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Abstract
In the agricultural domain, semantic segmentation models are increasingly used to detect the presence of weeds,
thereby enhancing the efficiency of field weeding operations. However, much of the existing research focuses
primarily on maximizing predictive accuracy, often overlooking the calibration of model outputs—the alignment
between predicted confidence scores and the actual likelihood of correctness. Poor calibration can lead to
suboptimal decision-making, resulting in the inefficient use of resources, including excessive herbicide application
and increased environmental impact. To address this limitation, we investigate the application of two post-hoc
calibration techniques across multiple configurations of two state-of-the-art lightweight segmentation models.
The results demonstrate that model calibration enhances the reliability of predictions and provides a viable and
effective strategy for improving the practical utility of semantic segmentation in precision agriculture. Code is
available at https://github.com/pasqualedem/CalibratedWeedMapping.
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1. Introduction

Drone vision represents a rapidly advancing application of computer vision, with diverse use cases
ranging from crowd analysis to infrastructure monitoring and environmental surveillance [1, 2]. Among
these, precision agriculture stands out as a particularly impactful domain [3]. Unmanned aerial vehicles
(UAVs) are well-suited for agricultural tasks due to their ability to cover extensive fields while capturing
high-resolution imagery efficiently. This enables detailed monitoring of crop health, soil conditions,
and irrigation patterns, all while maintaining relatively low operational costs.
A major challenge in agriculture is the presence of weeds, which compete with crops for nutrients,

resulting in the unnecessary depletion of often limited resources. By leveraging drone imagery, it
becomes possible to identify infested zones in real time and inform agricultural workers, allowing for
immediate intervention. Even better, this process could be automated: upon detection, the drone could
trigger herbicide sprayers directly, reducing manual labor and improving efficiency.

Recent studies have demonstrated the potential of deep learning models for semantic segmentation
and weed detection in aerial or drone-acquired imagery [4, 5, 6]. Nonetheless, reliable automated weed
identification remains a difficult task. Adoption in agriculture is limited, primarily due to the high cost
of manual annotation required to generate the large training datasets on which these models depend.
This is especially demanding in agricultural contexts, where labeling individual plants in field images is
a labor-intensive task. Additionally, the computational demands of these models are incompatible with
the limited processing power and energy constraints of drone platforms. These factors, combined with
the necessity for real-time operation, highlight the need for more efficient and lightweight approaches
to weed mapping.

Although achieving entirely accurate weed mapping predictions may remain elusive, ensuring that
model confidence scores reliably reflect predictive accuracy is feasible. This issue has been explored
in recent studies on classifier calibration [7]. A calibrated classifier outputs probability estimates that
correspond to the actual likelihood of correct classification, based on ground truth data. For example, if

2nd Workshop on Green-Aware Artificial Intelligence, 28th European Conference on Artificial Intelligence (ECAI 2025), October
25–30, 2025, Bologna, Italy
Envelope-Open pasquale.demarinis@uniba.it (P. D. Marinis); gennaro.vessio@uniba.it (G. Vessio); giovanna.castellano@uniba.it
(G. Castellano)
Orcid 0000-0001-8935-9156 (P. D. Marinis); 0000-0002-0883-2691 (G. Vessio); 0000-0002-6489-8628 (G. Castellano)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

published 2026-02-07

https://github.com/pasqualedem/CalibratedWeedMapping
mailto:pasquale.demarinis@uniba.it
mailto:gennaro.vessio@uniba.it
mailto:giovanna.castellano@uniba.it
https://orcid.org/0000-0001-8935-9156
https://orcid.org/0000-0002-0883-2691
https://orcid.org/0000-0002-6489-8628
https://creativecommons.org/licenses/by/4.0/deed.en


a model assigns a confidence score of 0.4 to 100 instances predicted as “dog”, then approximately 40 of
those instances should actually be labeled as “dog” [8].
A well-calibrated model could significantly improve decision-making in weed mapping, whose

