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Abstract 
Large Language Models (LLMs) frequently produce fluent but unverifiable reasoning, resulting in potential 
hallucinations and faulty inferences. This study proposes an argumentation-based verification framework 
ValidArgLLM in which the reasoning expressed by an LLM is transformed into a defeasible logic program 
(DLP) representing world knowledge and a given problem description—such as a patient health complaint. 
The DLP is executed within a symbolic reasoning engine, and the resulting inferences are compared to the 
LLM’s natural-language conclusions. The strength of arguments is computed based on discourse structure 
of text expressing arguments. Divergence between symbolic and neural reasoning outcomes indicates 
possible hallucination or inconsistency in the model’s internal logic. 
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1. Introduction 

Large language models (LLMs) have achieved impressive results across diverse natural language 
processing tasks, inspiring interest in their use for domains that require structured reasoning. 
However, integrating LLMs into settings that demand context-sensitive, multi-step decision-making 
remains challenging. These models often excel at generating fluent and informed text but struggle 
to reason systematically, weigh competing possibilities, or revise conclusions when new information 
appears [3]. Their reasoning is associative rather than strategic, limiting their ability to handle 
complex, evolving problems. 
     Another major limitation is interpretability. Unlike human experts who reason through explicit, 
traceable arguments, LLMs reach conclusions through opaque statistical processes [22]. This opacity 
makes it difficult to understand or justify their outputs, reducing trust and accountability in 
applications that require verifiable logic [23]. Furthermore, LLMs are prone to reasoning 
hallucinations—producing statements that sound coherent but conflict with facts or internal logic. 
Because they lack explicit mechanisms for defeasibility or conflict resolution [18, 19, 20, 21], such 
inconsistencies can undermine reliability. To address these gaps, LLMs must be complemented by 
external reasoning and verification layers capable of enforcing logical consistency and explaining 
why conclusions hold. 
     One promising approach is to pair an LLM with a symbolic or logical reasoning engine—for 
example, a Prolog-style rule base, a constraint solver, or a formal ontology of medical conditions [9, 
10, 11, 12, 19]. The LLM produces a candidate answer, while the reasoning system independently 
checks whether that answer follows from known facts and rules. This creates a dual-track pipeline: 
the generative model proposes, the logical module disposes. Such a framework can flag 
contradictions (e.g., a diagnosis incompatible with the patient’s lab values), highlight unsupported 
steps in a rationale, or even suggest corrected outputs when classical reasoning yields a different 
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conclusion. Over time, it can also feed back into training, teaching the LLM to prefer responses that 
survive external verification 
     To mitigate these risks, we introduce a neuro-symbolic verification framework ValidArgLLM that 
externalizes and tests an LLM’s reasoning through argumentation analysis. The key idea is to 
translate the model’s implicit causal and conditional reasoning into a formal system—defeasible logic 
programming (DeLP)—and verify its conclusions via a logical solver. 

 

Figure 1: Four truth assessment approaches and two LLM-argumentation based architectures 

     Despite significant advancements in task performance, current approaches to argumentative 
reasoning continue to face critical limitations in terms of justifiability and interpretability. While 
models can often produce seemingly coherent explanations, it remains ambiguous how final 
decisions are actually reached or which intermediate steps genuinely contributed to the outcome. 
Recent studies have revealed that Chain-of-Thought (CoT) reasoning, though designed to enhance 
transparency, is itself prone to hallucinations, inconsistencies, and spurious reasoning paths that do 
not accurately represent the underlying inference mechanisms of large language models [6,7]. These 
findings call into question the validity of CoT traces as reliable post hoc justifications of model 
behavior rather than mere rhetorical artifacts. Moreover, in multi-agent or multi-LLM debate 
settings, the reasoning process becomes even more opaque: the discussions between models are 
typically unstructured, non-formalized, and difficult to audit, making it nearly impossible to 
systematically reconstruct the logic that led to a collective conclusion. This lack of traceability 
undermines confidence in the epistemic soundness of model-driven argumentation and highlights 
the need for structured frameworks capable of capturing, verifying, and explaining the reasoning 
trajectories that lead to final decisions.  
      Figure 1 compares four levels of reasoning used by language models, showing how they evolve 
from simple answers to structured, self-correcting discourse-based reasoning [2]. At the top, the 



