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Abstract

The environmental cost of deep learning is increasingly significant, prompting a shift from performance-driven
“Red AI” to sustainability-focused “Green AI”. In this paper, we propose a data-centric framework for environ-
mentally sustainable Federated Learning (FL), focused on optimising data quality and node selection to minimise
carbon emissions without compromising model performance. Central to our approach is an interactive FL
Configuration Selection System, which, given dataset and infrastructure characteristics, assists researchers in
configuring greener FL training workflows. Our system integrates data quality metrics and carbon footprint
estimates to select environmentally optimal nodes and applies intelligent data reduction through three strategies:
Node Selection, Minimal Smart Reduction, and Smart Reduction. We demonstrate the effectiveness of our tool in
the context of time series classification, offering a practical solution for sustainable FL research.
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1. Introduction

The growing computational demands of Deep Learning (DL) present serious challenges related to
energy consumption, bringing the environmental footprint of Artificial Intelligence (Al) to the forefront.
As Al-powered technologies become increasingly widespread, there is a pressing need to move from
a performance-centric mindset, often referred to as Red Al, toward a more environmentally sustain-
able approach, known as Green Al This shift demands new strategies for optimising Al workflows,
particularly in data management, to reduce energy consumption while maintaining model performance.

Machine Learning (ML) efficiency is strictly correlated to data quality. In large-scale, distributed envi-
ronments, traditional data pre-processing methods must be re-evaluated to account for heterogeneous
data sources, privacy constraints, and resource limitations. Federated Learning (FL) has emerged as a
promising solution, enabling decentralised model training without requiring raw data to be transferred
to a central server. However, FL also introduces new complexities due to variations in data quality,
volume, and computational capabilities across participating nodes.

Our research is based on studying the role of data quality measures on FL processes, aiming to reduce
the energy consumption and carbon emissions of Al training in federated environments. This paper
focuses on presenting an interactive configuration selection system for FL training tasks. It is designed
to provide recommendations and predictions on data and node selection to minimise the environmental
impact of FL training, based on input related to dataset characteristics and FL architecture.

The paper is organised as follows. After introducing the State of the Art in Section 2, we provide an
overview of the methodology applied in our research in Section 3, followed by a detailed explanation
of the Eco Federated Learning Framework’s capabilities in Section 4. Further clarifications regarding
the effectiveness of the proposed solution are presented in Section 5. Section 6 concludes the paper by
summarizing the objectives and outlining potential directions for future research.
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2. State of the Art

Al significantly contributes to IT systems’ environmental impact due to rapidly increasing computational
demands, mainly driven by Deep Learning (DL) and Deep Neural Networks (DNNs)[1, 2, 3, 4, 5].
Schwartz et al.[6] distinguish between Red AI (performance-focused) and Green AI (sustainability-
focused). Studies highlight AI’s carbon footprint concerning infrastructure [7], model tuning [8], and
data preparation [9].

Data-Centric Al prioritises enhancing training datasets over model optimisation, significantly
affecting model performance and dataset balance [10, 11, 12, 13]. Large datasets often lead to excessive
energy use with diminishing returns [14, 15, 16], but reducing dataset size effectively lowers energy
consumption without accuracy loss [17]. Data Quality (DQ) metrics critically influence data selection,
as poor-quality data can bias models [18, 19, 20, 21]. Anselmo et al. [22] proposed optimising data
volume and quality to mitigate DL’s environmental impact.

Federated Learning, a distributed approach to model training that preserves privacy and reduces
data transmission, faces challenges from data heterogeneity affecting model accuracy [23, 24, 25, 26].
Although decentralised FL leverages energy-efficient edge devices, its communication overhead can sig-
nificantly increase emissions [27]. Carbon-aware methods, like FedZero and other adaptive techniques,
effectively lower emissions through strategic location selection and adaptive model sizing [28, 29, 30].

Current research emphasises system-level enhancements or centralised data-centric approaches,
leaving the relationship between dataset characteristics and FL’s environmental impact understudied.
Our research addresses this gap by introducing a federated, data-centric framework that:

» Analyses the impact of dataset volume and quality on FL emissions, optimising training
configurations.

+ Selects data subsets and participant nodes based on environmental and computational effi-
ciency.

« Optimises FL training through an interactive configuration selection system.