primary objectives are to enhance agricultural productivity and reduce herbicide usage. By providing
reliable uncertainty estimates, such a model would enable farmers to make better-informed choices
about when and where to apply weed treatments. For instance, if the model exhibits high confidence
regarding the presence of weeds in a specific area—even when the background class has higher overall
confidence—a farmer might still opt to apply herbicide in that location, relying on the model’s localized
prediction. Conversely, if the objective is to minimize herbicide usage, treatment could be restricted to
areas where the model’s confidence in weed presence surpasses a predefined threshold, thereby reducing
unnecessary chemical application in regions likely to be weed-free. This targeted approach increases
operational efficiency, lowers environmental impact, and promotes more sustainable agricultural
practices, illustrating how calibration in AI models contributes to green-aware AI.

In this paper, we explore the calibration problem in weed mapping, focusing on two lightweight se-
mantic segmentation models: SegFormer [9] and MobileNetV4 [10]. We evaluate the impact of different
calibration techniques on these models, specifically matrix scaling [7] and temperature scaling [7], to
determine their effectiveness in improving model reliability. The WeedMap dataset [11] is used for
training and evaluation.

2. Related Work

Several studies have already been conducted in the field of weed mapping. WeedNet, which utilizes
the SegNet architecture, represents a practical implementation in this field [5]. The WeedMap dataset,
composed of multispectral images collected from sugar beet fields in Germany and Switzerland, serves
as a recognized benchmark for research on weed mapping [11]. In their work, the authors trained a
semantic segmentation model to distinguish weeds within crop fields and explored various channel
combinations to identify those most discriminative for the segmentation task. The multispectral issue
and its adoption have been further investigated in [6], where we propose different methods to reuse
RGB pre-training on multispectral input data. In [12], instead, we tackle the resource constraint problem
using knowledge distillation.
Partially supervised techniques, including semi-supervised and unsupervised learning, have been

investigated for weed detection. Semi-supervised approaches are detailed in works such as [13, 14, 15].
Crop-row detection techniques, notably those utilizing the Hough Transform, have been applied to
differentiate crops from weeds [16, 17, 18, 19, 20, 21, 22]. These studies are a foundational basis for
training accurate and robust models, although not necessarily calibrated ones.

Calibration of deep learning models has been extensively studied in various domains, including image
classification [23], object detection [24], and semantic segmentation [8, 25]. These works have explored
various calibration techniques, including temperature scaling, matrix scaling, and label smoothing, to
enhance the reliability of model predictions. However, the application of these techniques to weed
mapping remains largely unexplored.

3. Materials

The WeedMap dataset [11] was used for this study. The original data includes eight sugar beet fields:
five in Rheinbach, Germany, and three in Eschikon, Switzerland. Each field has multiple images
available—one for each channel, along with the ground truth—resulting in 12 image channels plus
ground truth for the German fields and 8 channels plus ground truth for the Swiss fields. In particular,
this study utilized the RGB subset of the original dataset, which has been previously used in other
works. The goal was not to improve classification accuracy but rather to assess and enhance model
calibration.



Specifically, five images (RGB channel only), numbered from 000 to 004 and corresponding to the
German fields, were selected along with their respective ground truth annotations. These images were
then rotated to align the crop rows horizontally. Given that the selected semantic segmentation models
accept only inputs of size 512 × 512, fixed-size patches were extracted from the original images and
ground truths to conform to this input requirement.

The final dataset comprises 352 image patches paired with their corresponding ground truth masks.
The dataset was divided as follows: patches from images 000, 002, and 004 were used for training (236
patches); patches from image 001 were used for validation (52 patches); and patches from image 003
were reserved for testing (65 patches).