direct answer model provides an immediate response without explanation. It may be correct or 
incorrect, but there is no visibility into why the model chose that answer. Because no reasoning steps 
are revealed, errors cannot be traced or corrected. 
     The next level, chain-of-thought reasoning, adds a sequence of intermediate steps that make the 
process more interpretable. However, these steps remain unverified. The reasoning might sound 
plausible while still being factually wrong, since the model does not test or challenge its own 
statements. 
      The argumentative model introduces a more structured approach. Instead of producing one line 
of reasoning, it generates multiple arguments, distinguishing between supporting and attacking ones 
(Gutiérrez et al. 2024). This enables a form of contestability: each conclusion is backed by explicit 
evidence and can be challenged by counterarguments. Still, this stage only formalizes reasoning—it 
does not validate or improve it. The model outputs argument structures but lacks a mechanism to 
revise its own conclusions. 
 
Table 1 Nucleus and satellites and their importance in attacking and supporting arguments. Relative 
argument strength comes from our experiments on optimization of discourse-based weights [12]. 

Rhetorical 
Relation Nucleus (main point) Satellite (less important context) 

Relative 
argument 
strength 
(Nucleus : 
Satellite) 

Cause The patient developed a 
high fever. 

Because the patient had recently 
returned from a malaria-endemic area. 0.8 : 0.2 

Effect / 
Result 

The antibiotic successfully 
cleared the infection. 

As a result, the patient’s white blood 
cell count decreased. 0.7 : 0.3 

Condition The patient must take 
insulin twice daily. 

If her blood glucose remains above 
180 mg/dL. 0.6 : 0.4 

Contrast The patient reports severe 
knee pain. 

Whereas the ankle pain has largely 
subsided. 0.55 : 0.45 

Elaboration The patient experienced a 
heart attack. 

Specifically, a non-ST elevation 
myocardial infarction affecting the 
inferior wall. 

0.65 : 0.35 

Concession The patient’s cholesterol 
level improved. 

Although his diet compliance was 
inconsistent. 0.75 : 0.25 

Background The surgeon performed an 
emergency appendectomy. 

The patient had arrived at the hospital 
only two hours earlier. 0.85 : 0.15 

Enablement 
/ Purpose 

The nurse administered a 
sedative. 

To facilitate the insertion of a central 
venous catheter. 0.7 : 0.3 

Evidence / 
Justification 

The patient is diagnosed 
with pneumonia. 

Supported by chest X-ray showing 
bilateral infiltrates. 0.6 : 0.4 

Evaluation The treatment outcome is 
considered successful. 

According to the hospital’s quality 
benchmarks. 0.65 : 0.35 

 
     The discourse-based argument validation model ValidArgLLM at the bottom represents the most 
advanced form. It integrates discourse structure to evaluate how strongly each argument contributes 
to the overall reasoning. By analyzing rhetorical relations such as elaboration, justification, or 
background, it can weigh the importance of each argument and decide which should dominate the 
conclusion. This allows the system to detect when the original model’s answer is inconsistent with 
the discourse-level balance of evidence and automatically correct it. Over time, this validation loop 
enables the model to refine its reasoning and become more consistent and interpretable. This 
architecture adds discourse awareness, verifiable structure, and self-correction. It moves beyond 



merely producing or scoring arguments—it understands how arguments interact and uses that 
understanding to ensure that reasoning outcomes are both coherent and defensible. 

2. Discourse and Defeasibility  

Each rhetorical relation has a nucleus (the “main” proposition) and a satellite (supporting or 
contextual material). The satellite always carries less essential information than the nucleus (Table 
1). One can see that nucleus contains main diagnostic/treatment fact (higher base probability) and 
satellite caries contextual/supporting info with lower significance. These values are obtained in the 
course of improvement of validation performance, described in Evaluation section. 

Hence the rules are:  
1) strict rules (must hold, nucleus) Head <- Body.               
2) defeasible rules (should hold, satellite) Head <~ Body.   

