
What Is Hiding in the Energy Footprint of AI Planning?
Initiating Energy Accountability
Ilche Georgievski1

1Service Computing Department, IAAS, University of Stuttgart, Germany

Abstract
The growing reliance on AI points out the critical need to research its energy consumption. While Green AI
has primarily focused on profiling and optimising the energy use of machine learning models, AI planning
remains unexplored in this regard despite its high runtime cost and broad applicability. Therefore, this paper
initiates the study of energy accountability in AI planning. We make three contributions. First, we analyse
factors that may influence the energy and carbon footprint of AI planning and propose ten hypotheses to guide a
structured research agenda on energy-aware automated planning. Second, we introduce an energy measurement
framework, PLANERGYM, tailored to the characteristics of AI planning systems, supporting hypothesis-driven
and reproducible evaluations. Third, we apply the framework in a case study on classical planners, showing that
while runtime correlates with energy consumption, it alone is insufficient to capture the full energy footprint due
to variability in power draw. Our observations show the need for energy-aware design, evaluation, and reporting
practices in AI planning.

Keywords
AI Planning, Energy Accountability, Classical Planners, Energy Profiling, Green AI

1. Introduction

Computation does not take time only, but also impacts the environment. As software systems increase
in scale and complexity, so too does their energy and carbon footprint. The Information and Commu-
nication Technologies (ICT) sector was estimated to contribute up to 3.9% of global carbon emissions
in 2021 [1], a share likely on the lower end today. This has led to calls for treating energy and carbon
as first-class resources in software, e.g., [2], forming the areas of green software [3] and sustainable
computing [4].

The environmental footprint of software is driven in large part by the rapid growth of AI. Green
AI has emerged in response, focusing primarily on energy accountability and resource efficiency in
machine learning [5]. Existing contributions are promoting the reporting of energy consumption
alongside accuracy and encouraging methodological innovations that reduce computational cost [6].
In contrast, AI planning or automated planning, a fundamental area of AI concerned with generating
action sequences to achieve given user goals, has thus far remained outside this conversation, despite
being computationally intensive in nature.

Traditional evaluation criteria in AI planning have focused on runtime and plan quality as principal
performance metrics. While runtime, which is the wall-clock time to solve a planning problem, has been
treated as a proxy for computational efficiency, it offers only a partial picture. In contrast, computational
cost encompasses the total resources consumed during execution, such as CPU cycles and memory, and
when combined with power consumption, offers a more complete view of a system’s energy and carbon
footprint. Existing assumptions underlying comparative evaluation in AI planning are not supported
empirically and seem to affect AI planners differently [7]. It should not be unexpected that AI planners
with similar runtimes may draw different amounts of power due to differences in hardware utilisation

2nd Workshop on Green-Aware Artificial Intelligence, 28th European Conference on Artificial Intelligence (ECAI 2025), October
25–30, 2025, Bologna, Italy
*Corresponding author.
$ ilche.georgievski@iaas.uniÃ§stuttgart.de (I. Georgievski)
� 0000-0002-0877-7063 (I. Georgievski)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

published 2026-02-07

mailto:ilche.georgievski@iaas.unißstuttgart.de
https://orcid.org/0000-0002-0877-7063
https://creativecommons.org/licenses/by/4.0/deed.en


and reasoning dynamics, leading to distinct energy profiles. As such, despite this historical emphasis
on efficiency, AI planning still lacks direct methods and metrics for assessing energy usage.

The environmental costs of AI planning extend beyond planner execution for performance evaluations.
Standard practices, such as domain model engineering, iterative validation, debugging, and AI planner
tuning, all involve repeated runs of AI planners. Yet, the environmental impact of these activities
remains unexplored, and the cumulative experimentation that underlies reported performance results
of AI planners is rarely made transparent. As a result, the full energy footprint of AI planning systems
and workflows is currently hidden from view.

We therefore ask: What is hiding in the energy footprint of AI planning? In doing so, we initiate a
call for energy accountability in AI planning, with the objective of uncovering and ultimately optimis-
ing energy usage alongside traditional metrics, thereby making a shift toward the development and
evaluation of energy-aware AI planning. To this end, we make the following contributions:

• We frame energy efficiency as a critical and currently overlooked dimension in AI planning, and
we propose ten hypotheses to guide future empirical investigations.

• We introduce a dedicated energy measurement framework tailored to the operational characteristics
of AI planners, enabling systematic and reproducible energy analysis.

• We demonstrate the application of this framework through an illustrative case study on classical
planners, giving initial insights into their energy behaviour.

The remainder of the paper is organised as follows. Section 2 presents the key background on AI
planning. Section 3 introduces the energy dimension, including the hypotheses. Section 4 describes
the proposed energy measurement framework. Section 5 presents the case study on classical planners,
Section 6 concludes the paper.

2. Background on AI planning

AI planning is concerned with solving planning problems, where a basic planning problem consists
of an initial state of the world from which planning would start, a goal state, which describes a user
objective, and a set of actions that enable moving from one state to another, thus changing the world [8].
The set of actions is called a domain model and is a formal and templated representation of the world.
Such a planning problem represents an input to an AI planner, which is a software tool concerned with
the computation of plans, that is, sequences of actions whose execution in the initial state would lead
to the goal state, thus satisfying the given user objectives.

AI planning development involves three main tasks: domain model engineering, algorithmic engi-
neering, and systems engineering. The community’s main focus is on theory and algorithm engineering,
with a large body of research that focuses on making plan generation efficient (e.g., using domain-
independent heuristics [9] and landmarks [10]) and capable of handling complex planning problems (e.g.,
probabilistic planning [11] and Hierarchical Task Network (HTN) planning [12, 13]). Domain model
engineering focuses on the challenges of formulating domain models (e.g., domain model quality [14],
and modelling languages such as the Planning Domain Definition Language (PDDL) [14]). Another
body of work focuses on the challenges of engineering planning systems, placing attention on system
architecting, interoperability, integration, reliability, and performance, e.g., [15, 16, 17, 18].

A standard practice for demonstrating the performance of AI planners is to run them on benchmarks
composed of domain models and problem instances of varying difficulty. This practice has been strongly
shaped by the International Planning Competitions (IPCs), held occasionally since 1998.1 The IPCs have
driven the development of benchmark sets and provided ranked comparisons of AI planners, thereby
establishing standards for evaluating runtime, plan quality, and coverage.

