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Abstract

End-to-end argument mining aims to automatically identify argumentative components and their relationships
within unstructured text. This paper investigates the effectiveness of generative large language models (LLMs) for
this task on student essays from the Argument-annotated Essays Corpus (AAEC). We compare two strategies: a
Pipeline approach, which separates component and relation identification into sequential stages, and a Multi-Task
Learning (MTL) framework, which jointly models all subtasks. Both approaches employ the TANL tagging format
to represent argumentative components and their relations. Experiments with LLaMA3 and Mistral models
show that the Pipeline consistently outperforms MTL, demonstrating its advantage in structuring argumentative
discourse.
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1. Introduction

Argumentation is a fundamental skill that empowers individuals to present and defend claims through
evidence and reasoning. For students, mastering this skill is essential for developing critical thinking
and effective communication. Argument Mining (AM), a specialized area within Natural Language
Processing (NLP), seeks to automate the identification and structuring of arguments in text, approx-
imating human-like reasoning [1]. By breaking down arguments into subtasks—such as identifying
argumentative spans, classifying components, and determining relationships (typically support or
attack)—AM constructs structured argumentative frameworks [2].

In recent years, argument mining has gained significant traction across diverse domains. From
analyzing scientific literature [3] and enhancing information retrieval systems [4] to enabling automated
essay scoring [5] and advancing dialogue analysis [6], its applications are both broad and impactful.
As the field continues to evolve, the development of algorithms capable of recognizing and analyzing
argument structures with human-like precision remains a central goal, driving innovation in intelligent
systems and beyond.

The Argument-annotated Essays Corpus (AAEC), introduced by Stab and Gurevych [7], is a widely
used dataset for evaluating argument mining approaches. It models student essays as hierarchical
trees of claims and premises. End-to-end argument mining (AM) aims to automatically transform
unstructured argumentative text into a structured representation by identifying both the argument
components (e.g., claims, premises) and the relationships between them. To address the complexity of
this task, two methodological paradigms have emerged. The Pipeline approach decomposes AM into
sequential subtasks, training specialized models for each step [7, 8]. Conversely, Multi-Task Learning
(MTL) employs a unified neural architecture to jointly model all AM subtasks, enabling shared learning
across tasks.learning across tasks.

Recent advancements in Large Language Models (LLMs), such as LLaMA [9], Mistral [10], and Falcon
[11], have revolutionized natural language processing. These models, which are based on Transformer
frameworks, employ self-attention mechanisms to efficiently capture contextual relationships between
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tokens. They excel in text comprehension, generation, and adaptability across self-supervised, multi-
task, and few-shot learning settings.

End-to-end argument mining (AM) is a challenging task due to the non-linear and complex discourse
structure of argumentative texts, as well as the scarcity of annotated datasets. These challenges
necessitate innovative approaches to effectively identify argument components and their relationships.
In this study, we investigate the efficacy of generative large language models (LLMs) for end-to-end
AM by addressing the following research questions:

1. How effective are decoder-only architectures of LLMs in addressing the subtasks of argument
mining?

2. To what extent can pipeline and multi-task learning approaches enhance the performance of pre-
trained LLMs for argument mining, and which strategy is more effective for capturing discourse
structure?

To address these questions, we apply and compare the following strategies for argument mining:

+ Pipeline Approach: We divide the subtasks of argument mining into two consecutive steps. The
first step (component identification) involves segmentation detection and component classification,
while the second step (relation identification) focuses on relation detection and classification.

« MTL with TANL: We implement a unified framework using Translation between Augmented
Natural Languages (TANL) [12], which reframes structured prediction as a text-to-text task.
This approach has achieved state-of-the-art results in semantic parsing and is adapted here for
argument mining.

2. Related Work

2.1. Argument Mining

The process of argument mining involves several key subtasks:

« Text Segmentation: Identifying the boundaries of argumentative segments in a given text
[13, 14].

« Component Classification: Classifying argumentative segments into categories such as claims
and premises [15, 16].

+ Relation Detection: Identifying and classifying relationships between propositions, such as
support or attack [17, 18].