 
Facts are either strict or defeasible: 
fact.       % strict fact    vs  
fact <~ .       % defeasible fact 
 
We now show how a defeasible logic program in ValidArgLLM would be built from a real nucleus 
vs. satellite pair.  

Nucleus (main claim): “The patient must immediately start a course of antibiotics for bacterial 
pneumonia.” 
Satellite (supporting context): “Because the chest X-ray shows an infiltrate consistent with 
pneumonia.” 

Here the nucleus expresses a mandatory action (antibiotics). The satellite is evidence/justification 
(X-ray finding) — useful, but not itself the main prescription. 

In a defeasible logic program: 

% Strict rule from the nucleus: MUST do this if bacterial pneumonia 
diagnosed 
start_antibiotics(Patient) <- diagnosis(Patient, bacterial_pneumonia). 
% Defeasible rule from the satellite: SHOULD suspect pneumonia if X-ray 
shows infiltrate 
diagnosis(Patient, bacterial_pneumonia) <~ chest_xray_infiltrate(Patient). 
% Facts: 
chest_xray_infiltrate(john) <~ .   % defeasible evidence 
 
The nucleus states the obligatory/primary outcome, while the satellite is only supportive, so its rule 
is defeasible/overridable. 

The nucleus carries the main point of the discourse. In DLP you can treat it as a strict rule or a 
strict fact, because it is asserted to hold independently of the supporting material. 

diagnosis(Patient, bacterial_pneumonia).    

Even if we later remove the satellite (the X-ray), the nucleus stands on its own. 

The satellite carries supporting or contextual information. In DLP you model it as a defeasible rule 
whose conclusion only fires under the context of the nucleus (or some nucleus-derived condition).  

This makes it conditional: 



% satellite only applies if nucleus (diagnosis) is already true 
chest_xray_infiltrate(Patient) <~ diagnosis(Patient, bacterial_pneumonia). 
 

More generally: satellite_fact(X) <~ nucleus_fact(X). 

So, in ValidArgLLM the satellite is not automatically accepted; it’s accepted defeasibly and only 
when its nucleus context holds. In a defeasible logic program derived from discourse, nucleus 
statements are converted into strict rules or strict facts that hold independently. Satellite statements 
are converted into defeasible rules whose applicability is conditional on the corresponding nucleus 
being true; they express “should” or “likely” information that can be overridden or becomes vacuous 
if the nucleus is absent. 

3. Enabling DeLP with Argument Strength Computation  

Given a natural-language case description, the LLM within ValidArgLLM constructs a set of 
defeasible rules encoding its inferred world knowledge: 

r1: gout :- asymmetric_joint_inflammation, uric_acid_high. 
r2: immune_arthritis :- symmetric_joint_inflammation, fever. 
r3: asymmetric_joint_inflammation :- not symmetric_joint_inflammation. 
r4: prefer immune_arthritis over gout if fever. 
 
Here, each rule expresses a conditional belief that may be overridden by stronger evidence.  

A defeasible logic program is a set of facts, strict rules, Π, of the form A:-B, and a set of defeasible 
rules Δ of the form, A- < B, whose intended meaning is “if B is the case, then usually A is also the 
case.” A DeLP for knowledge sources includes facts which are extracted from search results and strict 
and defeasible clauses where the head and body form commonsense reasoning rules (Garcia and 
Simari, 2004). 

Let DT=(N,R) be a discourse tree, where N is the set of elementary discourse units (EDUs), and R⊆N×N 
is the set of rhetorical relations between nucleus and satellite spans. Each relation 
𝑟!=(nucleus,satellite,relation) ∈R has a rhetorical type (e.g., Cause, Evidence, Elaboration, Concession) 
and an associated relative argument strength coefficient ∝"#$%&!'(∈	𝕀, representing how much more 
influential the nucleus is compared to its satellite. 

