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Abstract
This paper considers the problem of optimally placing circles in a rectangular region within an intelligent
cutting and packaging system. A mathematical model and analysis of this problem are presented. A Python
implementation of the gradient projection method for finding a local minimum in this problem is proposed, taking
into account the specific features of the problem. The proposed implementation is compared with methods from
the scipy.optimize Python library for constrained nonlinear optimization. It is shown that the authors’ proposed
implementation is faster.
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1. Introduction

1.1. Motivation

The problem considered in this paper belongs to the class of optimal synthesis of spatial configurations[1],
more specifically to Cutting and Packing (CP) problems. The relevance of CP problems is evidenced
by a significant number of scientific publications related to this field. The review for the classification
of these problems alone contains more than 100 references[2]. These problems belong to the class of
NP-hard problems, which means that the search for effective methods for their solution is and will
remain a relevant task.

One of the classic problems of spatial configurations is the problem of packing circles [3, 4, 5, 6, 7, 8].
It consists in placing a set of circles inside a rectangular area of fixed height (strip) so as to minimize its
length. This type of problem has practical applications, particularly in the following areas: optimizing
the placement of carbon nanotubes to improve the reliability and performance of microchips [9, 10, 11].

This work examines the effectiveness of using one implementation of the gradient projection method
to find a local minimum and compares it with the built-in methods of the Python language.

1.2. State of the art

Like many other spatial optimization problems, circle packing problem is available on the packomania
website[12]. Here it is referred to as the Circle Open Dimension Problem (CODP). The website updates
information and provides current data on which algorithms are best in this field. At present, several of
them can be highlighted.

The article [3] proposes a heuristic algorithm based on a combination of beam search, binary search,
and a multi-start strategy. The method is not purely stochastic, although the multi-start strategy
introduces an element of diversification to avoid local optima.

Beam search is the main part of the algorithm that implements local search. It is a shortened version
of decision tree search. At each level of the tree, only a limited number of the best nodes (beam width)
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are selected for further branching, and the rest are discarded. The potential of each node is evaluated
using a greedy strategy called Minimum Local-Distance Position (MLDP). This strategy consists of
sequentially placing each subsequent circle in a position where the distance to already placed circles or
to the edges of the strip is minimal. This ensures dense packing at the local level.

The article [4] proposes Iterated Tabu Search, a metaheuristic method that optimizes the objective
function in a limited area. However, it can fall into local optimum traps, so the method is combined
with a perturbation operator to search for the global optimum.

The Tabu Search (TS) procedure is a local search that uses prohibition rules and convergence criteria
to prevent search loops. After finding a local optimum, a perturbation operator is used to obtain a new
solution, which in turn is optimized again using TS and accepted if it is better than the previous one.

Research in this area continues. For example, the DCPACK (Discretized-Space Circle Packer Algo-
rithm) algorithm was proposed [5], which was used for both tape packing and circle packing problems.
The main idea of the method is to discretize the continuous space of the container into small cells and
sequentially solve two different formulations of the integer linear programming (ILP) problem—for the
restricted and relaxed versions of the original problem.

Although the circle packing problem is a nonlinear programming problem with quadratic constraints,
the proposed approach transforms it into a sequence of integer linear programming problems, which
allows the use of efficient ILP methods to obtain guaranteed lower and upper bounds on the optimal
value.

Article [6] proposes the jupm algorithm, the main idea of which is to temporarily consider the
radii of circles as variables, which allows finding the best configurations. The method begins with the
generation of the initial location of the circles, then uses a local optimization method with the help of
the IPOPT (Interior Point OPTimizer) software package. After that, a “jump” is used, in which a pair
of circles switch places, it allows the algorithm to break out of this local optimum and transition to
another, potentially better configuration.

Since this algorithm is based on a mathematical model with complex nonlinear dependencies, it can
be classified as a nonlinear programming method. However, due to the use of “jumps” to find better
solutions, bypassing exhaustive search, it can also be classified as a heuristic method.

In [7], a certain generalization of the jupm algorithm is applied. In this approach, after each cycle
of local optimization, which is also done using the IPOPT package, not two, but several circles are
permuted. To do this, a problem is considered where the radii of the selected circles are variable and
additional special constraints are introduced to ensure that during the optimization process, the circles
from the selected set “swap places,” while the set of radii remains the same. The resulting new local
optimum will potentially be better.

