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Abstract
Temporal graphs, in which edges are annotated with time-labels indicating their availability at specific time
steps, provide a flexible model for dynamic networks. Two nodes are said to be temporally connected if there
exists a path between them such that the edges are traversed in strictly increasing order of their time-labels. We
study the Minimum Aged Labeling (MAL) problem, which consists of assigning time-labels so that all node pairs
are temporally connected within a global deadline a, while minimizing the total number of labels used. MAL
highlights the trade-off between ensuring temporal connectivity and minimizing the number of edge activations
under strict resource constraints. It has significant implications for energy-aware scheduling in domains such
as logistics, transportation, and communication, where reducing the number of active time slots can directly
translate into lower energy use, reduced emissions, or infrastructure simplification.

Our results establish strong inapproximability bounds for MAL: we prove that no algorithm can approximate
the minimum number of labels within a factor better than O(log n) for a > 2, unless P = NP, and not within

28" for g > 3, unless NP C DTIME(2P°*¢(")) Subsequently, we develop approximation algorithms that,
under certain assumptions, almost match these lower bounds. Notably, the approximation performance depends
on the relationship between a and the diameter of the input graph.

Moreover, we establish a connection with the classical Diameter Constrained Spanning Subgraph (DCSS)
optimization problem on static graphs and prove that our hardness results apply to DCSS.
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1. Introduction

We study a scheduling problem on dynamic networks, inspired by practical applications in logistics,
distribution scheduling, and information diffusion within social networks. Consider a real-world
scenario of parcel delivery where a warehouse W serves three cities arranged in a star topology. Each
city has parcels destined for the other cities, and for each pair of cities (A, B), there is at least one
parcel that must be sent from A to B. A fleet of vehicles located at W is responsible for transporting
parcels between the warehouse and the cities. Each vehicle can depart from W at any hour. Upon
arrival at city A, a vehicle delivers parcels destined for A that were previously stored at W, collects
parcels originating from A, and returns to the warehouse. A round trip from W to a city and back is
referred to as a trip. For simplicity, we assume travel times are negligible. When a vehicle V; returns
from city A to the warehouse, it deposits all parcels originating from A and destined for other cities.
When another vehicle V5 departs towards city B, it carries all parcels currently stored at W with final
destination B. If the trip of V; is scheduled before that of V5, parcels from A to B are successfully
delivered; otherwise, these parcels must wait for the next trip. Performing a thorough scheduling of all
vehicle trips can simultaneously reduce delivery times and operational costs such as the number of
trips, vehicle usage, fuel consumption, and greenhouse gas emissions.

For example, the 1% schedule in Figure 1 requires 6 trips to deliver all parcels, with the last deliveries
completed at 8 a.m. The 2°¢ schedule minimizes the latest delivery time, ensuring that all parcels are
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1%t schedule 2" schedule 3 schedule

Figure 1: The scheduled time of trips are reported close to the edges. 1°* schedule: All 6 scheduled trips
are necessary to deliver all parcels, with the last parcel delivered at 8 a.m. 2"d schedule: All parcels are first
deposited at W in the 3 trips at 5 a.m., and then delivered from W to their destinations in 3 trips at 6 a.m. While
6 trips are still required, the last parcel is delivered by 6 a.m. 3" schedule: Parcels from cities A and C are
deposited at W in the 5 a.m. trips. The 6 a.m. trip to B delivers the parcels to B that were deposited earlier at
W, and collects the parcels from B, bringing them back to W. Finally, the 7 a.m. trips deliver the parcels from B
to A and C. Only 5 trips are used, but the last parcel is delivered at 7 a.m.

delivered by 6 a.m., two hours earlier than in the first schedule, while still requiring 6 trips. The 3™

schedule, instead, minimizes the total number of trips, reducing them to 5, but delays the last delivery
to 7 a.m., one hour later than in the second case.

The scheduling problem becomes significantly more complex when considering a general network in
which each vertex can act both as a warehouse and as a city, and where connections between vertices
are represented by an arbitrary graph. Moreover, similar challenges arise in other domains such as
distribution scheduling [1] and information spreading, where the goal is to arrange a small number of
meetings among employees of a company so that each individual can share information with any other
within a given time frame (see [2]).

Motivated by these applications, we consider the following question: What is the minimum number
of trips required to deliver all parcels within a given time frame?