Over the years, IPCs have diversified their focus by featuring tracks for different planning problems.
Classical planning, which assumes deterministic actions and full observability, remains central, but

1https://www.icaps-conference.org/competitions/



additional tracks have been introduced for temporal, probabilistic, HTN, and reinforcement learning-
based planning. Each track brings its own specification language, such as PDDL, and its own evaluation
criteria and resource constraints.

To facilitate standardised and reproducible evaluations, the IPC introduced container-based execution
environments (using Singularity, which is designed for high-performance computing that supports
resource isolation and performance predictability) in recent editions. Each planner is distributed with a
definition file that sets up all dependencies and builds the system. Resource limits, such as CPU time,
memory, and number of cores, are strictly controlled per track.

The IPC infrastructure, benchmarks, and execution methodology provide a foundation for compar-
ative evaluation. They are thus well-suited for extending evaluation dimensions to include energy
consumption, which is not currently considered but can be studied by leveraging existing resources. In
this work, we use IPC benchmarks and containerised planners as the basis for proposing energy-aware
evaluation and applying our framework in a case study.

3. Energy Dimension in AP Planning

This section builds the case for recognising energy as a first-class dimension in AI planning. It begins
by situating AI planning as an inherently computationally complex method, and then explores both
established and plausible factors impacting resource use. Based on this analysis, we formulate a set of
hypotheses intended to serve as a research roadmap for uncovering and understanding the energy and
carbon footprint of AI planning systems.

3.1. Computational Characteristics

Three fundamental characteristics underlie the computational complexity of AI planning, making
systems employing this technique likely to exhibit a non-negligible energy and carbon footprint.

Problem complexity. Planning problems are well known for their combinatorial complexity. Typical
planning problems involve search spaces that grow exponentially with problem size; even small domains
yield state spaces of 109 nodes, and real-world domains may involve thousands to millions of reachable
states, high branching factors, and deep solution paths. This makes the theoretical complexity a strong
indication of heavy computational demands; even classical planning is PSPACE-complete [19]. Such a
combinatorial explosion directly suggests substantial energy usage.

Algorithmic complexity. Many existing planning approaches employ sophisticated techniques and
algorithms designed to reduce the search space and improve plan quality. However, these techniques
and algorithms are themselves computationally demanding, potentially requiring extensive processor
cycles and memory. In this context, we distinguish three key computational intensities: preprocessing
intensity, problem-solving intensity, and heuristics intensity. Preprocessing intensity refers to the
computational load of AI planning before problem-solving (or plan generation). Many modern AI
planners incorporate preprocessing for various reasons, including domain analysis, problem grounding
(converting lifted problems into a propositional form), problem representation optimisation, and heuris-
tic computation. These operations make preprocessing computation heavy, rivaling problem-solving in
time (and, by extension, energy). Problem-solving intensity refers to the intensity of algorithms used
to traverse the search space and generate plans. Two planners tackling the same planning problem can
differ in memory and CPU cycles. Implementation choices for these algorithms (e.g., data structures)
can also affect these consumptions. Heuristics intensity refers to the computational cost of heuristic
computation and evaluation. One can observe that modern AI planners intentionally spend more
processing power and keep larger data structures in memory to obtain stronger and sophisticated
heuristics. This work inevitably manifests as additional energy per planning call.



Execution complexity. Planning systems are typically invoked repeatedly and dynamically in
real-world contexts. Unlike in the machine learning lifecycle, where training a model is a one-off or
infrequent job and inference is performed on demand, in the AI planning lifecycle, planning is executed
on demand, each time a new goal or world state appears, which can happen many times per hour
and even per minute. For example, invoking an AI planning system whenever a robot needs a new
route or the game AI gets a new objective. This on-demand invocation pattern means energy costs
compound over time, and even modest savings per planning call may be impactful at scale, especially
for AI planning systems deployed in resource-constrained environments, such as edge devices.

3.2. Energy Hypotheses

Having established that the computational intensity of AI planning makes energy consumption an
important dimension, we next identify factors that may influence energy efficiency. While no prior
study has characterised energy use in AI planning, we can look at the extensive literature on runtime
performance for indicators of where energy variation is likely to arise. As these factors may imply
corresponding energy effects and are yet to be confirmed by research, we characterise them as hypotheses
that may influence the energy and carbon footprint of AI planning.

It is often assumed that faster algorithms are more efficient overall, with the intuition that less
runtime means less energy consumed. However, measuring time does not give a realistic view of energy
consumption because of how instructions interact with the hardware [20]. That is, AI planners that
finish faster may achieve that speed by running CPU-intensive heuristic evaluations or keeping large
data structures in memory. Such optimisations increase power draw even when reducing runtime. This
suggests that minimising runtime and minimising energy consumption may be fundamentally different
objectives.

H 1 Runtime and energy consumption are not positively correlated across different planning algorithms
when solving the same problem instances on a fixed hardware platform.

Optimal planning guarantees the best possible plan, such as shorter makespan or lower total cost,
but does not necessarily require proportionally more search effort. AI planning systems that employ
optimisation mechanisms, such as bounds, heuristics, and macros, may find near-optimal plans quickly,
while exhaustive search may reuse earlier computations. Consequently, plan improvements can be
gained with little or no additional energy, suggesting that the relationship between plan quality and
energy consumption may not be straightforward.

H 2 The energy required to find a plan is not monotonically increasing with respect to the plan’s quality.

AI planning is typically implemented as a pipeline consisting of distinct phases, such as domain
model engineering, problem parsing, grounding, preprocessing and optimisation, problem-solving, and
post-processing. These phases differ in their computational complexity and resource usage patterns,
suggesting variability in their respective energy consumption profiles. Identifying and quantifying
these differences can guide targeted energy optimisations.

Domain model engineering choices in AI planning have implications beyond plan quality. Existing
work has shown that seemingly equivalent domain model formulations can lead to different perfor-
mances of AI planners [21]. The configuration of domain models, including the choice of action
schemas, predicate rearrangement, and constraints, can cause runtime variations on the same planning
problems. The performance differences stem from how different domain configurations interact with
the mechanisms of an AI planning system. These domain configuration decisions likely affect the
energy footprint of AI planning systems, suggesting that energy-aware AI planning must also consider
upstream decisions made in the pipeline.