Another approach is used in [8]. This work uses a combination of a genetic algorithm and a local
minimum search algorithm. The vector of circle coordinates acts as a chromosome. After crossing, the
circles exchange the coordinates of their centers, and we obtain a new arrangement of circles, which
may be unacceptable, and from this new point, the local minimum search method starts.

The last three works use the local optimization algorithm as a sub-task many times in global search.
Thus, the search for an effective algorithm for local optimization is relevant.

1.3. Objective and tasks

The goal of this study is to implement a local optimization algorithm in Python based on the gradient
projection method and taking into account the specifics of the task at hand. After that, compare the
resulting implementation with the built-in optimization algorithms of the scipy.optimize library.

This article is structured as follows: Section 2 contains the problem statement, mathematical model,
and its properties. Section 3 presents the algorithmic features of the implemented method. Section
4 provides the results of numerical experiments and their comparison with built-in Python local
optimization methods. Section 5 contains conclusions.



2. Mathematical model of the problem and its properties

The circle packing problem considers an index set of 𝑛 circles 𝐶𝑖 with known radii 𝑟𝑖, 𝑖 ∈ 𝑁 =
{1, . . . , 𝑛} and a strip 𝑆 of fixed width 𝑊 and (a priori) unbounded length 𝐿. The goal is to place the 𝑛
circles inside the smallest rectangle of size 𝑊 × 𝐿 so that no two circles overlap and no circle extends
beyond the rectangle’s boundary.

The mathematical model of the problem of packing circles into a strip as a mathematical programming
problem looks like this [6]:

min
𝐿,𝑥𝑖,𝑦𝑖

𝐿 (1)

with restrictions

𝑔𝑖𝑗(𝑥) = (𝑟𝑖 + 𝑟𝑗)
2 − (𝑥𝑖 − 𝑥𝑗)

2 − (𝑦𝑖 − 𝑦𝑗)
2 ≤ 0, ∀𝑖, 𝑗 : 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, (2)

𝑔bot
𝑖 (𝑥) = 𝑟𝑖 − 𝑦𝑖 ≤ 0, 𝑔

top
𝑖 (𝑥) = 𝑦𝑖 + 𝑟𝑖 −𝑊 ≤ 0, ∀𝑖 ∈ 𝑁, (3)

𝑔left
𝑖 (𝑥) = 𝑟𝑖 − 𝑥𝑖 ≤ 0, 𝑔

right
𝑖 (𝑥) = 𝑥𝑖 + 𝑟𝑖 − 𝐿 ≤ 0, ∀𝑖 ∈ 𝑁, (4)

where (𝑥𝑖, 𝑦𝑖) are the centers of circle 𝐶𝑖, (2) is the constraint for non-intersection of circles, (3) and
(4) are the limits along the Y and X axes, respectively.

Properties of the mathematical model.

1. The number of variables in the problem is 2𝑛+ 1, that is, we have an optimization problem in
the space R2𝑛+1.

2. The objective function is linear.

3. The number of constraints is 𝑚 = 4𝑛+
𝑛(𝑛− 1)

2
.

4. 4𝑛 constraints are linear, and the rest are inversely convex.
5. The optimal solution is located at an extreme point of the feasible region.
6. At the extreme point of the feasible region, 2𝑛+ 1 inequalities are active.
7. The upper estimate of the number of local minima is 𝐶2𝑛+1

𝑚 .

Thus, we have a nonlinear nonconvex conditional optimization problem.

3. Features of implementing the gradient projection method for the
circle placement problem

To solve the problem, the gradient projection method (Rosen’s method) is used[13]. The pseudocode of
the algorithm is given in Algorithm 1. It starts working from any acceptable point. At each step, the
direction of movement is constructed as a projection of the gradient onto a hyperplane formed on the
basis of the gradients of the constraints active at the current point. These gradients form matrix A,
and the constraint numbers form working list L[14]. If the direction constructed in this way is zero,
the constraints included in the working list and forming matrix A are checked. If some of them are
no longer active, they are excluded from the working list and matrix A, and the process continues.
If all constraints in the working list are active, then the Kuhn-Tucker conditions are checked at the
current point. If there are constraints that correspond to negative Kuhn-Tucker multipliers, then all of
them or the constraint with the smallest multiplier are excluded from the working list, and the process
continues. If there are no such constraints, then we have found a local optimum.

