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Abstract

Sustainable manufacturing is recognized as one of the core values of Industry 5.0. The adoption of sustainable
practices has become a pivotal factor in enhancing resource efficiency and reducing waste, thereby ensuring the
competitiveness of industries. Among the critical factors influencing sustainability in machining processes is tool
wear progression, which affects surface quality, dimensional accuracy, energy efficiency, and material utilization.
The machining parameters have been shown to have a significant impact on the progression of tool wear. The
setting of these parameters is usually performed manually by operators, who exploit their experience.

This study aims to develop an optimization model for setting cutting parameters based on deep reinforcement
learning (DRL). The objective is to enhance resource usage and production efficiency, reduce waste, extend
tool life, and, consequently, improve the sustainability of the entire machining process. The integration of DRL
techniques facilitates the development of autonomous systems capable of formulating an adaptive strategy for
the selection of cutting parameters, thereby enabling the realization of specific objectives. To this end, a custom
simulation environment was developed to capture the dynamics of a milling process, incorporating two competing
objectives: production efficiency and tool efficiency. The experimental results demonstrate the efficacy of the
proposed methodology in optimizing production efficiency and tool efficiency through the application of DRL
algorithms. These findings underscore the potential of DRL in driving intelligent and sustainable machining
processes, thereby aligning with the overarching objectives of Industry 5.0 by reducing human dependency,
improving system adaptability, and enhancing sustainability goals.
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1. Introduction

In the era of Industry 5.0, integrating sustainable practices into production processes has become
increasingly important for industries to remain competitive in the marketplace and meet existing
environmental and social regulations. Manufacturing processes are the main drivers of global warming
[1]. Tool wear progression has been demonstrated to have a significant impact on the sustainability
of production processes. The rapid deterioration of cutting tools can lead to poor surface quality and
short tool life. It results in increased material waste and energy consumption, ultimately compromising
production efficiency and sustainability. The monitoring of tool wear progression has been a subject of
interest for researchers since the introduction of the Industry 4.0 paradigm.

The advent of digital technology in manufacturing has facilitated the monitoring of machinery
conditions, the diagnosis of root causes of failure, and the prediction of the remaining useful life (RUL)
of mechanical systems or components [2]. In this context, the construction of predictive models based on
Artificial Intelligence (AI) techniques is considered a powerful solution for the predictive maintenance
of machining operations [3]. Developing predictive models for tool wear enables the identification of
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the optimal time to replace the cutting tool, thereby preventing tool breakage and surface defects on
the workpiece.

An accurate predictive model for tool wear was developed by Lin et al. [4], combining XG-
Boost feature selection from vibration and cutting force signals with a PSO-BP network. Rao [5]
developed a CNN-LSTM prediction model to obtain a precise prediction of tool wear during the
machining of AISI Dy steel with different combination of cutting parameters. High prediction
performance were demonstrated by adopting a GRU-LSTM prediction model for the RUL of the
cutting tool [6]. A new framework for tool wear prognostics across various machining scenarios
was proposed by Han et al. [7], demonstrating lower prediction error in forecasting future tool wear.
Hao et al. [8] adopted a multimodal large language model architecture to forecast future wear time series.

In the newer vision of Industry 5.0, the traditional emphasis on developing purely predictive models to
address sustainability challenges in machining has become increasingly insufficient. Recent perspectives
have emphasized the necessity for autonomous and adaptive systems that are capable of dynamically
determining optimal machining parameters. The objective of these systems is twofold: firstly, to enhance
operational efficiency; secondly, to improve key sustainability indicators throughout the machining
process. In this view, Reinforcement learning (RL) has emerged as a promising technology adopted to
reach this objective. It is a machine learning technique in which an agent learns optimal actions through
trial and error by interacting with an environment [9], with the main goal of enhancing performance
by maximizing the cumulative reward [10]. It enables intelligent decision-making in uncertain and
dynamic environments. Usually, the environment is modeled by states while the agent can take certain
actions as a function of the current state. Following the selection of an action at each time step, the
agent is given a reward and transitions to a new state, acquiring the capacity to learn a policy strategy.
The primary objective is to exploit the interactions between the agent and its immediate environment
to derive the most advantageous policy that can maximize rewards received over time. Typically, RL is
combined with deep neural networks, defining a deep reinforcement learning (DRL) technique that
facilitates more scalable learning in high dimensional spaces. In the field of machining, the use of DRL
offers a promising solution for improving the automation, efficiency, and adaptability of processes in
response to different production conditions [11], thereby facilitating a more cognitive and personalized
manufacturing paradigm [12].