4. Methods

The proposed framework consists of three main components: (1) a lightweight semantic segmentation
model, (2) a calibration technique, and (3) an evaluation phase. The semantic segmentation model is
trained on the WeedMap dataset to segment weeds, crops, and background. The calibration technique is
applied to the model’s predictions to improve reliability using the validation set. Finally, the evaluation
phase assesses the model’s performance using metrics such as F1 score, Expected Calibration Error
(ECE), Static Calibration Error (SCE), and reliability diagrams.

4.1. Model Training

For this study, we selected two lightweight models: SegFormer-B0 [9], which has also been adopted in
prior work on weed mapping [21], and the newer MobileNetV4 [10].

SegFormer’s architecture consists of two main components: (1) a hierarchical Transformer encoder
that captures both coarse, high-resolution features and fine, low-resolution features; and (2) a lightweight
MLP decoder that fuses these multi-scale features to produce the final semantic segmentation mask.
By adjusting the dimensions of the feature maps at various stages of the encoder, different SegFormer
configurations can be obtained. Specifically, the MiT-B0 model [9] is well-suited for scenarios like ours,
where low computational overhead and near real-time inference are critical constraints.

MobileNetV4 is a lightweight model combining depthwise separable convolutions and inverted
residual blocks to achieve high accuracy and low computational cost. It is designed to be efficient in
terms of both memory and processing power, making it suitable for deployment on resource-constrained
devices, such as drones. Since the model does not include a decoder for semantic segmentation, we
employed the pre-trained classification checkpoint released by the authors and integrated it with the
lightweight SegFormer decoder.

The model encoders were initially imported pre-trained on the ImageNet-1k dataset [26]. However,
an additional fine-tuning phase was performed on the WeedMap training set to specialize them for
segmenting images containing the three target classes: background, crop, and weed.
For each model, two configurations were designed: the first one was trained using the standard

cross-entropy loss. The second one employed the focal loss, chosen because it shares similarities
with the cross-entropy loss but places greater emphasis on training examples classified with high
uncertainty [27], thus addressing dataset imbalance. Moreover, it is theoretically expected that applying
calibration techniques to the focal loss model should yield better results than cross-entropy [28]. The
focal loss function is defined as:

ℒ𝐹𝐿(𝑝𝑡) = −𝛼𝑡(1 − 𝑝𝑡)𝛾 log(𝑝𝑡)

where 𝑝𝑡 is the model’s predicted probability for the true class, 𝛼𝑡 is a weighting factor for the class,
and 𝛾 is a focusing parameter that adjusts the rate at which easy examples are down-weighted. The
hyperparameter 𝛾 was not fixed but learned during training after initialization.



4.2. Calibration

We apply two post-hoc techniques (after training) to address the central problem of calibration: matrix
scaling and temperature scaling [7]. These methods were selected for their widespread use and well-
established properties, providing a reliable baseline for the first exploration of calibration in weed
mapping.
Matrix scaling uses the predicted class scores (logits) as input to learning a logistic regressor that

outputs transformed logits:
(𝑊 𝑧 + 𝑏) ∈ ℝ𝑘

where 𝑧 ∈ ℝ𝑘 is the logit vector for a pixel from the last layer, while 𝑊 ∈ ℝ𝑘×𝑘 and 𝑏 ∈ ℝ𝑘 are the
calibration parameters to be learned. Using these transformed logits, calibrated probabilities and
predicted classes are obtained as follows:

𝑞̂ = max
𝑘

softmax(𝑊 𝑧 + 𝑏)(𝑘)

̂𝑦 = argmax
𝑘

(𝑊 𝑧 + 𝑏)(𝑘)

where 𝑞̂ is the probability of the predicted class and ̂𝑦 is the predicted class. In this way, the logits are
transformed into calibrated probabilities that can be interpreted as confidence scores.