H 3 The energy consumption of AI planning systems varies when using semantically equivalent but
structurally different domain model configurations when solving the same planning problem.



Complex domain models can significantly impact computational requirements. Research has shown
that more expressive domain features, while enabling more realistic and natural problem representa-
tions, often incur computational overhead. For example, derived predicates and axioms, which reduce
domain modelling effort, can increase the complexity of plan generation due to the lack of compilation
mechanisms in polynomial time [22]. The compilation approaches that transform complex domain
features into simpler STRIPS representations2 often result in larger problem descriptions. This com-
putational burden translates directly to energy consumption through increased CPU cycles, memory
access patterns, and extended runtimes.

H 4 The energy consumption of AI planning systems positively correlates with the expressiveness features
utilised in domain models.

Certain operations during preprocessing incur computational overhead. Consider, for example, Fast
Downward (FD), which is a state-of-the-art classical planning system [23]. In its preprocessing phase,
it builds a decision tree right after grounding and uses a so-called successor generator to evaluate
which actions would be applicable in a given state (leaves contain those actions). This design choice
dictates how much work the planning system will do upfront as opposed to during problem-solving
(i.e., search). In FD, the total duration of calls to the successor generator function accounts for the
lion’s share of CPU work (i.e., almost 90% of total runtime) [24]. Additionally, the successor generator
triggers "out of memory" for over a thousand problem instances because the precomputed structures
reach a huge number of nodes. Thus, implementations such as FD’s successor generator invest in heavy
preprocessing and large auxiliary data structures. In contrast, a naive successor generator, which would
store a list of grounded actions and iterate through them to check their applicability in a given state,
would require minimal processing and memory upfront [24], but would incur expensive applicability
checks for each search node as it needs to scan the entire list of grounded actions and this is repeated
thousands if not millions of times. So, its CPU time scales with the number of expanded states, and so
does energy. Thus, the choice of successor generator shifts energy consumption between an upfront,
memory-dominated spike and a longer, CPU-dominated tail. Selecting or tuning mechanisms, such as
the successor generator, is a direct lever for energy-aware AI planning optimisation.

Certain operations during problem-solving also incur computational overhead. Consider, for example,
HTN planning, where a mechanism is required to keep alternative decomposition branches independent.
In our own HTN planning system, SH, which works without preprocessing [25], this is achieved using
state cloning. SH keeps an immutable lifted representation, which requires a full clone of the state right
inside the main search algorithm. The benefit is that we keep a fully lifted representation, meaning
memory grows only with discovered objects rather than all ground atoms, but the cost is paid at runtime
in repeated hash-map allocations and copies of lists. Consequently, state cloning is likely one of the
dominant CPU and heap contributors in SH, and thus an energy hotspot, even though we forgo the
heavy upfront optimisations typical of grounded AI planning systems.

H 5 The energy consumption of AI planning systems is determined by the choice of computational mecha-
nisms and their distribution across phases of the AI planning pipeline.

H 6 Different phases of the AI planning pipeline exhibit distinct energy consumption characteristics, with
some phases contributing disproportionately to total energy usage.

The most informative heuristics in modern AI planners are computationally heavy. LM-cut, for
example, is an admissible heuristic that iteratively finds "landmarks", which are actions that must appear
in any plan [26]. For each state, it computes ℎ𝑚𝑎𝑥, builds a justification graph, then repeatedly finds
a cut of actions that must be used to reach the goal, assigns costs to these actions while maintaining
admissibility, and reduces the action costs. This continues until no more cuts can be found. Pattern
databases (PDBs) are precomputed lookup tables storing exact distances to the goal for abstracted

2A STRIPS representation is a restricted form of classical planning that only allows positive preconditions and simple add/delete
effects on atomic propositions, without conditional effects, quantifiers, or complex logical expressions.



versions of a planning problem [27]. The abstraction projects away some state variables, creating a
smaller state space that can be solved optimally offline. During the search, the planner looks up the
abstract state corresponding to each concrete state to get an admissible heuristic value. So, LM-cut
performs significant computation during search, while PDBs shift computation to preprocessing but
require memory lookups during search. This exemplifies the trade-off between online computation
versus offline computation and storage, with different implications for energy consumption.

H 7 Total energy consumption per problem instance increases monotonically with the computational
complexity of the primary heuristic function.

Performance evaluation shows that, once search begins, heuristic computation often dominates
internal runtime costs of planning systems. For instance, it was reported that the main bottleneck in
the HSP and HSP 2.0 planners is the computation of the heuristic values, taking more than 80% of the
total runtime in both planners [28]. Likewise, the LAMA planner evaluates heuristic values by using
deferred heuristic computation, where states are not evaluated upon generation but upon expansion
using the heuristic value of their parent rather than their own value. This seems to lead to a substantial
reduction in the number of heuristic computations, at the cost of losing heuristic accuracy [29]. Such
evidence motivates treating heuristic evaluation as the single largest internal consumer of processing
time, and, by implication, a primary energy hotspot in heuristic-based AI planning.

H 8 Energy consumed by heuristic evaluations accounts for the single largest share of internal energy
consumption, exceeding the energy consumption of any other individual operation.

Recent studies in sustainable computing have shown that the energy consumption of software can
vary significantly based on implementation details beyond algorithmic choices. The same algorithm
implemented in different programming languages can have energy consumption differences of up to 50
times [30]. Furthermore, code refactoring can have an impact on energy usage, from decreasing energy
consumption by about 4.6% to increasing energy consumption by 7.5% [31]. In our context, AI planners
often rely on highly optimised compiled languages, such as C++, or interpreted languages, such as
Python. Minor changes in compiler or interpreter versions can cause performance variations due to
differences in memory handling and CPU efficiency. For example, switching from GCC 4.7 to GCC 4.8
or from Python 2.7.3 to 2.7.10 changes the performance rankings of AI planners that participated in
IPC 2014 [32]. It has been shown that identical source code solved up to 35% fewer problems or took
noticeably longer when recompiled under a newer version of the toolchain. Looking at energy-centered
evidence on compilers and interpreters, one can notice that the same program can consume up to 8%
more total energy under Clang than under ICC, with GCC in between [33], and that the same application
code can consume 8% more energy when using CPython 3.10 than CPython 3.12 [34]. This evidence
shows the sensitivity of programs to software toolchain versions, which likely leads to measurable
differences in energy consumption for AI planning systems.