1.1. Related work

In recent years, several studies have adopted DRL techniques to solve a cutting-parameters optimization
problems for machining processes [13— 14]. In traditional production, processing parameters are
typically determined by technicians based on their experience and expertise. However, these parameters
are rarely adapted or optimized in accordance with the actual processing conditions, which may
result in suboptimal outcomes [15]. The adoption of experienced learning such as DRL allows the
development of strategies during the data generation process [16]. In order to ensure quality, efficiency,
and sustainability in a machining process, it is necessary to make dynamic process adjustments [13].
These studies formulate the cutting parameter optimization problem by defining a set of objectives. The
most common objectives considered are the maximization of material removal rate and the minimization
of machining time to enhance production efficiency, the reduction of energy consumption [17] and
emissions of carbon footprint [18] to improve environmental sustainability, the maintenance of surface
quality [19], the reduction of production costs for economic sustainability [14]. All these objectives are
either considered individually or combined in a multi-objective optimization model, allowing the agent
to learn trade-offs between conflicting requirements.

Despite the significant impact of tool wear progression on all the aspects of production efficiency,
workpiece quality, and the economic and environmental sustainability of manufacturing processes, few
studies consider its influence on parameter optimization. These recent studies have begun to model
tool wear progression within sequential decision-making frameworks by integrating the measured tool
wear into the state that describes the environment.



A significant reduction in energy consumption was demonstrated by an optimization model that
takes tool wear progression into account [20]. Xie et al. [21] defined an optimization model with the
objectives of improving energy consumption, energy efficiency and surface quality, by considering the
progression of tool wear for a turning process. Li et al. [18] reported improvements of 6.72% and 8.60% in
energy consumption and production time respectively, compared with a model that did not consider tool
wear. The findings of these studies pave the way for a new framework of cutting-parameter adaptive
optimization models, by taking into account tool wear.

1.2. Our contribution

Despite the impact of tool wear progression on the sustainability goals for a machining operation and
the consolidated demonstration that take into account tool wear on optimization problems provide
significant improvement in terms of energy efficiency and surface quality, no study has yet considered
the introduction of an objective that seeks to extend the lifespan of cutting tools. This represents a
gap in the literature, as tool wear not only influences surface quality and production efficiency, but
also plays a crucial role in the overall sustainability of machining operations by influencing energy
consumption and material waste. Including a measure of tool efficiency in the objective function of an
optimization model transforms it from a passive state variable into an active driver of decision-making,
enabling the agent to proactively select actions that preserve tool life and promote long-term process
sustainability.

Motivated by this gap in the literature, we propose a novel decision-making model that explicitly
incorporates tool life extension as a core optimization objective. The reward function developed in this
work is designed to balance two competing goals: maximizing production efficiency by considering the
material removal rate, and enhancing tool efficiency by promoting strategies that extend tool lifespan.
In contrast to previous methodologies, which considered tool wear exclusively as a component of the
state, our model integrates it directly into the optimization objective. This approach facilitates proactive
decision-making, enabling active management of the cutting tool in response to tool wear, thereby
ensuring more sustainable and cost-effective machining operations. To support this approach, we
conducted an experimental campaign to collect data followed by the development of a machine learning
model to simulate tool wear progression. Based on this, a custom environment was designed to represent
the milling operation of a 3-axis CNC machine. Finally, an RL agent was trained to dynamically ad-
just three cutting parameters by testing and evaluating the performance of four different DRL algorithms.