For every defeasible rule A -< B1,B2,…,Bk ∈ Δ we associate a discourse strength weight w(A)∈	𝕀 
computed as w(A) = )

|+%&(-)|
∑ ∝"#$%&!'(((/0,2%&,"#$%&!'(∈4!	 , 

where 𝑅- is the set of discourse relations in which participates, and Sat(A) are its supporting 
satellites. Thus, rules derived from nucleus EDUs obtain higher w(A) values (closer to 1), while rules 
from satellite EDUs obtain lower w(A)proportionally to their rhetorical importance. 

Let P=(Π, Δ) be a DeLP program and L a ground literal. A defeasible derivation of L from P consists 
of a finite sequence L1, L2,…, Ln of ground literals, such that each literal Li is in the sequence because: 

1. L1 is a fact in Π, or 
2. there exists a rule Ri in P (strict or defeasible) with head Li and body B1, B2,…,Bk and every 

literal of the body is an element Li of the sequence appearing before Lj (j<i). 
 
Let h be a literal, and P=(Π, Δ) a DeLP program. We say that <A, h> is an argument for h, 

if A is a set of defeasible rules of Δ, such that: 



1. there exists a defeasible derivation for h from (Π ∪ A); 
2. the set (Π ∪ A) is noncontradictory; and 
3. A is minimal: there is no proper subset A0 of A such that A0 satisfies conditions (1) and (2). 

 
Hence an argument <A, h> is a minimal noncontradictory set of defeasible rules, obtained from a 
defeasible derivation for a given literal h associated with a program P. 

The generated DLP is executed within a defeasible reasoning environment which is the SWI-
Prolog extension. Each rule is treated as an argument, and conflicts among arguments give rise to a 
dialectical structure that determines which conclusions are warranted under a chosen semantics (e.g., 
grounded or preferred extension). 

The logical conclusions derived by the solver are compared with the LLM’s original verbal output. 
If both converge (e.g., both conclude immune arthritis), the LLM’s reasoning is considered grounded. 
If they diverge (e.g., solver: immune arthritis, LLM: gout), the discrepancy signals a reasoning 
hallucination—a claim unsupported by the formal reconstruction of its own reasoning. 

We represent a quantitative bipolar argumentation framework (QBAF [4]) denoted as a quadruple 
⟨A,R−,R+,τ⟩ via DeLP with discourse features indicating an argument strength.  This framework 
includes a finite set of arguments A, disjoint binary relations of attack R− ⊆ A × A and support R+ 
⊆ A×A, and argument strength function τ ∶ A → 𝕀.  

Gradual semantics recursively compute an argument’s dialectical strength by combining its base 
score with the aggregated strengths of its attackers and supporters. Given a gradual semantics, such 
as DF-QuAD [4], denoted σ, each argument α ∈ A obtains a strength σ(α)∈	𝕀.  ValidArgLLM combines 
discourse-based argument strength with gradual argument semantics in the following way: 

1. LLM produces an argumentation tree B whose root is x. Every other node is an argument 
generated by G. Every node, has a single attacker and one supporter argument pointing 
to it.  

2. Intrinsic argument strength attribution E(B) → Q assigns a base score Q to every node 
via some evaluator model E. 

3. Argumentative strength calculation Σ(Q) → Q(x) applies a gradual semantics σ to add the 
argument strength to discourse strength, starting from the root claim. Τ = σ + w(x). 

4. Claim verification prediction g(Q(x)) → 𝕀 predicts the final result: the claim is true when 
Q(x)≥0.5 or false otherwise.  
 

The strength aggregation function is defined as 𝜎:	𝕀*→ 𝕀, where for a permutation of arguments 
S=(v1, . . . , vn) ∈ 𝕀*: if n = 0 ∶ 𝜎(S) = 0 ; if n = 1 ∶ 𝜎(S) = v1; if n = 2 ∶ 𝜎(S) = f (v1,v2) 

if n > 2 ∶ 𝜎(S) = f (s(v1, . . . ,vn-1),vn) with the base function f ∶	𝕀 ×	𝕀 →	𝕀 defined, for v1,v2 ∈	𝕀, as: 

 f(v1,v2) = v1+ (1−v1)⋅v2 = v1+v1 − v1⋅v2.  

Thus, the base function expresses sequences of strengths of attackers or supporters by s, 
proportionally increasing the attacking or supporting arguments’ strength towards 1 [4]. 