H 9 The energy consumption of AI planning systems varies when compiled or interpreted with different
versions of the same software toolchain.

AI planners are rarely invoked in a uniform manner in real-world settings. Applications exhibit a
variety of invocation patterns, from one-shot planning for fairly static problems to multiple invocations
in dynamic environments, with or without replanning functionality. For example, mobile robots
navigating dynamic environments may need to replan whenever obstacles appear and autonomous
vehicles must adapt to traffic conditions. In a smart restaurant coordination system using SH [35], the
planner was invoked 360 times per weekday, with a notable burst of invocation on some days (over
600 invocations). This translates to a planning call every 1-2 minutes during operating hours. On
weekends, the invocation rate dropped to only 31 calls per day, reflecting a much more sporadic pattern
with long idle gaps between calls. In such invocation patterns, the timing of AI planner invocations
interacts non-trivially with energy usage. Even if two systems invoke an AI planner 300 times per



day, one doing so every five minutes (sporadic) and another in three short bursts (bursty) will have
notably different energy profiles. Sporadic usage may pay more per call due to reinitialisation and
idle wake-ups, while bursty usage may incur hardware-level penalties like thermal throttling. These
observations suggest that, beyond optimising the efficiency of individual planning calls, the invocation
pattern is an independent variable in the energy profile of AI planning systems and plays a crucial role
in determining cumulative energy consumption.

H 10 The relationship between an AI planner’s invocation frequency and cumulative energy consumption
is linear due to inhibited power state transitions and repeated initialisation overhead, with continuous
invocation consuming disproportionately more energy per planning episode than sporadic invocation.

4. Energy Measurement Framework

As the ultimate objective of our work is to initiate energy accountability, we design a general framework
for measuring the energy consumption of AI planning systems. The PLANning enERGY Measurement
framework (PLANERGYM), which refines and extends the green software measurement model [36], is
a structured approach that suggests starting by identifying goals and objects to be measured, followed
by selecting appropriate metrics and a measurement procedure, and concluding with data evaluation.
PLANERGYM assumes executing selected AI planners on multiple problem instances to ensure informa-
tive and significant energy consumption analysis. We first define necessary concepts and then explain
the procedure and data evaluation.

4.1. Objects and Goals of Measurement

A measured object defines what is being assessed. In AI planning, the primary measured object is an
AI planning system as a whole software product. This object could be further decomposed into other
objects of measurement interest, that is, components and features that exhibit high resource load, such
as those identified in our hypotheses.

A measurement goal defines what is being investigated. In our setting, the measurement goals focus on
understanding relationships, (e.g., whether planning time and energy consumption are positively related
(H1), variations (e.g., whether energy consumption varies across different domain model configurations
(H3), and characteristics of energy consumption across these different system configurations and
operational contexts (e.g., whether different phases exhibit distinct energy behaviour (H6). In all cases,
comparison can be and should be a measurement goal, where an AI planning system is compared to
itself or different AI planning systems to each other.

4.2. Measurements and Metrics

Measurement practices and metrics provide a foundational layer for energy accountability in AI planning.
Therefore, we discuss each of these two components in detail.

Measurements refer to the data collection activities and processes used to gather information about the
performance and resource consumption of AI planning systems (henceforth, we refer only to the primary
measured object for simplicity). Reliable measurement requires several prerequisites, including suitable
hardware, software logging tools, and a well-defined environmental setup. Hardware requirements
specify the means of monitoring and measuring accurate energy and power data. These may include
external instruments, such as standalone power meters, enterprise-grade distribution units, or internal
interfaces integrated into computer hardware itself. For example, the Running Average Power Limit
(RAPL) interface, available in Intel and some AMD processors, allows for precise monitoring of energy
consumption at the level of CPU packages or cores [37]. Complementing hardware support, software
logging tools can record resource usage and power consumption data. Tools, such as collectl, offer
estimates of CPU and RAM. However, higher-precision measurement tools rely on access to hardware.
For example, pyRAPL is a Python library that interfaces with RAPL to record energy data with high



temporal resolution, while CodeCarbon is a Python package that integrates multiple methods of energy
measurements and also estimates carbon emissions, favoring hardware-level readings where available.

A well-defined environmental setup is essential to ensure that measurements are reproducible and
interpretable. This includes defining a usage scenario, the notion of useful work, and a system baseline.
A usage scenario specifies the experimental setting in which an AI planner is run. It includes the
workload, invocation pattern, and measurement window. The workload defines the amount and nature
of planning tasks assigned, which can vary along several dimensions, such as problem size (e.g., number
of objects, actions, goals), encoding expressiveness (e.g., STRIPS, numeric features, durative actions), or
task decomposition complexity in HTN planning. The invocation pattern is as described before, that is,
how frequently an AI planner is called. Standard performance evaluations adopt a one-shot invocation,
where an AI planner is invoked once per problem (this is different from experiment repetitions for
statistical significance). However, in real-world applications, AI planners may be invoked sporadically,
periodically, or in bursts. The measurement window defines the temporal boundaries for data collection
and is closely related to the wall-clock time. It may be delimited by planner invocation and termination,
by the time taken to find the first valid plan, or by timeouts. Also important is the definition of
useful work, which captures the output or benefit delivered by running an AI planner. This is a critical
component in characterising energy efficiency. Examples of useful work include the generation of a valid
plan, plan quality, plan length, the number of planning problems solved, the number of invocations, etc.
Finally, to isolate the energy consumption attributable to an AI planner itself, a baseline measurement
is needed. The baseline represents the energy overhead introduced by the runtime environment in the
absence of the measured objects and serves as a reference point to compute net energy usage.

Metrics are quantities that translate raw measurement data into interpretable indicators of energy
usage, system efficiency, and performance bottlenecks. Common low-level metrics include the baseline
consumption 𝐵 (measured in watt-hours or joules), the runtime 𝑇 (in seconds), CPU utilisation 𝐶 (%),
RAM usage 𝑅 (in MB or %), and total energy consumed 𝐸, calculated by subtracting the baseline from
the total power drawn during the measurement window. Mean power draw provides further insight
into the intensity of resource usage and can be used to identify hotspots in planning code and phases,
which can then be optimised.