The remainder of the paper is organized as follows. Sec. 2, describes the materials and methods
adopted in this study, including the experimental setup, problem statement, and RL-based optimization
framework. Sec. 3 discusses the results obtained from different DRL algorithms. Finally, Sec. 4 provides
the conclusion and outlines possible directions for future research.

2. Materials and Methods

This section describes the experimental setup adopted to collect data, with details on the workpiece and
the cutting tool considered. Then, the formulation of the optimization model aimed at maximizing the
tool and production efficiency is presented. Finally, the RL framework adopted to address the problem
is described.

2.1. Experimental setup

Four experimental campaigns were designated for the collection of tool wear progression data during
the milling of ASTM A516 Gr. 70 steel plates. They are a specific grade of carbon steel plate typically
employed in refineries, chemical and power plants, and other moderate to low temperature applications.
The primary factors contributing to the significant utilization of this material are its mechanical
performance efficiency under stress and its comparatively low cost [22]. The plates adopted during the



experimentation had a dimension of 20x100x400 mm. All the tests were conducted in the 2003 Mazak
Nexus Model 410A CNC Vertical Machining Center. The CoroMill 245 cutter, with five cutting edges,
was used. Fig. 1 shows the plate and the cutting tool mounted in the CNC machine.

Coordinate System
+Z

+
k‘-ﬁ(

Spindle

ASTM A516 Gr. 70
steel plate

Working table

CoroMill 245
milling cutter

Figure 1: CNC machine configuration for experimental campaigns.

Tool wear measurements were taken after each milling operation, employing a Leica DM4000M
metallographic optical microscope. Tool wear progression follows a typical pattern, as shown in Fig
2a. This pattern can be divided into three regions: (i) an initial tool wear zone characterized by rapid
tool wear; (ii) a uniform tool wear zone; and (iii) a severe tool wear zone, which leads to tool failure.
Measuring tool wear during the experiments makes it possible to collect data and identify the exact
moment when the cutting tool enters the third zone and, consequently, when replacement is required.
This also allows recording the tool’s life and evaluating its remaining useful life (RUL) after each milling
operation. The RUL can be described as a percentage value: a value of 100% indicates that the tool has
never been used; the percentage value drops when the tool is used, and, as a consequence, the tool wear
rate increases. The corresponding RUL trend derived from the measured tool wear is shown in Fig. 2b.

Table 1 lists the ranges of the cutting parameter values adopted during the experimental campaign.
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Figure 2: Tool degradation trends: (a) typical tool wear progression (b) corresponding RUL derived from wear
measurements.



Table 1
Range values for the cutting parameters.

Cutting parameter ~ Unit of measure  Range values

Feed rate (f) mm/min 800 — 1600
Spindle speed (n) rpm 700 - 1400
Depth of cut (DOC) mm 3.0 - 4.5

2.2. Problem Statement and Optimization Model Formulation

The present study aims to formulate a bi-objective optimization model based on three cutting parameters
in a milling process—feed rate (f), spindle speed (n), and depth of cut (DOC)—to improve production
efficiency and tool efficiency. The two optimization objectives are the material removal rate (MRR) and
the relative number of cutting passes (R).

MRR is considered to maximize the production efficiency. It can be computed as follows:

MRR = DOC x f x v (1)

where v is the cutting speed that can be derived by the spindle speed and the diameter of the tool D as
T x D X n.

R is the factor that considers the tool efficiency. It is defined as the ratio between the number of
passes executed by the tool up to a given moment and the maximum number of passes the tool can
perform before replacement is required. The maximum number of cutting passes for a single tool was
determined experimentally by recording the point at which tool wear reached the threshold requiring
replacement. Consequently, R is defined as follows:

#pass

— (2)
maz(#pass)

where the maximum number of cutting passes is dynamically updated if a new strategy adopted during
the milling operation exceeds the previous value. A value for R close to zero indicates that the tool
experienced premature wear, which can be indicative of lower efficiency, process stability issues, or
more severe operating conditions.