4. Enabling DeLP with Argument Strength Computation  

 
Figure 2: ValidArgLLM system architecture 

 
Fig. 2 illustrates a hybrid neuro-symbolic diagnostic reasoning pipeline where an LLM and a 

Defeasible Logic Programming (DeLP) reasoning engine work together to verify or refute an LLM-
generated medical diagnosis. The goal of the architecture is to ensure that an LLM’s diagnostic 
answer (for example, “The patient has gout”) is not only linguistically plausible but also logically 
justified and consistent with a structured medical ontology. If the logical reasoning pipeline cannot 
defeat the diagnosis claim, it is confirmed; otherwise, the LLM answer is marked unconfirmed. 

The ValidArgLLM‘s workflow is as follows: 

1. User Input. The process begins with a user request, such as asking the model to provide a diag-
nosis. 

2. LLM Generates Initial Answer. The LLM processes the request and outputs an initial diagnosis 
or conclusion (e.g., “The disease is gout”). 

3. Ontology and Discourse Setup. A textual ontology of medical knowledge (rules, relationships, 
symptoms, conditions) and a discourse parser are available. The discourse parser identifies rhe-
torical relations in the text — for instance, nucleus (main facts) and satellite (contextual or defea-
sible facts). Nucleus → “Must” clauses (non-defeasible rules) and Satellite → “Should” clauses 
(defeasible rules) 



4. LLM forms ontology representation, transforming textual information into a rule-based ontology 
in the DeLP format — essentially translating natural-language reasoning into structured logical 
rules. 

5. Conversion to defeasible logic. The LLM converts these rules into regular (strict) or defeasible 
(soft) clauses depending on their role in the discourse (main vs. secondary information). 

6. Building logical representation of the user request. The system formalizes the user’s question 
and the LLM’s proposed answer as a set of logical facts that can either be defeated or supported 
by the ontology. 

7. Discourse representation integration. The LLM builds discourse representations of both the user 
request and the ontology, capturing which arguments are more or less important (nucleus/satel-
lite weighting) and how they relate contextually. 

8. Argumentation Pipeline. The argumentation module computes attack relations among rules 
(contradictions or counter-arguments), dialectical trees, representing possible argumentative di-
alogues between supporting and opposing claims, and defeasibility outcomes, determining 
whether a claim survives all counter-arguments 

9. Comparison and validation. The LLM compares its original diagnosis with the verified diagnosis 
obtained through the logical argumentation process. 

10. Decision. If the logical reasoning shows that the diagnosis claim is not defeated, it is confirmed 
as valid. If the claim is defeated by stronger counter-arguments from the ontology, it is marked 
unconfirmed. 
 

This architecture combines: 

• Neural generation (LLM) → producing hypotheses and natural-language reasoning. 
• Symbolic verification (DeLP) → testing those hypotheses for logical soundness. 
• Discourse analysis → weighting arguments by rhetorical importance. 

 
Together, these components produce a contestable and interpretable diagnostic system, where 

the model’s answer can be justified or overturned through structured reasoning. 

The demo of argument-based LLM verifier is available at Tool Series for LLM Verification (Figure 
3 and Figure 4). 

https://bgalitsky.github.io/LLM-verification-tools/


Figure 3: A Tool series for logic-based LLM verification (on the left) and argumentation tool (on 
the right) 
 

 

Figure 4: Argument pipeline interface  



5. Evaluation  

We evaluate on three claim-verification datasets that we derive from existing QA/NLI resources: 
TruthfulHalluc (from TruthfulQA [13]), MedHalluc (from MedQA; [15] and PubMedQA; [14]), and 
eSNLI_Halluc (from eSNLI; [17]). For each source, we convert items into question–answer (QA) style 
pairs and then inject controlled inconsistencies by appending randomly sampled, semantically 
incompatible attributes (facts, circumstances, symptoms). These perturbations create positive 
“hallucination” cases; unmodified items serve as negatives. 