Beyond these basic indicators, more advanced metrics offer a way to evaluate and compare the energy
efficiency of AI planning systems. One such metric is the energy-efficiency factor, 𝐸𝐸𝐹 = 𝑊

𝐸 , where
𝑊 represents the useful work. A higher factor indicates greater energy efficiency. This metric can also
be used to compare AI planners, domain/runtime configurations, or scenarios. For example, if the useful
work means finding a valid plan and two planners can find such a plan for the same problem with
different energy consumption, this factor would highlight the difference in their energy efficiency. In
addition to 𝐸𝐸𝐹 , a carbon-emission factor can be introduced to estimate the environmental impact of
AI planning systems. It can be computed as the product of energy consumption and the carbon intensity
of the power source, consistent with recent practice in reporting ML energy and carbon footprints [38].
This metric is especially relevant for sustainability-conscious deployment, as it contextualises energy
efficiency in terms of real-world environmental cost.

4.3. Measurement Procedure

Having defined the key concepts, we now describe how to construct and execute a procedure in a valid,
reproducible, and transparent manner. The procedure model we discuss encompasses the discussion
from before and can therefore be easily aligned for testing the hypotheses. The procedure model should
consist of five components, each discussed in the following.

Measured object operationalisation. The first component involves the selection and preparation
of AI planning systems or components to be measured. The AI planning systems selected must support
a common input format, such as PDDL, to ensure consistent workload execution. Moreover, the selected
AI planning systems must support sufficient expressiveness to handle the domain models and problem
instances included in the workload. In this context, executables, containers, and source code availability



Start 

Logging

Start 

RDDLsim 

server

Idle 

5 seconds

Run 

planner on 

problem

Idle 

5 seconds

Stop 

Logging

Export and 

clean up

Stop 

planner

Probabilistic 

planner?

Planner 

finished?

Timeout 

reached?

Another 

iteration?

yes

Not part of measurement:

- Delete scenario-related files

- Reset runtime environment

- Export statistics

yes

yes

yes

no

no

no

no

Figure 1: Execution Protocol for Collecting Data in a Measurement Scenario for Probabilistic AI Planners.

are critical for enabling the measurement. Where the goal is to attribute energy consumption to specific
components, mechanisms, or phases, an AI planner must have source code available, expose a modular
architecture, or be sufficiently documented to allow the isolation of these components. Finally, AI
planners must be compatible with the hardware and software infrastructure used for running them and
measuring their energy consumption.

Measurement method definition. Once AI planners or components have been selected, the next
step is to define how measurements will be taken. One approach is to treat an AI planner as a single
unit, and aggregate metrics are recorded. Another approach is to attribute resource consumption to
specific components, mechanisms, or phases, requiring instrumentation or logging at a finer granularity.
Independent of the chosen measurement approach, the number of repetitions per scenario must also be
defined. The general recommendation is to have at least 30 repetitions to achieve statistical significance
unless some constraints are in place [39], such as resource limitations or when the usage scenarios
involve long measurement time (e.g., some types of planners may need to reach the predefined timeout
to output a plan). Finally, wherever possible, the measurement runs should be automated to minimise
measurement noise and ensure consistent execution conditions.

Scenario design. A measurement scenario defines the context in which an AI planner or component
is evaluated. Each scenario must specify both its type and structure. Common types include the baseline,
standard usage, where an AI planner solves a planning problem under normal conditions, and load,
where an AI planner is subjected to stress, e.g., large planning problems. The measurement window
plays a crucial role here as it specifies when logging begins and ends, typically, from the moment of
planner invocation to the moment a plan is returned or a timeout occurs. Scenarios must therefore
include an execution protocol, such as the one in Figure 1, which describes the sequence of operations,
such as log initialisation, input preparation, planner invocation, planner termination, log termination,
and cache flushing. Such an execution protocol must be consistently applied across repetitions and
between AI planners.

Workload specification. Workload specification defines the tasks given to an AI planner and directly
influences energy consumption footprints. A workload includes a set of planning problems, which are
characterised by their domain features (e.g., expressiveness, object count, goal structure) and complexity.
Workloads must be chosen to align with the capabilities of the selected AI planners and measurement
goals, and by implication, the hypotheses under investigation. One can choose between benchmark and
real-world planning problems. When using benchmarks, additional care is required. Problem instances
in benchmarks are often generated using randomised generators with parameters that control problem
size and difficulty. The domain chosen, the generator settings, and the distribution and number of
problem instances all affect performance and energy profiles. Benchmark selection should also consider
the type of planning (e.g., classical and HTN planning), the diversity of domain structures, the intended
planning objective (e.g., satisficing, optimal), and different domain configurations.



Execution and post-processing. The final step in the measurement procedure involves executing
the defined scenarios and analysing the resulting data. Execution must be automated where possible to
ensure consistency and minimise external interference. Before analysis, baseline consumption must
be subtracted to isolate planner-induced energy usage. The metrics can then be computed from the
raw data. Statistical processing of the results, such as averaging across runs, identifying outliers, and
computing confidence intervals, helps validate the reliability of findings. These outputs serve both as
descriptive indicators and as evidence for testing the energy hypotheses.

4.4. Measurement Setup

The measurement setup specifies the physical and software environment in which energy data of
AI planning systems is captured. It instantiates the previously defined measurement concepts and
measurement procedure model by specifying the hardware, operating system, measurement tools,
logging infrastructure, and runtime environments needed to execute AI planners under controlled and
reproducible conditions.

The hardware platform should be selected to reflect both the experimental goals and practical
constraints. Systems should have sufficient memory and CPU capacity to avoid unintended bottlenecks
(e.g., swapping), but unnecessary background processes should be minimised to reduce measurement
noise. To ensure accurate baseline and runtime measurements, the idle power characteristics of the
hardware should be stable and well understood. The choice of operating system affects idle power
draw. This choice is often limited by the requirements of selected AI planners, as most of them are
optimised to run on Linux distributions. In any case, the operating system should be configured to
minimise background activity during measurements.

AI planners depend on complex software stacks, including specific programming language run-
times, solver libraries, or domain model interpreters. To standardise these dependencies and ensure
reproducibility, it is recommended that AI planners are encapsulated in containers. Containers also
make it easier to configure consistent CPU and memory limits across AI planners, avoiding variability
introduced by heterogeneous runtime configurations.