The two objectives are in the following Eq. (3):

Rct =

OF — max M RR 3)

max Rt

Finally, the following set of constraints are defined:

fmin < f < fmaz (4)
Nmin < 1 < Nmaz (5)
DOCpin < DOC' < DOCras 6)
RUL > RU Ly, (7)

Constraints (4)—(6) ensure that the cutting parameters remain within their minimum and maximum
safety limits, denoted by the subscripts min and max, respectively. Constraint (7) guarantees that the
cutting tool is replaced when it reaches the end of its lifespan. Indeed, to maintain safe operating
conditions, the threshold (RU Ly;,,) is defined to avoid the breakage of the cutting tool and the damage to
the workpiece surface. From a visualization of the RUL distribution in the collected dataset, a threshold
of 15% is assigned as the critical point at which the severe tool wear stage begins for the cutting tool, as
shown in Fig. 3.
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Figure 3: RUL distribution across tool wear stages.

2.3. RL-based optimization framework

The proposed RL-based cutting parameter optimization framework, summarised in Fig. 4, comprises
three main phases, described as follows.

1. Let L be the length of material worked. A state s is defined by five parameters: s =

(f,n,DOC, L, RUL). A predictive model for RUL was developed to estimate the expected
RUL of the next state given a starting state. For example, given the initial state s9 =
(fo,mo, DOCy, Ly, RU Ly), where RU Ly is set to 100%, the model predicts the expected RUL of
the next state s; = (f1,n1, DOC1, Ly, RULj). We trained a Linear Regression model in Python
using the scikit-learn package [23]. The model achieved high prediction performance on the test
set (R? = 0.99, RMSE= 0.008, and MAE= 0.007).

. A custom environment that represents our Milling Environment was defined in Python by using
the open-source library Gymnasium [24]. Continuous action and observation spaces were defined.
The reward function was defined as the sum of the two objective functions in Eq. (3) as follows:

r=w1* MRR+ wy * Ry 8)

with MRR and R.; normalized to [0, 1]. With the main goal of obtaining a policy that balance
the two objectives, same weights for the two terms in Eq. (8) were considered. The two main
methods of step and reset were constructed. The step method receives the action of the agent and
returns the next state and the reward associated. The reset method enables the re-initialization of
the environment at the end of each episode.

. To solve the problem formulated in Sec. 2.2 with the single objective function (8), we applied
four DRL algorithms — Proximal Policy Optimization (PPO) [25], Soft Actor-Critic (SAC) [26],
Twin Delayed Deep Deterministic Policy Gradient (TD3), and Deep Deterministic Policy Gradient
(DDPG) [27] [28]- in Python, by using the package stable-baseline3 [29].

3. Results and Discussion

The four DRL algorithms were trained in the custom Milling Environment, described in Sec. 2.3. The
training was performed on a machine equipped with Windows 11 operating system, 16 GB of system
memory, an NVIDIA GeForce RTX 4060 GPU (8 GB VRAM), and an Intel Core i7 processor.
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Figure 4: RL-based optimization framework.

The four algorithms implemented (PPO, SAC, TD3, and DDPG) were applied using the MLPPolicy
architecture. This type of policy defines multi-layer perceptrons with an architecture of two hidden
layers with 64 neurons, used as the fuction approximator for both actor and critic networks of the DRL
algorithms. The training progress of the four algorithms were monitored using Tensorboard [30]. The
training was conducted over 10000 episodes.