     Our focus is hallucination detection for model answers using argumentation analysis as a 
validator. The validator assesses whether an answer’s central claim is defeated by the argument-
validation system. We define a hallucination as a claim whose defeat probability exceeds 0.5. This 
cautious threshold is motivated by safety-critical domains (health, legal, finance), where we prefer 
to reject answers that are defeated with substantial probability. 

     Dataset size and prevalence are as follows. Each hallucination dataset contains 1,000 QA pairs 
with a 50% hallucination rate (balanced positives/negatives). In the original source datasets the 
natural hallucination rate is <1%; our perturbation procedure raises prevalence to enable meaningful 
detection metrics and comparability with prior LLM-argumentation studies. 

     We report F1 for hallucination prediction in Table 2. It lists: (i) a GPT-5 baseline; (ii) our claim-
verification tool that uses argument validation; and (iii) a discourse-aware variant where argument 
strength additionally incorporates discourse cues beyond the default computation. This final column 
shows the incremental gains from discourse-informed argument strength. 

Table 2: Evaluation results of hallucination detection 
 GPT-5 GPT-5 +Vali-

dArgLLM 
GPT-5 + ValidArgLLM + discourse-based argu-

ment strength assessment 
TruthfulHalluc 0.53 0.72 0.78 
MedHalluc 0.61 0.77 0.80 
eSLNI_Halluc 0.49 0.68 0.67 

 
Our MedHalluc results are broadly comparable to prior work: ArgMed-Agents with GPT-4 reports 

0.91 predictive accuracy [16]; ArgLLM with GPT-4o reports 0.80 (Friedman et al., 2015); and an 
ensemble of ArgLLMs achieves 0.73 [5]. That said, these systems estimate claim truthfulness, 
whereas our study predicts hallucination via whether a claim is defeated by the argument-validation 
module, so the targets differ and the numbers are not strictly comparable. 

6. Related Work 

The approach of Bezou-Vrakatseli (2023) [1] leverages argument schemes—structured templates 
that capture common patterns of reasoning—and their associated critical questions, which probe the 
assumptions, exceptions, and contextual factors underlying those schemes. By using these as a 
framework for classifying and analyzing arguments, the method provides a semantically richer 
alternative to surface-level textual analysis. In the context of LLM verification, this enables 
evaluators to assess not just whether an LLM produces grammatically or factually correct responses, 
but whether it constructs logically sound, ethically nuanced arguments that align with established 
norms of rational discourse. The critical questions act as a diagnostic tool, revealing whether the 
model truly understands the reasoning behind ethical positions or is merely mimicking plausible-
sounding rhetoric. 

This verification strategy directly supports the project’s broader goal of fostering ethical debate 
between humans and AI systems. By evaluating LLMs through the lens of argumentation theory, 



researchers can determine how well these models engage in principled reasoning about moral 
dilemmas, identify potential biases or logical fallacies, and measure their capacity to both construct 
and critique ethical arguments. Ultimately, this contributes to “ethics for AI”—ensuring AI systems 
behave responsibly—and “AI for ethics”—using AI as a tool to help humans reflect on and refine their 
own ethical reasoning. Such a dual focus positions LLMs not just as information providers, but as 
collaborative partners in navigating complex moral questions. 

Earlier approaches to argumentative reasoning, such as ArgLLMs [3], determined argument 
quality scores using the confidence of the argument-generating model itself. These systems treated 
the model’s internal probability estimates as proxies for argument plausibility, thereby grounding 
evaluation in model-intrinsic uncertainty rather than discourse-level coherence. Subsequent 
research adopted reward-model-inspired scoring [8], introducing an external evaluator LLM to 
assign quality scores. Two main setups were explored; (i) estimated Arguments, where supporting 
arguments were scored while the root claim remained fixed at 0.5; and (ii) estimated All, where both 
root claims and subordinate arguments were assessed via discrete truth and certainty labels mapped 
to continuous scores. Also, [5] showed that MArgE can significantly outperform single LLMs, 
including three open source models (4B to 8B parameters), and existing ArgLLMs, as well as prior 
methods for unstructured multi-LLM debates. 