Logging infrastructure typically includes scripting for orchestrating AI planner runs, recording
timestamps, and collecting low-level metrics. In other fields, bash or Python scripts are commonly used
to coordinate measurements and enforce repeatability. In some scenarios, additional runtime services
may be required. For example, probabilistic AI planners based on relational Markov decision processes
(RMDPs) may need to interact with simulation servers (e.g., RDDLSim) to evaluate policy performance.
In such cases, these external services must be included in the measurement setup (see Figure 1) and
properly accounted for in the baseline.

4.5. Data Evaluation

The data evaluation model defines the methods used to analyse recorded measurement data from AI
planners and translate raw logs into interpretable insights. It should align with the measurement
goals and usage scenarios, and should support both descriptive and comparative analysis of energy
consumption and performance. Once data is collected, the first step is to compute the defined low-level
and advanced metrics per measurement instance.

For summary statistics, mean values and standard deviations are calculated across repetitions for
each planner, problem instance, and scenario. These statistics help identify consistent energy patterns,
highlight energy consumption variability, and ensure statistical robustness. In comparative contexts,
inferential statistics should be used to assess whether observed energy differences between AI planners
are statistically significant. To facilitate interpretation, results should be visualised through plots, such
as boxplots (to represent distribution), bar charts (to compare aggregate measures), and tables (e.g., for
detailed planner-by-domain comparisons). These visual tools support both AI planner comparisons and
component evaluations (e.g., per phase, per domain, per mechanism). Special attention should be given
to component-level or resource-specific analysis, where available. For instance, the contribution of RAM



energy usage relative to CPU power draw can be analysed to understand memory-related inefficiencies.
Similarly, analysing energy expenditure across planner phases can help localise optimisation targets.

Finally, evaluation tools and automation scripts should be used to ensure consistency, especially when
processing large numbers of runs of AI planners. Whether implemented using scientific computing
environments or domain-specific tools, automated analysis ensures scalability and reduces human error.

5. A Case Study in Energy Profiling Classical Planners

This case study presents an illustrative instance of PLANERGYM. Its purpose is not to offer comprehen-
sive performance rankings but rather to demonstrate how energy accountability in AI planning can be
approached.

5.1. Energy Measurement

The measurement goal of the case study is to provide the first empirical insights into the relationship
between computation time and energy use in classical planners. Thus, it targets hypothesis H1. The
measured objects are full classical AI planners selected from the IPC2018 Agile Track.3 This track
focuses on planners that prioritise rapid plan generation over optimality. To reflect a spectrum of
runtime performance, three planners were selected: LAPKT-BFWS-Preference [40], which ranked first
in the track; Cerberus [41], ranked ninth; and FS-blind [40], ranked thirteenth. These choices were
made to explore variation in energy usage across planners with different runtime performance profiles.
Each planner is treated as a black-box entity, meaning that internal components are not considered.

The experiments were conducted on a laptop machine with an Intel Core i7-4770 processor clocked
at 3.40GHz, equipped with 4 physical cores, 8 threads, and 24 GB of RAM. Each planner execution was
constrained to a single core and allowed access to the full RAM, ensuring uniform resource availability.
Energy measurements were obtained using Intel’s RAPL interface, accessed through the pyRAPL Python
library. Further, we used the psutil library to manipulate files, and Python’s standard time module to
control the measurement window and timeouts. We use bash scripts to build and run the planners.

The environmental setup includes a Ubuntu Desktop version 22.04 was used as the base operating
system. To isolate the AI planners and manage their dependencies, each planner was executed within
its own Singularity container, built using (updated) Singularity files provided by IPC 2018.

We collected low-level metrics, including a planner’s runtime, CPU energy usage, and RAM energy
usage. These were collected at a sampling rate of approximately once per second. No derived metrics
were computed in this stage, keeping the focus on basic metrics and the initial hypothesis.

The measurement procedure followed a scenario where each planner was run on individual problem
instances from three benchmark domains featured in IPC2018: Data Network, Nurikabe, and Snake.
For each domain, the first ten instances from the competition repository were selected to construct the
workload. The measurement window for each run consisted of an idle phase before planner invocation,
followed by planner execution (with a timeout of 350 seconds), and concluded with an additional idle
phase. The metrics were logged continuously throughout this window. The system’s baseline energy
consumption was measured separately and amounts to 6.7 joules. However, it was not integrated into
the current visualisations as we decided to represent the energy consumption per component (CPU
and RAM) and not as a total. Each planner-domain-instance combination was executed only once,
which is a limitation acknowledged in this initial exploration. However, given the exploratory and
demonstrative nature of the case study, single-run measurements were deemed acceptable to illustrate
how the framework can be applied and where variability might arise.

Results were collected in tabular form. Data analysis was conducted using Jupyter Notebook, where
recorded logs were parsed and visualised using standard plotting libraries (i.e., matplotlib, numpy, and
pandas). The output includes per-instance runtime, CPU energy, and RAM energy, while our discussion

3https://ipc2018-classical.bitbucket.io/



Figure 2: Performance Results of Selected Classical Planners in Three Benchmark Domains (Top to Bottom
Row: Data Network, Nurikabe, SNake

also includes power, enabling a first comparison of computational and energy profiles across the selected
classical planners.

5.2. Results

Figure 2 shows the visualisation of the metrics per planner per domain. In the following, we interpret
these results.

Data Network Domain. Across the ten instances in the data network domain, every planner
maintained an almost constant power between 33 and 35 W. Consequently, the principal determinant
of energy was runtime. LAPKT-BFWS-Preference solved seven instances in less than 100 s, incurring
about 3 kJ, but timed out in the remaining three, each of which cost almost 11 kJ. Cerberus displayed
the same pattern: the solutions to the first problem instances consumed less than 0.3 kJ, whereas four
time-outs also reached almost 11 kJ. FS-blind, whose blind breadth-first search rarely terminates early,
reached the timeout on nearly every problem instance; its energy usage therefore clustered around 11
kJ irrespective of eventual success. In this domain, energy differences arose almost exclusively from
differences in termination time, not from variations in instantaneous power draw.