Fig. 5a compares the four trained algorithms, showing the mean reward values across each episode
for the four trained algorithms. The algorithm TD3 demonstrated the most stable learning behavior,
converging to an average final reward of approximately 6 after 2000 episodes. PPO achieved a sim-
ilar final reward but exhibited a less rapid initial learning curve, requiring 4000 episodes to achieve
equivalent performance to TD3. Finally, DDPG outperformed SAC in terms of final reward, although
both algorithms showed lower performance than the other two trained algorithms. Fig 6 provides some
statistics about the rewards obtained during the training phase of each DRL algorithm: the average
reward with its standard deviation, and the maximum and minimum reward values.

With regard to the computational efficiency of the four DRL algorithms, Fig. 5b presents the results in
terms of frames per second, i.e. the number of iterations of the Milling environment that are completed
per second. PPO emerged as the most efficient algorithm for the problem examined. As a result, although
the TD3 algorithm demonstrated rapid convergence in terms of average reward, it demonstrated inferior
performance with respect to computational efficiency in comparison to PPO. This finding suggests that
PPO emerged as the most stable algorithm in terms of both convergence and computational efficiency,
thereby achieving higher overall performance than the other three algorithms employed in these studies.

Finally, a trade-off analysis was performed for the two terms of the multi-objective reward formulation
defined in Eq. (8), using the weight combinations (w1, ws) listed in Table 2.

Fig. 7 shows the results obtained by training the four DRL algorithms with each configuration of
weights. The results highlight a clear trade-off between the two objectives: as the weight of one term
increases, its corresponding performance improves at the expense of the other. This inverse relationship
is particularly evident in the case of DDPG and TD3, which show large fluctuations depending on the
weight configuration. Conversely, PPO and SAC exhibit more stable behavior across varying weight
combinations. Moreover, the combination of balanced weights provides the best overall compromise
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Figure 5: Performance comparison of the DRL algorithms: (a) mean reward per episode; (b) computational
efficiency measured in frames per second.

across all algorithms, as it yields high values for both terms of the reward. This finding indicates that
the algorithms are capable of satisfying both objectives without significantly compromising one in
preference to the other. Additionally, the inclusion in the reward formulation of a term related to the
tool efficiency clearly enhances the performance in that dimension. This indicates that the learning
agent adapts its policy to reduce tool degradation, by defining strategies that are more sustainable in
the long term compared to approaches that optimize only the MRR.

4. Conclusions

The present study was conducted with the objective of extending the tool lifespan for a milling process.
The identification of a strategy that facilitates the adaptation of cutting parameters has the potential to
model the process with respect to the tool wear progression — a key factor affecting the sustainability
of a machining process. This strategy can contribute to the reduction of machine downtime, energy
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Figure 6: Statistics of the performance of the DRL algorithms.

Table 2
Weight combinations used for the trade-off analysis.

w1 w2
0 1
0.1 0.9
0.25 0.75
0.4 0.6
0.5 0.5
0.6 0.4
0.75 0.25
0.9 0.1
1 0

consumption, and resource waste, thereby promoting a more sustainable approach to milling operations.

In this work the goal of extending tool lifespan is addressed alongside the objective of increasing the
material removal rate for each milling operation. The aim of the study is twofold: firstly, to enhance the
sustainability of the milling process, and secondly, to maintain a high level of efficiency. DRL techniques
were applied to derive an adaptive strategy for selecting cutting parameters in a milling process. A
custom-designed Milling Environment was utilised to evaluate the four DRL algorithms (PPO, TD3, SAC,
and DDPG). Among them, PPO demonstrated superior performance, achieving a high mean reward and
excellent computational efficiency during training. Specifically, PPO maintained a stable tool lifespan
above 88% of the maximum across most weight combinations while simultaneously reaching the highest
attainable MRR of approximately 312,000 mm®/min. By contrast, SAC preserved a tool lifespan of
~83% but with a lower MRR (approximately 295,000 mm?*/min), while DDPG achieved a competitive
tool lifespan (~96%) at the expense of reduced MRR (approximately 226,000 mm?®/min). Finally, TD3
generally resulted in significantly lower MRR and tool lifespan values. These results demonstrate that
PPO achieves the most balanced trade-off, ensuring both machining efficiency and tool sustainability.

