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Abstract
Autonomous agents must operate effectively in uncertain, dynamic environments that demand both symbolic
reasoning and flexible adaptation. While classical BDI agents offer transparency and goal-directed behavior,
they struggle with ambiguity and rely on predefined plans. Conversely, recent neural agents powered by Large
Language Models (LLMs) demonstrate flexible planning capabilities but often lack structure, interpretability, and
robust execution control. We introduce LUMI (Logical Uncertainty Modeling for Intelligent Agents), a unified
architecture that integrates fuzzy reasoning and LLM-assisted planning. By grounding LLM reasoning within a
fuzzy-symbolic architecture, LUMI provides symbolic control essential for developing green-aware agents, which
must reason about the long-term impacts and trade-offs of their actions, in alignment with the objectives (and
constraints) set by their designers. Its modular architecture enables cognitively grounded symbolic structures,
fuzzy uncertainty modeling, and natural language-based task decomposition within a single decision-making
pipeline.

LUMI is currently a work in progress. Here, we present a preliminary prototype with a use case in the domain
of adaptive eLearning, where agents dynamically assess learner competencies, generate personalized learning
plans, and adapt content in real time.
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1. Introduction

As Al systems increasingly move into open, dynamic environments—from autonomous robots to
adaptive learning tools—they are expected not only to perceive and act, but also to plan, reason, and
adapt under uncertainty [1, 2]. Agents must operate in partially observable worlds, handle imprecise
goals, and adjust their behavior in real time [1]. This is especially true for green-aware agents, which
must reason about the long-term impacts and trade-offs of their actions in alignment with the objectives
(and constraints) defined by their designers. However, most existing agent architectures are not designed
to meet this level of complexity.

Symbolic models such as the Belief-Desire-Intention (BDI) architecture [3, 4] offer a cognitively
grounded way to model rational behavior. They allow agents to maintain structured beliefs, pursue
declarative goals, and commit to long-term intentions. Yet in practice, BDI agents typically rely on crisp
logic and pre-defined plan-rules that limit their robustness in real-world scenarios.

To improve adaptability, researchers have extended agents to handle uncertainty, in particular by
using fuzzy reasoning [5, 6] to evaluate goals with graded preferences, and reason under imprecision.
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Note that support for uncertainty has implications both for when some desire may be considered
‘achieved’ and for dealing with intentions.

At the same time, Behavior Trees (BTs) have gained popularity in robotics and game Al as an execution
framework. However, BTs lack high-level cognitive modeling, restricting their expressiveness and
responsiveness.

More recently, a completely new class of agents has emerged, built on the capabilities of Large
Language Models (LLMs). Frameworks such as AutoGPT [7], ReAct [8], and Voyager [9] demonstrate
how LLMs can generate goals, decompose tasks, and reflect on progress. These systems exhibit
impressive generative flexibility but lack symbolic structure, leading to poor transparency, fragile
execution, and limited goal-adherence over time.

No single paradigm seems to be sufficient on its own. Symbolic agents offer long-term planning
adherence but struggle with uncertainty, while LLM-based agents generate creative plans but lack
grounded reasoning and control. We argue that building green-aware agents that are both expressive
and reliable requires something new that builds upon these previous contributions.

In this work-in-progress paper, we introduce LUMI (Logical Uncertainty Modeling for Intelligent
Agents), a unified agent architecture that combines the structure of symbolic reasoning, the nuance of
fuzzy control, and the flexibility of neural planning. A key motivation behind LUMI is the need to endow
LLM-driven agents with explicit, logic-based control mechanisms. Unlike purely statistical approaches,
LUMI enables agents not only to generate plans but also to evaluate and compare alternative strategies
in a green-aware perspective. In this way, LUMI moves beyond feasibility and efficiency, supporting
sustainable and responsible decision-making.

LUMI is a framework for creating and managing utility-driven agents inspired by the BDI paradigm,
and it is based on

« Fuzzy cognitive states: beliefs and desires are modeled using fuzzy sets and utility functions,
enabling reasoning under uncertainty;

« Two-layer planning: an LLM-based planning layer produces milestone-based strategies and
suitable supporting agents to implement the low-level execution, guided and grounded by symbolic
tools such as fuzzy reasoning modules and classical planners; a low-level planning based on a
novel notion of Fuzzy Behavior Trees (FBTs), which support continuous-valued action outcomes,
dynamic replanning, and adaptive behavior.

These components work in concert to produce agents that are modular, interpretable, and robust to
changing conditions. LUMI does not simply combine modules—it offers a coherent cognitive architecture
that preserves symbolic structure while embracing uncertainty and open-ended reasoning.