These techniques diversified the evaluation signal and reduced model-specific bias but remained 
primarily semantic—focused on the content of individual arguments rather than their rhetorical role 
in a discourse structure. In contrast, our work introduces a discourse-based scoring framework that 
evaluates arguments in the context of their rhetorical relations and structural significance within the 
discourse tree. Instead of relying solely on model-elicited or reward-style judgments, scores are 
inferred from the hierarchical organization of argumentative elements—linking claims, evidence, and 
counterarguments through nucleus–satellite dependencies and coherence relations. This approach 
enables the system to weight contributions based on discourse salience rather than raw textual 
confidence, thereby capturing how strongly each component supports or undermines the overall 
claim. 

While reward-model scoring focuses on factual adequacy and semantic quality, our discourse-
based approach emphasizes relational justifiability, integrating structural reasoning to yield a more 
explainable and linguistically grounded measure of argument strength. 

7. Conclusions 

Argument analysis tool belongs to the series of LLM verification tools including logic 
programming, answer set programming, and rule attenuation (Fig. 3) All these tools rely on discourse 
analysis to determine rule structure and weights to build a logic program representation. We 
observed that LLMs can be reliably verified by discourse-based argumentation analysis. 

Our evaluation demonstrates that integrating argument-validation into LLM pipelines 
substantially improves hallucination detection across three newly constructed claim-verification 
datasets: TruthfulHalluc, MedHalluc, and eSNLI_Halluc. By transforming QA/NLI sources into 
structured QA pairs and injecting semantically incompatible attributes, we create balanced datasets 
where hallucinations correspond to claims defeated by an argumentation engine. Using a defeat-
probability threshold of 0.5—chosen for safety-critical settings—the argument-validation module 
yields consistent gains over a GPT-5 baseline. Across datasets, ValidArgLLM increases F1 by +0.15–
0.20, with the largest improvements observed in medically grounded reasoning tasks where 
unsupported causal links and symptom inferences are more common. These results highlight that 
logical defeat, rather than surface-level confidence, provides a more robust criterion for identifying 
model errors in multi-step explanatory contexts. 



Adding discourse-aware argument strength further strengthens performance for domains where 
rhetorical centrality matters. Incorporating nucleus–satellite weighting and discourse-relation cues 
yields additional gains of +0.03–0.06 F1, reaching 0.78 on TruthfulHalluc and 0.80 on MedHalluc. 
While superficially comparable to prior systems such as ArgMed-Agents (0.91), these approaches 
estimate truthfulness, whereas our model predicts hallucination by determining whether the 
answer’s core claim is logically defeated. The distinction is crucial: truth-prediction assumes access 
to ground-truth facts, whereas defeat-based hallucination detection evaluates internal argumentative 
consistency. Our results thus establish discourse-augmented argumentation analysis as an effective, 
model-agnostic verification layer for improving LLM reliability in high-stakes reasoning 
environments. 

Declaration on Generative AI 

During the preparation of this work, the author used GPT 5 in order to: grammar and spelling 
check, paraphrase and reword. After using this tool/service, the author(s) reviewed and edited the 
content as needed and take(s) full responsibility for the publication’s content. 

References 

[1] Bezou-Vrakatseli E (2023) Evaluation of LLM Reasoning via Argument Schemes. Online 
Handbook of Argumentation for AI, Vol.4 p 1 

[2] Louis A and Nenkova A. 2012. A Coherence Model Based on Syntactic Patterns. In Proceedings 
of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and 
Computational Natural Language Learning, pages 1157–1168, Jeju Island, Korea. Association for 
Computational Linguistics. 

[3] Freedman, G.; Dejl, A.; Gorur, D.; Yin, X.; Rago, A.; and Toni, F. 2025. Argumentative Large 
Language Models for Explainable and Contestable Claim Verification. Proceedings of the AAAI 
Conference on Artificial Intelligence, 39(14): 14930–14939.  

[4] Rago, A.; Toni, F.; Aurisicchio, M.; and Baroni, P. 2016. Discontinuity-Free Decision Support 
with Quantitative Argumentation Debates. In Principles of Knowledge Representation and 
Reasoning: Proceedings of the Fifteenth Interna tional Conference, KR 2016, 63–73.  