Future research could focus on enhancing the reliability of the proposed approach by incorporating
real-time sensor data for the online monitoring of tool wear and process conditions. This would enable
the introduction of additional constraints related to process stability, further aligning the strategy with
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industrial needs. Moreover, the integration of multi-agent reinforcement learning could be explored
to simultaneously optimize conflicting objectives, thereby supporting more advanced and balanced
decision-making frameworks for smart manufacturing.

Acknowledgments

This work contributed to the basic research activities of the WP9.6: “Al for Green” supported by the
PNRR project FAIR—Future Al Research (PE00000013), Spoke 9—Green-aware Al under the NRRP MUR
program funded by the NextGenerationEU.

Declaration on Generative Al

During the preparation of this work, the authors used DeepL and Grammarly for: Grammar and spelling
check. After using these tools, the authors reviewed and edited the content as needed and takes full
responsibility for the publication’s content.

References

[1] G.M. Minquiz, M. A. Meraz-Melo, J. Flores Méndez, et al., Sustainable assessment of a milling manu-
facturing process based on economic tool life and energy modeling, Journal of the Brazilian Society
of Mechanical Sciences and Engineering 45 (2023) 365. doi:10.1007/s40430-023-04189-8.

[2] D. Wu, C. Jennings, J. Terpenny, R. X. Gao, S. Kumara, A comparative study on machine learning
algorithms for smart manufacturing: Tool wear prediction using random forests, Journal of
Manufacturing Science and Engineering 139 (2017) 071018. doi:10.1115/1.4036350.

[3] R. Zhao, R. Yan, Z. Chen, K. Mao, P. Wang, R. X. Gao, Deep learning and its applications to
machine health monitoring, Mechanical Systems and Signal Processing 115 (2019) 213-237. URL:
https://www.sciencedirect.com/science/article/pii/S0888327018303108. doi:https://doi.org/
10.1016/j.ymssp.2018.05.050.

[4] Z.Lin, Y. Fan, J. Tan, et al., Tool wear prediction based on xgboost feature selection combined
with pso-bp network, Scientific Reports 15 (2025) 3096. doi:10.1038/s41598-025-85694-9.

[5] K. V. Rao, Assessment of tool condition and surface quality using hybrid deep neural network:
Cnn-lstm-based segmentation and statistical analysis, Journal of Tribology 147 (2025) 084201.
doi:10.1115/1.4067496.


http://dx.doi.org/10.1007/s40430-023-04189-8
http://dx.doi.org/10.1115/1.4036350
https://www.sciencedirect.com/science/article/pii/S0888327018303108
http://dx.doi.org/https://doi.org/10.1016/j.ymssp.2018.05.050
http://dx.doi.org/https://doi.org/10.1016/j.ymssp.2018.05.050
http://dx.doi.org/10.1038/s41598-025-85694-9
http://dx.doi.org/10.1115/1.4067496

(6]

(7]

(8]

(9]

[10]

C. Liu, Y. Quan, Y. Zhou, et al,, Intelligent rul prediction method of cutting tools based on gru-
Istm, Journal of the Brazilian Society of Mechanical Sciences and Engineering 47 (2025) 278.
d0i:10.1007/s40430-025-05553-6.

S.Han, U. Awasthi, G. M. Bollas, Physics-informed symbolic regression for tool wear and remaining
useful life predictions in manufacturing, Journal of Manufacturing Systems 80 (2025) 734-748.
doi:10.1016/j.jmsy.2025.03.023.

C. Hao, Z. Wang, X. Mao, S. He, B. Li, H. Liu, F. Peng, W. Li, A novel and scalable multimodal large
language model architecture tool-mmgpt for future tool wear prediction in titanium alloy high-
speed milling processes, Computers in Industry 169 (2025) 104302. doi:10.1016/j . compind.
2025.104302.