Temperature scaling rescales the logits using a temperature parameter 𝑇 so that the softmax applied
to the scaled logits yields calibrated probabilities:

softmax ( 𝑧
𝑇
)

Values of 𝑇 < 1 sharpen the probability distribution (increasing confidence), while 𝑇 > 1 smooths the
distribution, increasing entropy. Calibrated probabilities and predicted classes are computed as:

𝑞̂ = max
𝑘

softmax ( 𝑧
𝑇
)
(𝑘)

̂𝑦 = argmax
𝑘

( 𝑧
𝑇
)
(𝑘)

where 𝑞̂ is the probability of the predicted class and ̂𝑦 is the predicted class.
The models are then fine-tuned on the validation set using the cross-entropy loss for both techniques.

However, since both methods are post-hoc, only the calibration parameters were updated: 𝑊 and 𝑏 for
matrix scaling and 𝑇 for temperature scaling.

4.3. Evaluation

For the evaluation on the test set, three metrics were calculated: (1) the F1 score to assess whether the
calibration techniques affected the model’s accuracy, (2) the Expected Calibration Error (ECE) to evaluate
the various calibrations, and (3) the Static Calibration Error (SCE) to provide additional confirmation
of the calibration results. In addition, we calculated the reliability diagram for each configuration to
represent miscalibration visually.

Expected Calibration Error [29] is a scalar value that quantifies the model’s miscalibration. It is the
weighted average difference between accuracy and confidence across 𝑀 bins for 𝑁 instances:

ECE =
𝑀
∑
𝑏=1

|𝐵𝑖𝑛𝑏|
𝑁

|acc(𝐵𝑖𝑛𝑏) − conf(𝐵𝑖𝑛𝑏)|

Perfect calibration would require ECE = 0, but achieving a perfectly calibrated model is impossible [30].



Although this metric is widely used, it may not fully capture miscalibration in multi-class classification
tasks. Therefore, to obtain additional confirmation, the Static Calibration Error was also computed,
which is more robust as it accounts for class imbalance by computing the error per class and averaging:

SCE = 1
𝐾

𝐾
∑
𝑘=1

𝑀
∑
𝑏=1

|𝐵𝑖𝑛𝑏𝑘|
𝑁

|acc(𝐵𝑖𝑛𝑏𝑘) − conf(𝐵𝑖𝑛𝑏𝑘)|

where 𝐾 is the number of classes and 𝐵𝑖𝑛𝑏𝑘 is the 𝑏-th bin containing pixels whose ground truth is 𝑘.

5. Experiments

Both SegFormer and MobileNetV4 were trained for 30 epochs using the AdamW optimizer with a
learning rate of 0.00006. For matrix scaling, three fine-tuning durations (15, 50, and 100 epochs) were
tested on the base models to evaluate the trade-off between computation time and performance. AdamW
was reused with a learning rate of 0.006. For temperature scaling, two configurations (15 and 30 epochs)
were evaluated, as this method typically converges faster than matrix scaling. The same optimizer
and learning rate (AdamW, 0.006) were used. We report only the results corresponding to the highest
number of epochs in each configuration since they consistently outperformed the shorter training runs.
When using focal loss, the models were trained with the same settings as the baselines, except for

the loss function. In this case, the focal loss was applied, introducing the hyperparameter 𝛾, which was
not fixed but learned during training from an initial value of 2.0.
All model training sessions were conducted on an RTX 4090 GPU with 24 GB of memory.

5.1. Comparison of Different Techniques

As shown in Table 1, the baseline models trained with the cross-entropy loss achieved a satisfactory
average F1 score. However, their performance deteriorates markedly in terms of accuracy, particularly
for the weed class. This decline is a well-documented challenge in weed mapping tasks, as the weed
class is typically underrepresented in training datasets. In contrast, models trained with the focal loss
consistently outperformed those using cross-entropy across all configurations, with notable improve-
ments in the classification accuracy of the weed class. This suggests that the focal loss is more effective
in addressing class imbalance by emphasizing harder-to-classify examples. Additionally, the reliability
diagrams in Figs. 1a, 1d, 2a, and 2d indicate that both cross-entropy and focal loss-based models exhibit
slight miscalibration, with cross-entropy models being more affected. Specifically, both sets of models
tend to be under-confident—often assigning low probability scores even when the prediction is correct.
The F1 scores reported in Table 1 for models using matrix scaling did not reach the levels achieved

by the corresponding base models. This discrepancy could represent a limitation in the context of

Table 1
F1 scores (%) for each architecture, method, and loss function. CE stands for cross-entropy, and FL for focal loss.
Temperature scaling is not shown, as it does not affect predictions; therefore, F1 scores remain identical to those
of the base model.