We model a schedule of trips along the edges of a given network using a temporal graph, where
the scheduling time of a vehicle is represented as an edge label. A path in this graph is considered
valid (or temporal) only if its edges are traversed in strictly increasing order of their labels. We then
study the optimization problem of assigning the minimum number of labels to the edges of the given
network so that every pair of vertices is connected by a temporal path, and the largest label does not
exceed a given integer a, referred to as the maximum allowed age. This problem, called Minimum Aged
Labeling (MAL), was introduced by Mertzios et al. [3], who proved that it is APX-hard on directed
graphs. Later, Klobas et al. [4] showed that MAL is NP-complete even on undirected graphs. To the best
of our knowledge, no previous hardness or approximation algorithm results are known for MAL on
undirected graphs. Furthermore, the reduction used to prove the APX-hardness on directed graphs [3]
does not easily extend to the undirected setting, since it relies heavily on edge directions to constrain
vertex reachability. This paper explores the approximability of MAL on undirected graphs, highlighting
how the problem’s approximation complexity varies with respect to the parameters a and the diameter
D¢ of the input graph. MAL also has a theoretical motivation, as it can be seen as a dynamic version
of the classical Diameter Constrained Spanning Subgraph (DCSS) problem. The DCSS problem asks to
find a spanning subgraph H of a graph G such that the diameter of H does not exceed a given integer,
while minimizing the number of edges in H.

2. Related Work

Due to their versatility, temporal graphs have been studied from various perspectives and under different
names, such as dynamic, evolving, or time-varying graphs or networks (see [5]). One area that has
attracted significant attention, mainly motivated by virus-spread minimization (e.g., [6, 7]), concerns



Table 1
Overview of approximation hardness for the MAL problem, classified by parameter a.

value of @ | Approximation hardness | Complexity assumption

a=2 O(logn) P#NP

a= D¢ 0> 3 Q(logn) P#NP
- D) NP ¢ DTIME(2PoYo8(n))

the modification of temporal networks to optimize certain objectives; a recent survey is in [8]. Several
types of operations have been considered, including delaying labels and merging consecutive time
steps [1], edge- and label-deletion [9], and altering the relative order of time labels [10]. Furthermore,
Molter et al. [11] analyzed how the choice between edge-deletion and delaying affects the parameterized
complexity of the reachability-minimization objective. In [2], the authors studied a problem related yet
orthogonal to MAL, where the goal is to minimize the maximum time needed for a subset of vertices
to reach every other vertex by shifting labels. Klobas et al. [4] considered a generalization of MAL in
which only a subset of terminal vertices must be temporally connected within the given maximum
allowed age a, and proved its W [1]-hardness when parameterized by the number of labels.

3. Our results

This extended abstract outlines our main results on the MAL problem, covering both hardness of
approximation and the design of efficient approximation algorithms. Further details can be found in the
conference version of this work [12], while a full version is available on ArXiv [13]. We denote by Dg
the diameter of graph G.

3.1. Hardness of Approximation

We begin by showing that, for any fixed maximum labeling age @ > 2, the MAL problem cannot be
approximated within a factor better than O(logn), unless P = NP. Furthermore, under a different
complexity assumption, we prove a stronger inapproximability bound: for any € € (0, 1), there exists
no 218"~ "_approximation algorithm for MAL, unless NP C DTIME(2P°Y1°8(")) even when a is fixed
to a value at least 3.

These results advance our understanding of the computational complexity of MAL in two directions:
from the exact computation perspective and from the approximation point of view.

(1) From the perspective of exact computation, the NP-hardness result in [4] applies only when
a = Dg = 10. In contrast, we prove that MAL remains NP-hard for every fixed a > 2 (still requiring
a = Dg). This completes the complexity classification of MAL with respect to the parameter a, since
the case a = 1 is straightforward. Additionally, our reduction is considerably simpler than that of [4].

(2) From an approximation standpoint, the reduction in [3] establishes that MAL is APX-hard when
a = Dg = 9 in directed graphs. We strengthen this result by proving two stronger inapproximability
bounds: first, MAL cannot be approximated within a logarithmic factor unless P = NP; second, under
a stronger complexity assumption, no glog’ ™ "-approximation algorithm exists for any € € (0,1).
The latter bound indicates that achieving better than a polynomial-factor approximation is unlikely.
Furthermore, these hardness results are established for undirected graphs (with the condition a = Dg),
and hold for all fixed values of a > 2 and a > 3, respectively. Finally, we note that the same
inapproximability bounds also apply to DCSS.

A summary of our hardness of approximation results is presented in Table 1.