[5] Ng MP and Junqi Jiang and Gabriel Freedman and Antonio Rago and Francesca Toni. MArgE: 
Meshing Argumentative Evidence from Multiple Large Language Models for Justifiable Claim 
Verification, arxiv 2508.02584 

[6] Arcuschin, I.; Janiak, J.; Krzyzanowski, R.; Rajamanoharan, S.; Nanda, N.; and Conmy, A. 2025. 
Chain-of-thought rea soning in the wild is not always faithful. ICLR 2025 Reasoning and 
Planning for LLMs Workshop.   

[7] Barez, F.; Wu, T.-Y.; Arcuschin, I.; Lan, M.; Wang, V.; Siegel, N.; Collignon, N.; Neo, C.; Lee, I.; 
Paren, A.; et al. 2025. Chain-of-thought is not explainability. Preprint, arXiv.  

[8] Lambert, N.; Pyatkin, V.; Morrison, J.; Miranda, L. J. V.; Lin, B. Y.; Chandu, K. R.; Dziri, N.; Kumar, 
S.; Zick, T.; Choi, Y.; Smith, N. A.; and Hajishirzi, H. 2025. Reward Bench: Evaluating Reward 
Models for Language Modeling. In Findings of the Association for Computational Linguis tics: 
NAACL 2025, 1755–1797. 

[9] Kaminski, Roland & Wanko, Philipp. (2017). A Tutorial on Hybrid Answer Set Solving with 
clingo. In: Reasoning Web. Semantic Interoperability on the Web (pp.167-203) 

[10] Garcia, A., Simari, G., 2004. Defeasible logic programming: an argumentative approach. Theory 
Pract. Log. Program. 4, 95–138. 

[11] Ferrag MA, Norbert Tihanyi, Merouane Debbah, Reasoning beyond limits: Advances and open 
problems for LLMs, ICT Express, 2025. 

[12] Galitsky B (2025) Enabling large language model with plug-and-play symbolic reasoning 
components. In Health Apps of Neuro-symbolic AI, Elsevier pp 59-80.  

[13] Lin S, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring how models mimic human 
falsehoods. CoRR, abs/2109.07958, 2021. 

[14] Jin, B. Dhingra, Z. Liu, W. W. Cohen, and X. Lu, “Pubmedqa: A dataset for biomedical research 
question answering,” 2019. 



[15] Jin D, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What 
disease does this patient have? A large-scale open domain question answering dataset from 
medical exams. CoRR, abs/2009.13081, 2020. 

[16] Hong S, Liang Xiao, Xin Zhang, Jianxia Chen (2024) ArgMed-Agents: Explainable Clinical 
Decision Reasoning with LLM Disscusion via Argumentation Schemes 

[17] Camburu O-M, Tim Rocktäschel, Thomas Lukasiewicz, Phil Blunsom (2018) e-SNLI: Natural 
Language Inference with Natural Language Explanations. Advances in Neural Information 
Processing Systems 31 (NeurIPS 2018) 

[18] Ruiz-Dolz R and Lawrence J. 2023. Detecting Argumentative Fallacies in the Wild: Problems and 
Limitations of Large Language Models. In Proceedings of the 10th Workshop on Argument 
Mining, pages 1–10, Singapore. Association for Computational Linguistics 

[19] Xu Z, Sanjay Jain, Mohan Kankanhalli (2024) Hallucination is Inevitable: An Innate Limitation 
of Large Language Models. arXiv:2401.11817 

[20] Banerjee S, Ayushi Agarwal, Saloni Singla (2024) LLMs Will Always Hallucinate, and We Need 
to Live With This. arXiv:2409.05746 

[21] Gutiérrez A, Stella Heras and Javier Palanca (2024) Detecting disinformation through 
computational argumentation techniques and large language models. CMNA 2024  

[22] Musi E and Rudi Palmieri (2024) The Fallacy of Explainable Generative AI: evidence from 
argumentative prompting in two domains. CMNA 2024 

[23] Prakken H (2024) On Evaluating Legal-Reasoning Capabilities of Generative AI. CMNA 2024   