The problem under consideration has two important features. First, all constraints of the problem at
any point are concave. This means that despite the nonlinearity of some of the constraints, the specified
method of constructing the direction of movement will not immediately take us out of the feasible



region. And some constraints will cease to be active during movement. That is why such constraints
must be periodically removed from the working list. Second, since the objective function is linear, any
step in the direction of descent will decrease the objective function. This means that at each step we
will stop only when we “hit” some constraint, which means that at each step a new constraint will
become active and be added to the working list.

The pseudocode for the maximum step that does not violate linear constraints is given in Algorithm
2, and the pseudocode for the maximum step that does not violate nonlinear constraints is given in
Algorithm 3.

Algorithm 1 Gradient projection method for strip packing
Require: radii, 𝑥(0), tol, max_iter
Ensure: 𝑥

1: 𝑥← 𝑥(0), 𝐿← ∅ ◁ L is working set
2: Form matrix A from the constraints of the working list L
3: for all 𝑖 ∈ 𝐿 such that 𝑔𝑖(𝑥) > −tol do
4: 𝐿← 𝐿 ∪ {𝑖}
5: end for
6: for 𝑘 = 0 to max_iter do
7: 𝐴← [∇𝑔𝑖(𝑥) | 𝑖 ∈ 𝐿]
8: 𝑃 ← 𝐼 −𝐴⊤(𝐴𝐴⊤)−1𝐴
9: 𝑦 ← −𝑃∇𝑓(𝑥)

10: if ‖𝑦‖ < tol then
11: Remove 𝑖 ∈ 𝐿 where 𝑔𝑖(𝑥) < −tol
12: if some 𝑖 was removed then
13: continue
14: end if
15: Solve 𝐴⊤𝜆 = −∇𝑓(𝑥)
16: if min(𝜆) ≥ 0 then
17: return 𝑥
18: else
19: 𝐿← 𝐿 ∖ {argmin(𝜆)}
20: continue
21: end if
22: end if
23: 𝑑← 𝑦/‖𝑦‖
24: 𝛼𝑙𝑖𝑛 ← findLinearAlpha(𝑑, 𝑎𝑙𝑙_𝑐𝑜𝑛𝑠, 𝑡𝑜𝑙)
25: 𝛼𝑛𝑙 ← findNonLinearAlpha(𝑑, 𝑥, 𝑟𝑎𝑑𝑖𝑖, 𝑎𝑙𝑙_𝑐𝑜𝑛𝑠, 𝑡𝑜𝑙)
26: 𝛼max ← min(𝛼𝑙, 𝛼𝑛)
27: 𝐿← 𝐿 ∪ 𝑖, 𝑖 ∈ 𝛼max

28: 𝑥← 𝑥+ 𝛼max𝑑
29: end for
30: return 𝑥

Figure 1 shows an example of the algorithm working on thirty circles. The circles on the top are in
their initial position, and the circles on the bottom are the result of optimization.

4. Results of numerical experiments

The proposed algorithm was implemented in Python using matrix operations from the NumPy
library[15]. This implementation was compared with local optimization methods from the Optimize
section of the SciPy package[16]. This package has several algorithms for finding the local minimum of



Algorithm 2 Computation of 𝛼lin
Require: 𝑑, 𝑎𝑙𝑙_𝑐𝑜𝑛𝑠, 𝑡𝑜𝑙
Ensure: 𝛼lin

1: for linear 𝑖 ∈ 𝑎𝑙𝑙_𝑐𝑜𝑛𝑠 do
2: 𝑑𝑒𝑟𝑖𝑣 ← 𝑔𝑟𝑎𝑑_𝑟𝑜𝑤 · 𝑑
3: if 𝑑𝑒𝑟𝑖𝑣 > 𝑡𝑜𝑙 then
4: 𝛼← −𝑔𝑖/𝑑𝑒𝑟𝑖𝑣
5: if 0 < 𝛼 < 𝛼lin then
6: 𝛼lin ← 𝛼
7: end if
8: end if
9: end for