We validate LUMI through a case study focused on intelligent self-learning in the computer engi-
neering domain. The agent ingests unstructured documentation about the subject and the desired
learning goals, and then it builds a fuzzy knowledge model, formulates personalized learning goals, and
adapts exercises in real time to users’ needs. This environment illustrates LUMI’s capacity to integrate
long-term reasoning, fuzzy execution, and neural planning in a practical, knowledge-rich setting.

The remainder of the paper is structured as follows: Section 2 reviews related work. Section 3 presents
the LUMI architecture. Section 4 discusses the case study. Section 5 concludes with future directions.

2. Related Work

The Belief-Desire-Intention (BDI) model [3, 10], rooted in Bratman’s theory of practical reasoning [11],
remains a foundational paradigm for modeling rational agents. In this model, beliefs represent world
knowledge, desires represent admissible goals, and intentions represent committed plans. This structure
inspired the development of agent programming platforms such as 3APL [12], 2APL [13], Jason [14], and
CAN [15], which incorporate symbolic reasoning and deliberative planning. However, these systems
are largely based on crisp logic and deterministic control, making them less effective in dynamic or
uncertain environments where agents must operate with partial knowledge and imprecise goals.



To address these limitations, researchers have extended the BDI paradigm with fuzzy logic [16],
enabling agents to handle uncertainty, ambiguity, and graded preferences. Early efforts such as the
AFDM model [17] integrated fuzzy reasoning into agent decision-making. Casali et al. introduced
the notion of graded BDI agents [18, 19], later formalized as the g-BDI framework [5], which uses
multicontext logic to model fuzzy beliefs, desires, and intentions. More recently, Cruz et al. [6] established
a formal fuzzy modal logic to capture the semantics of fuzzy cognitive states. These systems provide a
principled basis for imprecise reasoning, but they generally rely on static planning pipelines and lack
tight integration with execution and planning layers.

BDI agents have also been applied in practical domains such as robotics and cyber-physical systems
(CPS). For example, Wesz et al. [20] connected the Jason platform to the Robot Operating System (ROS)
for reactive robotic agents, though without explicit fuzzy reasoning. Karaduman et al. [21, 22] developed
fuzzy BDI agents for CPS environments, demonstrating effective adaptation in smart production systems,
IoT applications, and heterogeneous sensor networks. Their agents outperformed classical models in
responsiveness and scalability, with minimal computational overhead [23].

Other work has focused on integrating planning mechanisms into the BDI loop. Xu et al. [24]
proposed a hybrid BDI architecture that incorporates classical planners to recover from intention failure
and generate new plans dynamically. However, while these systems support symbolic planning or
reactive execution, they do not handle uncertainty and do not leverage LLM-based decision-making.

Despite these advancements, most existing approaches treat reasoning, planning, and execution as
separate components. Fuzzy BDI agents typically rely on predefined plans and lack integrated execution
control. Reactive frameworks such as Behavior Trees (BTs) [25, 26] are modular and efficient, but remain
disconnected from high-level goal management. Meanwhile, neural agents like AutoGPT [7], ReAct [8],
and Voyager [9] showcase flexible planning using LLMs, but suffer from weak symbolic grounding,
poor long-term consistency, and opaque decision-making.

Our work aims at overcoming these limitations by introducing a unified architecture—LUMI—that
integrates fuzzy BDI reasoning, neural-assisted planning, and continuous-valued control in a cohesive
and interpretable framework.

3. LUMI Overview

We next overview the structure of the framework by describing its core components: fuzzy cognitive
modeling, utility-based goal selection, hybrid planning, and adaptive execution through the novel
notion of Fuzzy Behavior Trees (FBTs).

As a running example, we consider a use case where a LUMI agent is designed to guide a student
through the process of learning Java programming in a personalized and adaptive manner. Its overarch-
ing objective is to ensure that the student acquires the foundational and intermediate Java concepts at a
sufficient level of mastery before advancing to more complex topics:

« it monitors the student’s understanding and performance across several conceptual modules (e.g.,
Variables, OOP, Exception Handling, Collections, Concurrency);

« it uses fuzzy logic to assess the student’s proficiency, handling partial, uncertain, or imprecise
information;

« it adapts the learning path dynamically based on fuzzy reasoning, selecting suitable pedagogical
actions such as recommending reviews, administering quizzes, or allowing progression.

3.1. Architecture

Figure 1 presents the high-level architecture. Central to LUMI is the Orchestrator, which manages
the reasoning cycle and coordinates specialized agents: Evaluator (belief evaluation), Reasoner (fuzzy
inference), Oracle (LLM-assisted planner), Crafter (execution planner), and co-agents responsible for
validation (Auditors). Low-level execution is delegated to further agents specifically designed according
to the current intentions, and named Sentinels, Executors, and Observers.



LUMI promotes modularity, interpretability, and robustness by decoupling cognitive functions while
maintaining tight integration through control flow and fuzzy semantics. Each component operates with
well-defined interfaces, supporting adaptive behavior in uncertain environments.