Architecture Method Loss Avg. F1 Background Crop Weed

SegFormer Base model CE 80.86 98.60 79.46 64.51
FL 81.91 98.63 80.29 66.81

Matrix scaling CE 75.83 98.51 73.21 55.78
FL 71.93 98.40 70.89 46.50

MobileNetV4 Base model CE 82.65 98.67 81.90 67.38
FL 82.94 98.69 82.41 67.72

Matrix scaling CE 81.71 98.80 82.88 63.45
FL 79.68 98.67 75.28 65.09



Table 2
Expected Calibration Error (ECE) and Static Calibration Error (SCE) for each architecture, method, and loss
function.

Architecture Method Loss ECE SCE

SegFormer Base model CE 0.04898 0.16631
FL 0.11312 0.21129

Matrix scaling CE 0.01248 0.16338
FL 0.01652 0.16582

Temperature scaling CE 0.00300 0.09574
FL 0.00602 0.10021

MobileNetV4 Base model CE 0.05722 0.15726
FL 0.12284 0.21919

Matrix scaling CE 0.03002 0.15921
FL 0.03383 0.18044

Temperature scaling CE 0.00802 0.10226
FL 0.01343 0.11287

Table 3
Optimal temperature values 𝑇 learned during temperature scaling for each architecture and loss function.

Configuration SegFormer-CE SegFormer-FL MobileNetV4-CE MobileNetV4-FL

Temperature 𝑇 0.458 0.462 0.652 0.493

precision agriculture, where the primary goal is the accurate detection of weeds. The focal loss is a
promising approach to counteract this limitation. Notably, the MobileNetV4 model trained with the
focal loss achieves a classification accuracy for the challenging weed class that closely approaches that
of the corresponding base model despite exhibiting a slightly lower overall F1 score. This outcome is in
line with the intended behavior of focal loss.
Regarding the primary objective of this study—model calibration—all models with matrix scaling

yielded good results. As shown in Table 2, all SCE scores have either dropped or remained unchanged.
For temperature scaling, it is observed that a brief fine-tuning of the temperature parameter is sufficient
to match the performance of the baseline models. The reliability diagrams in Figs. 1c, 1f, 2c and 2f
indicate excellent calibration, although the calibrated models exhibit a slight degree of overconfidence.
Calibration leaves performance unchanged, since temperature scaling only modifies the confidence
of predictions without altering the predicted class. In this case, as shown in Table 3, the optimized
temperature is less than 1 (i.e., a “cold” temperature), which sharpens the predicted class probability
distributions by reducing entropy. Given that the baseline models tend to be under-confident, this
sharpening increases the predicted confidence without altering the predicted class labels.

Calibrationwith temperature scaling overcomes all the configurations. Considering only the reliability
diagrams of the models fine-tuned with temperature scaling in Figs. 1 and 2, the apparent small
gap—going from one loss to the other—visually suggests a substantial improvement. However, both
ECE and SCE scores indicate the opposite (cross-entropy has the best SCE score for both SegFormer and
MobileNetV4). The explanation for the discrepancy is as follows: bins exhibiting a large gap contain
only a small number of pixels classified with those confidence levels; in fact, temperature scaling has
pushed many confidences upward. Therefore, during the ECE calculation, the gap’s importance is
diminished because it is weighted by the factor 𝑁𝑏

𝑁 where 𝑁𝑏 is the number of pixels classified with
confidence values and 𝑁 is the total number of pixels. Hence, the ECE score of the gap makes a small
contribution to the total ECE score.