3.2. Approximation Algorithms

As in [4] and [3], all our reductions require the condition a = Dg. Thus, we study the approximability
of MAL when a > D¢, addressing an open question posed in [4]. We present three sets of results that



Table 2

Summary of the approximation results for MAL as a function of the age bound a and the graph diameter D¢. In
the first four rows, the condition on D¢ indicates the range within which the approximation ratio improves
upon the trivial O(n) bound.

Value of a Approximation ratio and conditions on D¢
a<Dg+1 O(Dg - n3/5%€), for Dg € o(n?/?)
Dg+2<a<Dg+3 O(Dg - n'/?), for Dg € o(n'/?)
Dg+4<a<Dg+5 O(Dg - n?/%), for Dg € o(n3/?)
Dg+6<a<[3/2D¢]| O(Dg - n'/3), for Dg € o(n?/3)
O(y/n -logn), for Dg € Q(+/nl/3 -logn
[3/2D¢] < a < [5/3Dg] ( Og(D)G -nt/3), othiE\/)vise .
O(v/n-logn), for Dg € Q(y/n/logn)
a>[5/3D¢] O((Dg - n-log” n)1/3), for Dg € Q(logn) N O(y/n/logn)
O(Dg - n'/3), otherwise

highlight how the approximation guarantees for MAL depend on the relationship between a and Dg.

(1) We begin by analyzing the case where a is sufficiently larger than R, the radius of the graph G.
Specifically, if a > 2R¢ (resp., @ > 2Rg + 1), we provide a polynomial-time algorithm that computes a
solution requiring at most 2 (resp., 1) more labels than the optimum. These additive approximation
guarantees translate into asymptotic multiplicative bounds, with approximation factors arbitrarily close
to 1 as the input size increases. Furthermore, if @ > 2D¢g + 2, an optimal solution can be computed in
polynomial time. Since MAL does not admit any feasible solution when a < Dg, this first set of results
leaves open the intermediate regime where Dg < a < 2Rg.

(2) We next consider the case where a is only slightly larger than D¢, leveraging a connection
between MAL and the DCSS problem. Specifically, we show that the approximability of MAL is within a
factor a of that of DCSS. We begin by showing that when a = Dg = 2, MAL admits a logarithmic-factor
approximation, which asymptotically matches our first inapproximability bound. Note that if a = 2 and
D¢ = 1, the graph must be a clique. In this case, Rg = 1 and a = 2R, so MAL can be solved using at
most 2 labels more than the optimum. For a > D¢ + 2, we obtain an O(D¢ - n'/?)-approximation,
which is sublinear in n when D¢ is sufficiently small. This bound improves as a increases: we achieve
approximation factors of O(D¢ - n%/%) and O(Dg -n'/3) for a > Dg +4 and a > D¢ + 6, respectively.
Finally, for any a > D¢, we obtain an approximation factor of O(D¢ - n3/ 51+¢) for any constant
e > (. All these approximation factors depend linearly on D¢, as our approach approximates DCSS via
generalizations of it, and then transforms the resulting solution into one for MAL.

(3) Our main algorithmic contribution addresses the case Dg < a < 2R, where we approximate
MAL without relying on DCSS, thereby avoiding the linear dependence on D¢ in the approximation
ratio. We show that when a > [3 - D¢] (resp.,a > [2 - D¢ ), MAL can be approximated within a factor
of O(y/nlogn) (resp., O((Dgnlog?n)'/3)). Both bounds are sublinear, and the second algorithm
yields better performance when D¢g = o(y/n/logn), although it requires larger values of a.

Table 2 summarizes the approximation guarantees we obtain for MAL.

4. Conclusion and Open Questions

In this work, we investigated the complexity of approximating the Minimum Aged Labeling problem
(MAL). We established strong hardness of approximation results for the case a = Dg, summarized
in Table 1. When relaxing the parameter to a > Dg, we provided approximation algorithms with
guarantees that depend on the relationship between a and D¢, as detailed in Table 2. Additionally, we
highlighted a connection between MAL and the Diameter Constrained Spanning Subgraph problem,
showing that comparable hardness and approximation results hold for DCSS.



Several questions remain open. In particular, the computational complexity of MAL when D¢g <
a < 2Dg + 2 is still unresolved, as our reductions do not seem to extend to cases where a > Dg + 1.
Furthermore, it is unclear whether the inapproximability results for MAL hold when Dg < a < 2Rg.
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