High-level planning

[ Orchestrator }

[ Evaluator J v [Fuzzy Reasoner}

[ Oracle »—> Auditor

‘ Crafter }—»

Sentinels ‘ ‘ Executors ‘ ‘ Observers

Low-level planning

Figure 1: Two level planning in LUMI Architecture

3.2. Agent Roles and System Lifecycle

Each agent specializes a role. Table 1 summarizes responsibilities, from intention generation (Oracle) to
fuzzy inference (Reasoner), planning (Crafter), and real-time sensing/action (Observers, Executors).

Table 1
LUMI Agents: Roles and Functions
Id Agent Roles and Functions
1 Orchestrator Coordinates all actors and maintains the overall execution flow
2 Evaluator Initializes and updates the Belief Knowledge Base (KB); assigns fuzzy degrees to

facts; evaluates utilities

3 Fuzzy Reasoner ~ Manages fuzzy rules and constraints

4 Oracle Generates intention plans based on beliefs and desires

5 Oracle Auditor Verifies the proposed high-level plans

6 Crafter Constructs FBTs for the selected intentions, and assigns tasks to execution nodes

7 Crafter Auditor  Verifies the proposed FBTs

8 Sentinels Manage the logical flow in FBTs; monitor the execution progress

9 Executors Perform concrete actions via APls, tools, or internal routines; return fuzzy outcomes
10  Observers Sense environment, evaluate fuzzy conditions, and update the belief base accordingly

Figure 2 shows the workflow among the components. LUMI’s cycle proceeds from fuzzy evaluation
— intention planning — FBT generation — execution — feedback.
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Figure 2: LUMI workflow (simplified for the case of one intention to be pursued)

3.3. Fuzzy Cognitive Layer

Beliefs represent the agent’s understanding of the world using fuzzy sets theory. Based on the designer’s
input provided in a configuration file with possible attachments, the system builds and maintains
through the Evaluator agent a knowledge base X5 = {a1, ..., a, }, whose elements are fuzzy atoms,
each one equipped with a semantic descriptor and an optional witness set. The former is a natural
language description of the role of the atom, which is useful for LLM agents, and the latter is an
associated context extracted from the (optional) documents provided as part of the agent definition. At
each state, beliefs are not used in rules in terms of binary values, but via fuzzy linguistic categories like
sufficient, moderate, or strong. We assume hereafter basic knowledge of fuzzy logics [16].

Desires are expressed as a fuzzy formula that evaluates how well the current beliefs satisfy the agent



goals, by considering the green-aware perspective, too. Note that this formula can be viewed as a utility
function that the agent would like to maximize, until the output fuzzy value is good enough. In the
running example, for the sake of simplicity, desires encode only curriculum-aligned objectives.

For instance, we can monitor the following notions encoded in the beliefs knowledge base:

« poop(): proficiency in Object-Oriented Programming;
« ugn(x): proficiency in Exception Handling;
* lCollections (): proficiency in Java Collections APL

Assume that fuzzy sets are defined over the interval [0, 1] through suitable membership functions
(defined according to the configuration file) that map values to levels of membership to the linguistic
categories, for instance Low, Medium, and High.

For example, at a certain state, we may observe the following proficiency values, listed with their
associated memberships to the linguistic categories:

toop(z) = 0.7 = high(0.4), medium(0.6)
pen(x) = 0.6 = high(0.2), medium(0.8)
=0.5

HCollections (CL') = medium( 1 O)

Note that an observed value for some property can be interpreted as belonging to multiple categories,
with different degrees. In the example, the proficiency in Exception-handling is considered high with
degree 0.2 and medium with degree 0.8.

This is an important property of fuzzy logic, where multiple rules can be activated simultaneously due
to the overlapping nature of fuzzy membership functions. This allows different linguistic evaluations of
belief atoms to co-exist and fire concurrently.

For instance the rules If OOP is high and EH is medium, then recommend “Start Concurrency Module”
and the rule If Collections is medium and EH is high, then recommend “Advanced Collections Exercises”,
should be evaluated together in the current state.

Assume that we use the t-norm T(a,b) = a - b. Then, the former is evaluated
as: Reccscnr =  T'(phigh(OOP), fimedium(EH)); and the latter is evaluated as: Reccacr =
T (ftmedium (Collections), fiigh (EH)). That is,

Hhigh(OOP) = 0.4, fimedium(EH) = 0.8 = Reccgonr = 0.4-0.8 = 0.32;

Pmedium (Collections) = 1.0, ppigh(EH) = 0.2 = Reccacrp = 1.0-0.2 =0.2.

Based on these evaluations, the agent may choose to recommend “Start Concurrency Module” (or it
may perform additional diagnostic actions to reduce uncertainty, if additional rules or policies encode
such requirements).