10: return 𝛼lin

Algorithm 3 Computation of 𝛼nl
Require: 𝑑, 𝑥, 𝑟𝑎𝑑𝑖𝑖, 𝑎𝑙𝑙_𝑐𝑜𝑛𝑠, 𝑡𝑜𝑙
Ensure: 𝛼nl

1: for nonlinear 𝑖 ∈ 𝑎𝑙𝑙_𝑐𝑜𝑛𝑠 do
2: 𝐴← (𝑑𝑥𝑖 − 𝑑𝑥𝑗)

2 + (𝑑𝑦𝑖 − 𝑑𝑦𝑗)
2

3: if 𝐴 < 𝑡𝑜𝑙 then
4: continue
5: end if
6: 𝐵 ← 2

(︀
(𝑑𝑥𝑖 − 𝑑𝑥𝑗)(𝑥𝑖 − 𝑥𝑗) + (𝑑𝑦𝑖 − 𝑑𝑦𝑗)(𝑦𝑖 − 𝑦𝑗)

)︀
7: 𝐶 ← (𝑥𝑖 − 𝑥𝑗)

2 + (𝑦𝑖 − 𝑦𝑗)
2 − (𝑟𝑎𝑑𝑖𝑖[𝑖] + 𝑟𝑎𝑑𝑖𝑖[𝑗])2

8: 𝑑𝑖𝑠𝑐← 𝐵2 − 4𝐴𝐶
9: if 𝑑𝑖𝑠𝑐 < 𝑡𝑜𝑙 then

10: continue
11: end if
12: 𝛼nl ← min{𝛼 | 𝛼 ∈ {−𝐵−

√
𝑑𝑖𝑠𝑐

2𝐴 , −𝐵+
√
𝑑𝑖𝑠𝑐

2𝐴 }, 𝛼 > 𝑡𝑜𝑙 }
13: end for
14: return 𝛼nl

conditional nonlinear optimization: SLSQP, COBYLA, trust-constr. The result of the algorithms depends
on the initial position of the circles, i.e., if you use the algorithm with the same set of circles but with
different positions, the length of the ribbon may vary. Therefore, to compare the methods, the same set
of circles with the same initial position was used. Table 1 compares the algorithms in terms of execution
time (Time) in seconds and the obtained minimization results (Value) – the length of the ribbon. The
first column shows different data sets, with the number of circles in brackets, that were proposed in[6]
and are widely used in publications to compare optimization results[7].

It was discovered that when the number of circles grows large, the SLSQP method often produces
unstable or unrealistic results because it is a local solver that becomes highly sensitive to initialization,
scaling, and constraint handling. For small problems it behaves reasonably, but at larger scales the
numerical gradients and quadratic models degrade. The solver may converge to infeasible or extreme
points unless carefully bounded and restarted from multiple initial positions.

Trust-constr and COBYLA runs slower than SLSQP but sometimes has better resul. However, for 100
circles the run exceeded the 15-minute time limit.



Figure 1: Circle positions before and after the algorithm runs.

Table 1
Algorithm comparison

Name
Strip
Size SLSQP trust-constr COBYLA

Gradient
projection

Value Time Value Time Value Time Value Time

SY1(30) 9.5 21.4258 1.6478 19.5692 33.1259 19.6811 140.0507 19.7650 1.7729
SY2(20) 8.5 16.9872 0.3370 17.0380 0.9754 15.9530 24.3653 17.1761 0.3252
SY3(25) 9 18.4978 0.7869 16.2645 18.0203 16.3038 83.8553 16.6905 0.8318
SY4(35) 11 26.6269 2.9732 26.3147 20.2244 25.8357 419.5545 26.6390 3.5827
SY5(100) 15 124.028 75.547 - - - - 39.7569 796.7323
SY12(50) 9.5 36.6170 9.8393 33.4974 183.6629 - - 36.4932 6.4808

5. Conclusion

In this article, we implemented a gradient projection method to find the local minimum in the circle
packing problem. The results were compared with the local optimization methods of the scipy.optimize
package in Python. It has been found that the implemented method works faster than standard methods,
which means that it has potential for use as an auxiliary method in global searches.
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