots  the  original  time  series  against  6  ensemble  outputs  ŷ1
* (k ) ,… , ŷ6

* (k ) . The 

corresponding forecasting errors are presented in the lower part of Table 1. An analysis of the  
forecasts plots and the corresponding forecasting errors (here we refer to MAPE to avoid ambiguity) 
reveals the following:
1. The output error of each submetamodel is lower than that of the preceding one. 
2. The output error of each submetamodel is usually lower than that at both of its inputs.
This  progressive  reduction  in  errors  reflects  the  refinement  process  inherent  to  the  cascading 
architecture, where each submetamodel builds upon the improvements made by the previous ones.
3. The output error of the 4th submetamodel already falls below than the output error of the best-
performing (6th) ensemble subsystem alone. This demonstrates that even a relatively shallow cascade 
system can outperform the best individual subsystem within the ensemble.
4. The output error of the best (6th) submetamodel is significantly (by the factor 1.23) lower than the 
output error of the best (6th) ensemble subsystem.

Figure 4: Original electric load  y (k ) (solid black line) and the adaptive cascade bagging results: 

ŷ1
* (k ) (blue line), ŷ2

* (k ) (brown line), ŷ3
* (k ) (cyan line), ŷ4

* (k ) (red line), ŷ5
* (k ) (green line), ŷ6

* (k ) 
(dotted black line).

These observations demonstrate the effectiveness of the cascading approach and highlight the 
significant efficiency gains it provides.

Perhaps most importantly, these properties have direct implications for the system’s efficiency. 
Consider a scenario where MAPE level of 4.5% is deemed acceptable for the task at hand. Our analysis 
reveals that none of the six individual ensemble subsystems alone can achieve this level of accuracy. 
However employing only the first four (simplest) ensemble subsystems within the proposed adaptive 
cascade bagging system is sufficient to consistently achieve the desired accuracy of 4.5% or better.  
This demonstrates a significant reduction in computational resources and complexity, as only a 
fraction of the overall system (4 simplest out of 6 total ensemble subsystems) is required to meet the 
performance target. 

This means that on each forecasting step we can use only a minimally sufficient number of the 
simplest  ensemble  subsystems  in  the  cascade  system  to  achieve  the  desired  result  and  skip 
calculations of more complex ensemble subsystems, hence conserving the computational resources 
which can be beneficial e.g. in embedded systems running on battery power. If the accuracy drops 
below the desired level, additional ensemble subsystems and the corresponding submetamodels can 
be switched on without retraining the preceding part of the adaptive cascade bagging system.



5. Conclusions

To address  the challenges  of  processing complex and dynamic signals,  we introduced a  novel 
adaptive cascade bagging system. This system leverages the power of ensemble learning to achieve 
optimized results while maintaining the flexibility of online tuning. The system’s design is rooted in 
the cascade approach, where the outputs of multiple computational intelligence systems (e.g., neural 
networks, support vector machines, fuzzy logic systems) are processed sequentially through a series 
of simple submetamodels.  The core advantage lies in its ability to dynamically adjust both the 
weighting of individual ensemble subsystems and the number of ensemble subsystems themselves, 
all while processing data in real-time. This is particularly crucial when dealing with disturbed non-
stationary signals – signals that are both noisy and whose characteristics change over time, making 
traditional, offline approaches less effective. This online tuning capability is essential for handling 
non-stationary signals where the optimal combination of ensemble subsystems may change as the 
signal characteristics evolve. It ensures that the system adapts to changing signal characteristics and 
maintains optimal performance over time, without requiring manual intervention or retraining.

From a computational standpoint, the proposed system is remarkably simple. It is specifically 
designed for online processing scenarios where data arrives at a sufficiently high rate. The cascade 
structure, combined with efficient optimization algorithm, minimizes the computational overhead 
required for processing each data point. This allows the system to operate in real-time, making it  
suitable for applications such as anomaly detection in network traffic, predictive maintenance of 
industrial equipment, or real-time financial trading.

A detailed analysis of the simulation results demonstrates the effectiveness of the proposed 
adaptive cascade bagging system, revealing a progressive reduction in output errors with each 
subsequent submetamodel, consistently outperforming the ensemble subsystems. Notably, the 4th 

submetamodel’s accuracy already surpasses that of the best individual ensemble subsystem, and the 
final (6th) submetamodel achieves a 1.23-fold reduction in MAPE compared to the best individual 
ensemble subsystem. This cascade architecture allows for significant efficiency gains; specifically, 
achieving  an  acceptable  MAPE  level  of  4.5%  requires  only  the  first  four  simplest  ensemble 
subsystems, a substantial reduction in computational resources and complexity compared to utilizing 
the entire six-subsystems ensemble.

Our further  research will  focus  on generalizing the proposed architecture  and the learning 
algorithm to a multivariate case.
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