R. S. Sutton, A. G. Barto, et al., Reinforcement learning: An introduction, volume 1, MIT press
Cambridge, 1998.

B. Kommey, O. J. Isaac, E. Tamakloe, D. Opoku4, A reinforcement learning review: Past acts, present
facts and future prospects, I'T Journal Research and Development 8 (2024) 120-142. URL: https:
//journal.uir.ac.id/index.php/ITJRD/article/view/13474. doi:10.25299/itjrd.2023.13474.

H. Zhang, W. Wang, Y. Wang, Y. Zhang, J. Zhou, B. Huang, S. Zhang, Employing deep reinforcement
learning for machining process planning: An improved framework, Journal of Manufacturing
Systems 78 (2025) 370-393. doi:https://doi.org/10.1016/j.jmsy.2024.12.010.

C.Li, P. Zheng, Y. Yin, B. Wang, L. Wang, Deep reinforcement learning in smart manufacturing: A
review and prospects, CIRP Journal of Manufacturing Science and Technology 40 (2023) 75-101.
doi:https://doi.org/10.1016/j.cirpj.2022.11.003.

P. Wang, Y. Cui, H. Tao, X. Xu, S. Yang, Machining parameter optimization for a batch milling
system using multi-task deep reinforcement learning, Journal of Manufacturing Systems 78 (2025)
124-152.d0i:10.1016/j . jmsy.2024.11.013.

W. Lj, B. Li, S. He, X. Mao, C. Qiu, Y. Qiu, X. Tan, A novel milling parameter optimization
method based on improved deep reinforcement learning considering machining cost, Journal of
Manufacturing Processes 84 (2022) 1362-1375. d0i:10.1016/j . jmapro.2022.11.015.

W. Lj, C. Hao, S. He, C. Qiu, H. Liu, Y. Xu, B. Li, X. Tan, F. Peng, Multi-agent reinforcement
learning method for cutting parameters optimization based on simulation and experiment dual
drive environment, Mechanical Systems and Signal Processing 216 (2024) 111473. doi:https:
//doi.org/10.1016/j.ymssp.2024.111473.

S. Dharmadhikari, N. Menon, A. Basak, A reinforcement learning approach for process parameter
optimization in additive manufacturing, Additive Manufacturing 71 (2023) 103556. doi:https:
//doi.org/10.1016/j.addma.2023.103556.

F. Lu, G. Zhou, C. Zhang, Y. Liu, F. Chang, Z. Xiao, Energy-efficient multi-pass cutting parameters
optimisation for aviation parts in flank milling with deep reinforcement learning, Robotics and
Computer-Integrated Manufacturing 81 (2023) 102488. doi:10.1016/j.rcim.2022.102488.

C. Li, X. Zhao, H. Cao, L. Li, X. Chen, A data and knowledge-driven cutting parameter adap-
tive optimization method considering dynamic tool wear, Robotics and Computer-Integrated
Manufacturing 81 (2023) 102491. doi:10.1016/j.rcim.2022.102491.

[19] J. Lu, Z. Chen, X. Liao, C. Chen, H. Ouyang, S. Li, Multi-objective optimization for improving

[20]

[21]

[22]

machining benefit based on woa-bbpn and a deep double q-network, Applied Soft Computing 142
(2023) 110330. d0i:10.1016/j .asoc.2023.110330.

X. Zhang, T. Yu, Y. Dai, S. Qu, J. Zhao, Energy consumption considering tool wear and optimization
of cutting parameters in micro milling process, International Journal of Mechanical Sciences 178
(2020) 105628.

N. Xie, J. Zhou, B. Zheng, Selection of optimum turning parameters based on cooperative op-
timization of minimum energy consumption and high surface quality, in: Proceedings of the
51st CIRP Conference on Manufacturing Systems, volume 72, Procedia CIRP, 2018, pp. 1469-1474.
doi:10.1016/j.procir.2018.03.099.