NurikableDomain. Nurikabe proved easier to solve. Cerberus and FS-blind completed every instance,
while LAPKT-BFWS-Preference failed only on the last problem instance. The power again lay in the
30-35 W band, so energy scaled linearly with runtime. LAPKT-BFWS-Preference required at most 19 s
on the first nine tasks (less than 0.7 kJ each) but exhausted the window on the last problem instance,
spending about 10.7 kJ. Cerberus, typically 3–5 s slower than LAPKT-BFWS-Preference, consumed
approximately 20% more energy per instance, with its longest run (34 s) costing about 1.2 kJ. FS-blind
added a further few seconds per task and thus recorded the highest cumulative energy. Although the
planners’ power profiles were similar, modest runtime differences translate directly into systematic
energy gaps.

Snake Domain. Snake constituted the most demanding workload. LAPKT-BFWS-Preference solved
nine problems in less than 17 s (costing about 0.7 kJ) and never approached the timeout; its per-run
power remained approximately 31 W. Cerberus solved six instances quickly (less than 198 s, less than
5.9 kJ) but timed out on four, each failure costing 12–13 kJ. FS-blind’s behaviour was analogous: seven
short successes (about 230-340 J) contrasted with two exhaustive failures (almost 10.7 kJ each). Thus,
under the most difficult instances, single time-outs dominated the total energy budget for Cerberus and
FS-blind, whereas LAPKT-BFWS-Preference’s informed search avoided such spikes.

Cross-Domain Insights. In all three domains, the planners operated at near-constant power; RAM
contributed only a minor, proportional increment. Differences among planners were driven by how
rapidly they produced a plan or timed out. LAPKT-BFWS-Preference was energy-minimal because it
typically finds a plan quickly; Cerberus was intermediate, and FS-blind incurred the highest cost owing
to frequent near-timeout executions. Equal runtimes do not imply equal energy across planners, nor do
equal energy implies comparable runtimes. This hints at the role of search strategy in impacting the
energy use.

Implications for Hypothesis H1 The empirical evidence supports Hypothesis 1. Within a selected
classical planner, energy and runtime are indeed proportional; however, runtime alone is an unreliable
predictor of energy across the selected planners. A twenty-second LAPKT-BFWS-Preference run (less
than 1 kJ) is cheaper than a twenty-second Cerberus or FS-blind run, and a single timeout (in other
words, failure) can outweigh the energy cost of many rapid successes. Thus, energy efficiency in agile
planning may be governed less by reducing instantaneous power, which remains essentially constant,
and probably more by internal components, such as the search strategy and termination behaviour.

6. Concluding Remarks

We initiate a shift toward energy-aware AI planning by proposing a set of hypotheses and a dedicated
measurement framework to guide future research. These hypotheses serve not only as a conceptual lens
but also as a roadmap for systematic investigation of energy implications of algorithmic design choices,
heuristic strategies, domain mode configurations, and system design. Their empirical exploration may
uncover hotspots in planning systems and inform the development of energy-aware techniques that do
not compromise performance. By defining how energy can be measured, attributed, and assessed in AI
planning systems, we contribute the necessary framework for systematically accounting for energy
and exploring energy-performance trade-offs. This departs from the traditional practice in planning
research, where the focus is on runtime and plan quality, as exemplified by the IPCs, and brings energy
accountability as a first-class evaluation concern. The illustrative case study shows the feasibility of
this approach. While a general correlation between runtime and energy consumption was expected,
the case study reveals deviations: classical planners with similar runtimes may exhibit different energy
profiles. This observation indicates that runtime alone may not be a reliable proxy for energy use in AI
planning. While the case study comes with several limitations that hinder the generalisability of the
findings, it points to key challenges and considerations that future studies should address.



We suggest that IPCs consider expanding their scope to include tracks focused on energy and carbon
efficiency. Such an initiative could catalyse the development of sustainable AI planning systems, foster
methodological contributions, and raise community awareness of energy as a critical dimension of
algorithmic performance. More generally, we encourage researchers and practitioners to adopt, adapt,
and extend the proposed framework and hypotheses to promote empirical rigor, transparency, and
sustainability in AI planning research and practice.

Acknowledgments

I thank Andreas Glinka for conducting the experiment with the selected classical planners.

Declaration on Generative AI

During the preparation of this work, the author used ChatGPT 4o to polish self-authored text. Afterward,
the author reviewed and edited the content as needed and takes full responsibility for the work’s content.

References

[1] C. Freitag, M. Berners-Lee, K. Widdicks, B. Knowles, G. S. Blair, A. Friday, The real climate and
transformative impact of ICT: A critique of estimates, trends, and regulations, Patterns 2 (2021).

[2] T. Anderson, A. Belay, M. Chowdhury, A. Cidon, I. Zhang, Treehouse: A case for carbon-aware
datacenter software, SIGENERGY Energy Inform. Rev. 3 (2023) 64–70.

[3] C. Calero, M. Piattini, Introduction to green in software engineering, Springer, 2015.
[4] A. Pazienza, G. Baselli, D. C. Vinci, M. V. Trussoni, A holistic approach to environmentally

sustainable computing, Innov. Syst. Softw. Eng. 20 (2024) 347–371.
[5] R. Schwartz, J. Dodge, N. A. Smith, O. Etzioni, Green AI, Comm. of the ACM 63 (2020) 54–63.
[6] R. Verdecchia, J. Sallou, L. Cruz, A systematic review of Green AI, Wiley Interdisciplinary Reviews:

Data Mining and Knowledge Discovery 13 (2023) e1507.
[7] A. E. Howe, E. Dahlman, A critical assessment of benchmark comparison in planning, Journal of

Artificial Intelligence Research 17 (2002) 1–33.
[8] M. Aiello, I. Georgievski, Introduction to AI Planning, Technical Report 2412.11642, arXiv, 2024.
[9] B. Bonet, H. Geffner, Planning as heuristic search, Artificial Intelligence 129 (2001) 5–33.

[10] J. Porteous, L. Sebastia, J. Hoffmann, On the extraction, ordering, and usage of landmarks in
planning, in: European Conference on Planning, 2001, pp. 37–48.

[11] M. L. Littman, J. Goldsmith, M. Mundhenk, The computational complexity of probabilistic planning,
Journal of Artificial Intelligence Research 9 (1998) 1–36.

[12] I. Georgievski, M. Aiello, HTN planning: Overview, comparison, and beyond, Artificial Intelligence
222 (2015) 124–156.

[13] E. Alnazer, I. Georgievski, M. Aiello, Risk Awareness in HTN Planning, Technical Report 2204.10669,
arXiv, 2022.