This work offers a scalable solution for sustainable FL deployment, covering the intersection of
energy-efficient data systems, federated data management, and cloud-based Al sustainability.

3. Green FL Methodology

Our research explores FL within a fog computing environment, where heterogeneous nodes—differing
in hardware capabilities, energy efficiency, and carbon footprints—are distributed across the cloud
continuum. This setting introduces unique challenges for FL, including increased energy consumption
resulting from both system and statistical heterogeneity, as well as carbon variability due to the
geographical dispersion of nodes powered by diverse energy sources. As discussed in Section 2, low-
quality data and excessive data volumes can negatively impact both performance and sustainability,
leading to inefficient resource utilisation. Prior studies [22][21] have shown that reducing training set
size can decrease energy consumption in centralised settings; however, the inherent non-IID nature of
data and system heterogeneity in FL complicate such reductions. In FL, data volume and quality are
intricately linked to node selection strategies.

To address these challenges, we propose a novel approach for sustainable FL training: an interactive
configuration selection system designed for researchers and practitioners. This system suggests efficient
node and data selection strategies aimed at minimising carbon emissions while preserving a predefined
level of model performance.

To achieve the predefined goal, a FL Configuration Selection System has been designed. This
system focuses on two key actions:

1. Optimising data volume: Recommending appropriate reductions in training data volume to
lower the environmental cost of the training process while ensuring the resulting model meets
predefined accuracy constraints;
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Figure 1: FL Configuration Selection System Architecture.

2. Selecting efficient client nodes: Identifying optimal client nodes based on their energy effi-
ciency, environmental impact, and data quality characteristics.

The methodology (Fig. 1) proposes three sequential phases to reach our goal: (i) Data-Centric FL
Exploration; (ii) Data Analysis and Modelling; and (iii) FL Configuration Selection.

The Data-Centric FL Exploration phase is an investigative stage designed to assess system training
across different datasets and data-focused FL configurations. In this phase, an FL simulation environment
automates the simulation process to gather experimental data. The main aim is to explore the effects of
data volume and quality on the performance and energy efficiency of FL systems during training.

In the Data Analysis and Modelling phase, the obtained results are analysed in terms of performance
and energy impact. This analysis leads to the development of a predictor capable of recommending
optimal dataset size reductions for unseen datasets provided by researchers within an FL setting.
Specifically, a machine learning regressor is built to predict the required data volume reduction for an
unseen FL configuration while maintaining a predefined accuracy level.

The FL Configuration Recommendation phase introduces the mentioned framework that assists
researchers by adapting FL setups to their specific contexts. At its core is the FL Configuration Recom-
mender, which selects optimal data subsets and participant nodes based on infrastructure characteristics
and task requirements. Using input from the researcher—including dataset properties (volume, accu-
racy, consistency, completeness), node specifications (e.g., hardware, energy source, location), initial
performance estimates, and accuracy target—the system applies volume reductions using the regressor
and generates an optimised configuration. It prioritises nodes with low carbon impact and high data
quality, applying reduction strategies to improve efficiency and sustainability for the training process.

The proposed approach applies to various types of machine learning tasks. However, for evaluation
purposes, we selected a specific FL application: Time Series Classification. This task was chosen because
it aligns well with FL scenarios, where large volumes of data are generated by multiple devices across
different locations.

For local training, we employ a Deep Learning model based on ResNet. The performance of the FL
model is assessed using the accuracy metric. Energy consumption is measured in kilowatt-hours (kWh),
while carbon emissions are computed based on energy usage and the carbon intensity of each node’s
location, expressed in kilograms of CO; equivalents (kg COqe).

The framework has been developed using Flower [31], which enables the simulation of an FL setting
on a single machine for research purposes. The application will be extended to real-world scenarios
involving diverse machines as participants in the FL setting.

For a more detailed discussion of the methodology, readers are referred to the extended paper [32].



4. Framework

The Eco Federated Learning Framework is designed to support the methodology introduced in this
paper. In particular, it provides to main functionalities:

o the FL Simulator feature is used in the initial phases of the methodology. It offers an FL simulation
environment, allowing users to explore the effect of data quality on model accuracy by applying
data poisoning. This phase automatically collects useful data to find the trade-off between node
selection (and data volume reduction) with the FL training task environmental impact;

« the FL Configuration Recommender is a service to researchers and practitioners that, given the
details of the training data and node infrastructure, recommends node selection and data reduction
strategies that allow for reducing the environmental impact while reaching the required model
accuracy.