Note that the rules in the knowledge base may also describe how the agent should behave, in particular
by encoding green-aware rules (or constraints) defined by the user/designer.

In the current prototype, the Fuzzy Reasoner module handles only the classical modus-ponens-style
rules. However, we are actively developing a more general and expressive fuzzy logic framework
capable of supporting richer forms of inference.

3.4. Two-Layer Planning Architecture

The Oracle agent employs LLM-assisted reasoning to generate a high-level intention plan, which is
subsequently reviewed by the Oracle Auditor to ensure compliance with all specified constraints. This
plan constitutes a strategic blueprint that is interpreted as a collection of intentions designed to fulfill
the agent’s desires.

More precisely, the plan satisfies all predefined constraints and guarantees that, in any final state, the
agent’s beliefs satisfy the fuzzy formula encoding its desires.



Whenever an intention ¢ is selected for execution, the Crafter agent generates a corresponding Fuzzy
Behavior Tree (FBT), denoted 7}, which encodes a low-level plan for achieving ¢. This structure supports
reasoning under conditions of partial satisfaction and enables real-time adaptation.

Formally, the FBT is defined as T; = (N, E, \), where:

« N is a set of agents assigned to the roles of Sentinels, Executors, and Observers;
+ I defines the tree structure through a set of directed edges;
+ Ais alabeling function that assigns a fuzzy formula to each node.

Therefore, FBTs retain the expressive control patterns of BTs (sequence, fallback, parallel) while intro-
ducing fuzzy-valued leaf execution and evaluation nodes.

The Crafter Auditor is responsible for verifying the consistency and alignment between the generated
plans and their corresponding execution structures.

Behavior Tree (BT) Nodes:

1. Selector (? Selector 2
2. Sequence
3. Condition
4. Action
Action:
Sequence — Monitor Student

Action:
Recommend Next
Lesson

Condition:
Is Topic Mastered?

Figure 3: Behavior Tree (BT)

Figure 3 illustrates a fragment of an FBT. In contrast to standard Sequence nodes—which require all
children to succeed—our framework evaluates these nodes using a chosen t-norm that aggregates the
fuzzy satisfaction values of the children. Likewise, Selector nodes are evaluated using t-conorms,
allowing for more flexible and graded assessments of success.

4. LUMI in Adaptive eLearning: the prototype

To validate the applicability and expressiveness of the LUMI framework, we look at real-world learning
scenarios, to enable intelligent guidance, competency modeling, and real-time adaptation through
dynamic agent coordination and fuzzy reasoning.

In fact, in contemporary digital learning environments, learners are often overwhelmed by unstruc-
tured resources, lacking coherent progression strategies. Our testbed focuses on a self-directed Java
Enterprise learner.

The platform supports natural language interaction and external application integration through
the Model Context Protocol (MCP). In the current prototypes, agents are executed via AutoGen and
LangGraph, and use JSON message formats.

LUMI enables real-time adaptation with low-latency feedback. Some preliminary performance metrics
are summarized in Table 2.



Table 2
Performance Evaluation of the LUMI

No. Metric Performance Remarks
1 Session initialization =~ < 5 seconds Rapid startup and context loading
2 Belief update < 100 ms Real-time feedback
3 Agent response time 2-5 seconds Per-agent processing
4 Plan generation Time  2-4 minutes Complex task planning

5. Conclusion

This paper has presented LUMI, a novel agent architecture that integrates fuzzy BDI reasoning, LLM-
assisted planning, and fuzzy behavior trees into a unified framework for intelligent autonomous agents.
LUMI extends classical BDI models with fuzzy logic to represent uncertainty in beliefs and preferences,
while exploiting the generative and reasoning capabilities of Large Language Models to support abstract
and open-ended planning. The introduction of Fuzzy Behavior Trees enables continuous, adaptive
execution with fine-grained control under dynamic conditions.

A central goal of LUMI is to enable the development of green-aware agents that facilitate transparent,
fair, and environmentally conscious decision-making across diverse domains such as finance, healthcare,
and social services, where balancing sustainability and ethical considerations is increasingly crucial.

In this preliminary work, we explored LUMI’s applicability in the context of adaptive e-learning for
Java Enterprise development. In this use case, symbolic knowledge structures, fuzzy control, and neural
planning are orchestrated across dynamically generated agents to guide learners, monitor competencies,
and adapt content in real time.

Although promising, this initial implementation remains limited in scope. Future work should extend
the framework by incorporating additional tools for LLM-driven agents and by supporting a more
comprehensive fuzzy reasoning layer, which is the subject of an ongoing companion study.

Furthermore, the framework should be systematically evaluated by comparing LUMI with both
classical BDI agents and LLM-based agents across established benchmark problems, to rigorously assess
its effectiveness and unique contributions.
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