[14] T. L. McCluskey, T. S. Vaquero, M. Vallati, Engineering Knowledge for Automated Planning:
Towards a Notion of Quality, in: Knowledge Capture Conference, 2017.

[15] K. L. Myers, CPEF: A Continuous Planning and Execution Framework, AI Magazine 20 (1999)
63–69.

[16] F. André, E. Daubert, G. Nain, B. Morin, O. Barais, F4Plan: An Approach to build Efficient
Adaptation Plans, in: International Conference on Mobile and Ubiquitous Systems: Computing,
Networking, and Services, 2010, pp. 386–392.

[17] S. Fratini, N. Policella, A. Donati, A service oriented approach for the interoperability of space
mission planning systems, in: Workshop on Knowledge Engineering for Planning and Scheduling,
2013, pp. 39–43.



[18] I. Georgievski, PlanX: A Toolbox for Building and Integrating AI Planning Systems, in: IEEE
International Conference on Service-Oriented System Engineering, 2023, pp. 130–134.

[19] T. Bylander, The computational complexity of propositional strips planning, Artif. Intell. 69 (1994)
165–204.

[20] E. García-Martín, N. Lavesson, H. Grahn, E. Casalicchio, V. Boeva, How to measure energy
consumption in machine learning algorithms, in: International Workshop on Energy Efficient
Data Mining and Knowledge Discovery at ECML and PPKDD, 2018, pp. 243–255.

[21] M. Vallati, F. Hutter, L. Chrpa, T. L. McCluskey, On the effective configuration of planning domain
models, in: International Conference on Artificial Intelligence, 2015, pp. 1704–1711.

[22] S. Thiébaux, J. Hoffmann, B. Nebel, In defense of PDDL axioms, Artif. Intell. 168 (2005) 38–69.
[23] M. Helmert, The fast downward planning system, J. Artif. Int. Res. 26 (2006) 191–246.
[24] Y. Zutter, Implementing and Evaluating Successor Generators in the Fast Downward Planning

System, Master’s thesis, University of Basel, 2020.
[25] I. Georgievski, A. V. Palghadmal, E. Alnazer, M. Aiello, SH: Service-oriented HTN Planning system

for real-world domains, SoftwareX 27 (2024) 101779.
[26] M. Helmert, C. Domshlak, Landmarks, critical paths and abstractions: what’s the difference

anyway?, in: International Conference on Automated Planning and Scheduling, 2009, pp. 162–169.
[27] S. Edelkamp, Symbolic pattern databases in heuristic search planning., in: International Conference

on Artificial Intelligence Planning Systems, 2002, pp. 274–283.
[28] B. Bonet, H. Geffner, Planning as heuristic search, Artif. Intell. 129 (2001) 5–33.
[29] S. Richter, M. Westphal, The LAMA planner: guiding cost-based anytime planning with landmarks,

J. Artif. Int. Res. 39 (2010) 127–177.
[30] R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Cunha, J. a. P. Fernandes, J. a. Saraiva, Energy efficiency

across programming languages: how do energy, time, and memory relate?, in: ACM SIGPLAN
International Conference on Software Language Engineering, 2017, pp. 256–267.

[31] C. Sahin, L. Pollock, J. Clause, How do code refactorings affect energy usage?, in: ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement, 2014, pp. 1–10.

[32] C. Fawcett, M. Vallati, A. E. Gerevini, H. H. Hoos, Performance Robustness of AI Planners to
Changes in Software Environment, Technical Report, Scispace, 2019.

[33] N. Schmitt, J. Bucek, K.-D. Lange, S. Kounev, Energy Efficiency Analysis of Compiler Optimiza-
tions on the SPEC CPU 2017 Benchmark Suite, in: Companion of the ACM/SPEC International
Conference on Performance Engineering, 2020, pp. 38–41.

[34] R.-H. Pfeiffer, On the Energy Consumption of CPython, in: International Conference on the
Quality of Information and Communications Technology, Springer, 2024, pp. 194–209.

[35] I. Georgievski, T. A. Nguyen, F. Nizamic, B. Setz, A. Lazovik, M. Aiello, Planning meets activity
recognition: Service coordination for intelligent buildings, Pervasive and Mobile Computing 38
(2017) 110–139.

[36] A. Guldner, R. Bender, C. Calero, G. S. Fernando, M. Funke, J. Gröger et al., Development and
evaluation of a reference measurement model for assessing the resource and energy efficiency of
software products and components—Green Software Measurement Model (GSMM), Future Gener.
Comput. Syst. 155 (2024) 402–418.

[37] K. N. Khan, M. Hirki, T. Niemi, J. K. Nurminen, Z. Ou, RAPL in Action: Experiences in Using RAPL
for Power Measurements, ACM Trans. Model. Perform. Eval. Comput. Syst. 3 (2018).

[38] P. Henderson, J. Hu, J. Romoff, E. Brunskill, D. Jurafsky, J. Pineau, Towards the systematic reporting
of the energy and carbon footprints of machine learning, JMLR 21 (2020) 1–43.

[39] E. Kern, L. M. Hilty, A. Guldner, Y. V. Maksimov, A. Filler, J. Gröger, S. Naumann, Sustainable
software products—towards assessment criteria for resource and energy efficiency, Future Gener.
Comput. Syst. 86 (2018) 199–210.

[40] G. Frances, H. Geffner, N. Lipovetzky, M. Ramiréz, Best-first width search in the IPC 2018: Complete,
simulated, and polynomial variants, in: IPC 2018 – Classical Tracks, 2018, pp. 23–27.

[41] M. Katz, Cerberus: Red-black heuristic for planning tasks with conditional effects meets novelty
heuristic and enchanced mutex detection, in: IPC 2018 – Classical Tracks, 2018, pp. 47–51.


	1 Introduction
	2 Background on AI planning
	3 Energy Dimension in AP Planning
	3.1 Computational Characteristics
	3.2 Energy Hypotheses

	4 Energy Measurement Framework
	4.1 Objects and Goals of Measurement
	4.2 Measurements and Metrics
	4.3 Measurement Procedure
	4.4 Measurement Setup
	4.5 Data Evaluation

	5 A Case Study in Energy Profiling Classical Planners
	5.1 Energy Measurement
	5.2 Results

	6 Concluding Remarks