These two features are discussed in more detail in the rest of this section.

The Eco Federated Learning Framework is publicly available (https://github.com/
POLIMIGreenISE/ecoFL.git). The repository includes all the necessary resources to configure
the framework and to test the FL Simulator and FL Configuration Recommender features. Complete
documentation and detailed execution guidelines are provided in the README . md file. By making all
code, data, and experimental procedures openly accessible, we aim to enhance the reproducibility of
our results and foster further research in sustainable Federated Learning.

4.1. FL Simulator

The FL Simulator is a tool that can be leveraged to extract insights on the correlation between data
quality dimensions, performance, and energy consumption of the FL training process. The tool allows
the execution of multiple experiments by configuring a custom FL training task and initiating a training
session. The simulator first requires the user to input the path to the dataset and specify the number of
participants in the federated setup (Figure 2). The provided path should point to the training portion of
the dataset, which will be distributed among the participants, while the test portion will be used by
the central server. The specified number of participants determines how the dataset is partitioned into
homogeneous subsets. Each subset is then further divided into training and testing sets in a 4:1 ratio.
After these inputs are submitted, the simulator displays the class distribution for each client’s dataset
partition as well as that of the central server (Figure 3).

For each participant, the simulator provides the option to apply data poisoning on specific data quality
aspects, namely data volume, accuracy, consistency and completeness, to the training set (Figure 4).
The methodology recommends varying only one data dimension in each sub-experiment within a given
experimental setup, although it is also possible to apply data poisoning across all data dimensions
simultaneously.

Finally, to run a simulation, it is essential to define both the percentage of participants who actively
join the FL training rounds and the mode of their selection. As shown in Figure 5, two modes are
available: basic and fixed. In the basic mode, a specified percentage of participants is randomly selected
for each training round. In contrast, the fixed mode randomly selects the participants only once during
the first round, and the same set of participants is retained for all subsequent rounds. A complete
federated learning simulation is executed after specifying the total number of rounds and the file path
for storing the simulation results. The results report the accuracy value on the test set of the central
server at the last round, emissions, energy consumed and other metadata.

4.2. FL Configuration Recommender

The FL Configuration Recommender is a functionality designed to support researchers in the configuration
of an FL training task, by selecting an optimal subset of data and participants to achieve a target model
accuracy, specified as input, while minimising the environmental impact. The decision-making process
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considers energy mix data, infrastructure specification, and the characteristics of the dataset (i.e., volume
and quality) held by each participant.

The FL Configuration Recommender implements the FL Configuration Recommendation phase of the
methodology by configuring and executing a complete federated training. The system exploits the
FL Reduction System, a regression model that suggests the necessary number of nodes N for training.
This model has been generated by collecting data from a limited, yet representative, set of experiments
following the Data Analysis and Modelling phase. This model and its creation are not described in
detail in the current paper because it is out of scope.

The FL Configuration Recommender requires the user to provide the path to the dataset to be used for
FL training and to specify the participants (Figure 2). In this phase, each participant is characterised
by specific attributes, including data volume, data quality dimensions, energy consumption (derived
from hardware specifications), geographic location, and associated carbon intensity (Figure 6). Carbon
intensity can be inferred from the location using available services (e.g., Electricity Maps'). Data volume
refers to the percentage of the dataset owned by each participant; therefore, the sum of the data volumes
of all participants in the FL configuration must equal the data volume of the training set.

Based on the inputs, the dataset is partitioned between the nodes and the class distribution for both the
training and test sets is visualised (Figure 3). It is worth noticing that while this step is essential for the
simulation, the datasets will already be distributed among participants in a real-world FL architecture.