C. Prieto, C. Barreneche, M. Martinez, L. F. Cabeza, A. I. Fernandez, Thermomechanical testing
under operating conditions of a516gr70 used for csp storage tanks, Solar Energy Materials and


http://dx.doi.org/10.1007/s40430-025-05553-6
http://dx.doi.org/10.1016/j.jmsy.2025.03.023
http://dx.doi.org/10.1016/j.compind.2025.104302
http://dx.doi.org/10.1016/j.compind.2025.104302
https://journal.uir.ac.id/index.php/ITJRD/article/view/13474
https://journal.uir.ac.id/index.php/ITJRD/article/view/13474
http://dx.doi.org/10.25299/itjrd.2023.13474
http://dx.doi.org/https://doi.org/10.1016/j.jmsy.2024.12.010
http://dx.doi.org/https://doi.org/10.1016/j.cirpj.2022.11.003
http://dx.doi.org/10.1016/j.jmsy.2024.11.013
http://dx.doi.org/10.1016/j.jmapro.2022.11.015
http://dx.doi.org/https://doi.org/10.1016/j.ymssp.2024.111473
http://dx.doi.org/https://doi.org/10.1016/j.ymssp.2024.111473
http://dx.doi.org/https://doi.org/10.1016/j.addma.2023.103556
http://dx.doi.org/https://doi.org/10.1016/j.addma.2023.103556
http://dx.doi.org/10.1016/j.rcim.2022.102488
http://dx.doi.org/10.1016/j.rcim.2022.102491
http://dx.doi.org/10.1016/j.asoc.2023.110330
http://dx.doi.org/10.1016/j.procir.2018.03.099

[23]

[24]

Solar Cells 174 (2018) 509-514. doi:10.1016/j.solmat.2017.09.029.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, Fdouard
Duchesnay, Scikit-learn: Machine learning in python, Journal of Machine Learning Research 12
(2011) 2825-2830. doi:10.5555/1953048.2078195.

M. Towers, A. Kwiatkowski, J. Terry, J. U. Balis, G. D. Cola, T. Deleu, M. Gouldo, A. Kallinteris,
M. Krimmel, A. KG, R. Perez-Vicente, A. Pierré, S. Schulhoff, J. J. Tai, H. Tan, O. G. Younis,
Gymnasium: A standard interface for reinforcement learning environments, 2024. URL: https:
//arxiv.org/abs/2407.17032. arxXiv:2407.17032.

[25] J.Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal policy optimization algorithms,

[26]

[27]

(28]
[29]

[30]

2017. URL: https://arxiv.org/abs/1707.06347. arXiv:1707.06347.

T. Haarnoja, A. Zhou, P. Abbeel, S. Levine, Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor, 2018. URL: https://arxiv.org/abs/1801.01290.
arXiv:1801.01290.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D. Wierstra, Con-
tinuous control with deep reinforcement learning, 2019. URL: https://arxiv.org/abs/1509.02971.
arXiv:1509.02971.

S. Fujimoto, H. van Hoof, D. Meger, Addressing function approximation error in actor-critic
methods, 2018. URL: https://arxiv.org/abs/1802.09477. arXiv:1802.09477.

A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, N. Dormann, Stable-baselines3: Reliable
reinforcement learning implementations, Journal of Machine Learning Research 22 (2021) 1-8.
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. URL: https://www.tensorflow.org/, software available from
tensorflow.org.


http://dx.doi.org/10.1016/j.solmat.2017.09.029
http://dx.doi.org/10.5555/1953048.2078195
https://arxiv.org/abs/2407.17032
https://arxiv.org/abs/2407.17032
http://arxiv.org/abs/2407.17032
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1802.09477
http://arxiv.org/abs/1802.09477
https://www.tensorflow.org/

	1 Introduction
	1.1 Related work
	1.2 Our contribution

	2 Materials and Methods
	2.1 Experimental setup
	2.2 Problem Statement and Optimization Model Formulation
	2.3 RL-based optimization framework

	3 Results and Discussion
	4 Conclusions