(a) Base model (CE) (b) Matrix scaling (CE) (c) Temperature scaling (CE)

(d) Base model (FL) (e) Matrix scaling (FL) (f) Temperature scaling (FL)

Figure 1: Reliability diagrams for each method with SegFormer.

(a) Base model (CE) (b) Matrix scaling (CE) (c) Temperature scaling (CE)

(d) Base model (FL) (e) Matrix scaling (FL) (f) Temperature scaling (FL)

Figure 2: Reliability diagrams for each method with MobileNetV4.

5.2. Qualitative Evaluation

Figure 3 presents a qualitative comparison of the weed-class probability maps produced by the uncali-
brated SegFormer model (base model) and the same model after calibration using temperature scaling.
Specifically, areas with false negatives for the weed class are marked by white circles. This example
illustrates a practical application of the calibration techniques discussed in this work.
The uncalibrated model demonstrates underconfidence and low recall for the weed class—an issue

often observed in weed mapping due to class imbalance and visual ambiguity. While the segmentation
outputs of both models appear identical, their corresponding probability maps reveal substantial
differences. Calibration at a lower temperature increases the divergence of the probability distribution
from uniformity, yielding higher model confidence. Specifically, in regions where weed instances are
missed (false negatives), the calibrated model assigns a higher probability to the background class. At



Image Ground Truth Prediction Uncalibrated 
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Weed Probabilities

Figure 3: Examples of calibration results visualized on the probabilities of the weed class obtained with the
uncalibrated SegFormer model (base model) and the calibrated model with temperature scaling. Circle-marked
areas indicate where the model is unable to recognize weeds, but the calibrated model can assign a higher
probability of weed presence.

the same time, it increases the separation between the probabilities assigned to crop and weed classes,
thereby enhancing the interpretability and reliability of the probability map.
In practical deployments, this distinction is critical. Even in areas where the model fails to predict

the presence of weeds explicitly (circled areas in Fig. 3), a threshold-based decision system operating
on calibrated probabilities can still detect weed presence. This capability is essential in precision
agriculture, where accurate confidence estimates enable more efficient resource allocation and help
minimize herbicide usage.

6. Conclusion

The objective of this research was to experiment with two calibration techniques to enhance model
reliability, enabling farmers to make informed decisions and prioritize issues based on the confidence
reported by the model.
Focal loss improves classification accuracy, particularly for classes that are underrepresented or

inherently ambiguous. However, it consistently produces lower probabilistic calibration compared to
cross-entropy, reflecting the tendency of focal loss to overemphasize hard-to-classify samples. Applying
temperature scaling effectively mitigates this miscalibration, improving the reliability of models trained
with focal loss. Despite this improvement, models trained with cross-entropy combined with tempera-
ture scaling achieve the best overall calibration, even if their classification accuracy is slightly lower.
Taken together, these results suggest that while focal loss can provide modest gains in accuracy for
challenging classes, cross-entropy with post-hoc calibration offers the most reliable balance between
predictive performance and confidence estimation. From the perspective of automating (even partially)
agricultural operations, improving model calibration—particularly for weed detection—would enable
agricultural workers to rely entirely on the system for weed removal, prioritizing areas to treat based



on available resources and dedicating their attention only to minor refinements. By enabling targeted
herbicide application and optimizing UAV resource use, calibrated models improve operational efficiency
while contributing to environmentally sustainable, green-aware AI practices.

Further investigations to continue this research include: (1) refining the fine-tuning of the matrix
scaling technique to identify a configuration that calibrates the model without degrading (or ideally
improving) the F1 score, (2) exploring additional calibration methods, such as label smoothing, and (3)
evaluating the approach on larger or alternative datasets with comprehensive ground truth annotations,
which would enable a more thorough assessment of model calibration in diverse agricultural contexts.
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