The user also specifies an accuracy goal to be achieved by the model generated after the FL training
process. Higher accuracy targets may require greater data volume, which in turn necessitates more
participants and larger datasets. The FL Configuration Recommender ranks participants according to

'https://www.electricitymaps.com
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their environmental impact and data quality. The system selects a specific set of participants and the
subset of data in each node according to the nodes’ characteristics, the dataset characteristics, and the
accuracy goal. Querying the FL Reduction System, the system obtains the predicted number of nodes N
required to fulfil the accuracy target. This number is subsequently adapted to fit the FL configuration
specified by the researcher by translating this number into a Required Data Volume Percentage for each
node V;,, and a Target Data Volume Percentage, that represents the percentage of the dataset that must
be retained across all the N nodes to guarantee the performance target. The framework supports and
implements three different node selection approaches (Figure 7) that can be selected by the user. Each
of them applies a different algorithm for selecting the optimal subset of data volume and participants:

« Node Selection (NS): This method selects the first N nodes with the highest score. The selected
nodes must satisfy the required data volume percentage V,, for each node. If a node n has a dataset
larger than the required V,,, its data volume is randomly reduced to match V,,. Conversely, if a
node’s data volume does not meet the requirement, it is excluded in favour of the next candidate
in the ranking.

« Minimal Smart Reduction (MSR): This method follows the same strategy as NS but incorporates
data cleaning by removing low-quality (dirty) data. Only clean data are used for training. As a
consequence, the actual data volume FE, which is the sum of the clean data volumes from the
selected nodes, may be lower than the target volume V, potentially impacting model accuracy.

« Smart Reduction (SR): This method extends MSR by ensuring that the target data volume V is
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met. Since removing low-quality data may reduce the total data volume (£ < V'), SR compensates
by selecting additional nodes until F reaches or exceeds V.

The three approaches implement different trade-offs between model accuracy and environmental
impact (see Section 5).

At the end of the FL training, results are shown reporting the cumulative total epochs across all the
participants, the time spent (in seconds) for the FL training process, the carbon emissions produced and
energy consumed by the overall system during both pre-processing and training phases, and the final
accuracy achieved in predicting a disjoint test set by the trained FL configuration (Figure. 8).



5. Validation

The proposed FL Configuration Recommender assumes the effectiveness of the proposed methodology
in reducing environmental impact by lowering carbon emissions while maintaining the desired perfor-
mance level during FL training. Our research involved conducting experiments to obtain results that
support this claim and ensure the satisfaction of performance and sustainability requirements.

For evaluation purposes, three distinct initial FL configurations were tested using three differ-
ent datasets. Each configuration comprises heterogeneous nodes distributed across various global
regions, resulting in differing carbon intensity levels, hardware capabilities—thus varying energy con-
sumption—and data quality. The three recommender methodologies presented were evaluated and
benchmarked against a baseline. The Baseline approach is defined as training without applying any
optimisation techniques; hence, it corresponds to the original FL configuration utilising all available
resources and data.

The results were analysed by evaluating each configuration individually, comparing final accuracy and
carbon emissions. Validation experiments involved repeating each experiment eight times. Considering
three FL configurations, three proposed methodologies, and the Baseline approach applied to each
configuration, a total of 96 simulations were conducted for the validation.

All three methods (NS, MSR, and SR) outperform the Baseline in terms of accuracy, with SR achieving
the highest accuracy improvement (12%) and meeting the accuracy threshold in 92% of experiments due
to selecting more nodes with clean data. NS, prioritising nodes based on data volume without extensive
filtering, reaches a 10% improvement, while MSR, selecting identical nodes as NS but using cleaner data,
achieves an 8% improvement; both meet the accuracy threshold in 87% of cases.

Regarding carbon emissions, NS is the most energy-efficient, reducing emissions by an average of
56% (up to 90% peak) compared to the Baseline. MSR, requiring longer training with clean data, achieves
a 45% reduction, while SR, selecting more nodes, attains only a 25% reduction. Ultimately, NS offers the
best balance of accuracy and carbon efficiency.

6. Conclusions

This work introduces a data-centric approach to improve the efficiency of FL systems, supported
by a user-friendly framework for simulation and resource optimisation while maintaining desired
performance during FL training. The framework offers three methodologies to reduce the environmental
impact of FL and underscores the importance of federated and cloud-based data management in
optimising distributed machine learning workflows.

Future research can adopt the FL Simulator feature to collect additional simulation results and deepen
the evaluation of the proposed methods through the FL Configuration Recommender usage. As the
framework is still under development, several capabilities are possible: adapting it to real-world fog
computing scenarios involving multiple machines, generalising it to support a broader range of machine
learning tasks, exploring new data selection or reduction strategies, automating data quality assessment,
and incorporating additional data quality dimensions to further improve distributed learning efficiency.
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