While most works focus on individual subtasks, relatively few address the end-to-end AM problem,
which aims to construct argumentation structures directly from unstructured text. Two common
approaches are used for end-to-end argument mining:

Pipeline Approach: This approach decomposes the AM task into sequential subtasks. For instance,
Persing and Vincent proposed a pipeline method consisting of two stages: first identifying argument
components and then classifying the argumentative relations between them. Their approach used
Integer Linear Programming (ILP) to perform joint inference over the outputs of argument compo-
nent identification and relation identification classifiers, incorporating global consistency constraints.
However, their results were moderate, achieving F1 scores of 47.1 for component identification and
classification and 12.9 for relation identification and classification.

Stab and Gurevych [7] adopted a sequence labeling approach at the token level using a Conditional
Random Field (CRF) and tow classifiers based on Support Vector Machines (SVM) for component
identification task and relation identification task.A joint model based on ILP is used to optimizes the
outcomes the two classifier to detect argumentation structures in persuasive essays.



Multi-Task Learning (MTL): This approach mitigates the limitations of the pipeline method, such
as error propagation and the rigid constraints of Integer Linear Programming (ILP), by jointly learning
multiple subtasks within a unified framework.

Eger et al. [19] proposed two models: BLCC and LSTM-ER. BLCC approaches argument mining
as a sequence tagging problem, whereas LSTM-ER integrates tree-structured and sequential LSTM
architectures for end-to-end relation extraction. On the AAEC dataset, LSTM-ER achieved an F1 score
of 66.21 for component identification, outperforming BLCC’s score of 63.23. For relation identification,
LSTM-ER achieved an F1 score of 29.59, while BLCC scored 34.82.

Morio et al. [20] proposed a multi-task learning framework built on a biaffine architecture and
longformer model. The framework jointly identifies the argument component spans, their types (e.g.,
Claim/Premises), and the relations between these components along their relation types.They proposed
two models: the ST model, trained on a single dataset, and the MT model, trained on multiple auxiliary
corpora and fine tuned on the target dataset. On the AAEC dataset, ST model achieved F1 scores of
75.54 for argument component identification and classification and 55.17 for relation identification and
classification while MT model achieved comparable scores.

Closely related to our work, there are several studies that eliminate the need for dependency parsing
to frame the complex argumentative structure. Bao et al. [21] proposed a novel generative framework
that frames the end-to end argument mining as a simple sequence-to-sequence generation task. The
framework employs the pre-trained sequence-to-sequence language model (BART) with two mech-
anisms: a Constrained Pointer Mechanism (CPM), which acts as an auxiliary task during training
and a constrained decoding method during inference, guiding the generation to valid output; and a
Reconstructed Positional Encoding (RPE) to mitigate the order biases introduced by the autoregressive
generation for modeling long-range dependencies. On the AAEC dataset, their approach achieved
F1 scores of 75.94 for argument component identification and classification and 50.08 for relation
identification and classification.

Similarly, Kawarada et al. [22] redefined argument mining as a structured prediction task using
the TANL framework [12]. They utilized FLAN-T5 XXL to generate structured outputs by annotating
argumentative spans, components, and relations. Their method achieved state-of-the-art results across
benchmark datasets, including the Argument-annotated Essays Corpus (AAEC), AbstRCT, and the
Cornell eRulemaking Corpus (CDCP). Specifically, on the AAEC dataset, they reported F1 scores of
80.15 for component identification and 61.12 for relation identification.

2.2. Generative Models

Large Language Models (LLMs) have garnered substantial attention within the artificial intelligence
community due to their advanced capabilities in processing, comprehending, and generating human-
like text. These models are trained on extensive textual corpora using autoregressive architectures,
which generate text by predicting one token at a time based on the preceding sequence. Built on the
Transformer framework [23], LLMs utilize self-attention mechanisms to efficiently capture dependencies
between tokens, regardless of their position in the input sequence. Tokens, the fundamental units of
text, may represent words or subword fragments depending on the tokenization strategy. By iteratively
predicting subsequent tokens, LLMs can uncover intricate linguistic patterns.

Several studies have explored the application of generative models in computational argumentation.
Chen et al. [24] investigate the capabilities of large language models (LLMs), such as ChatGPT, Flan,
and LLaMAZ2, in identifying and extracting arguments from text, as well as in generating counterargu-
ments. Gilardi et al. [25] highlight the potential of employing ChatGPT as a tool for text-annotation
tasks by evaluating its performance across four tasks: assessing content relevance, detecting stances,
identifying topics, and recognizing general frames. Their study compares ChatGPT’s annotations
against those of crowd workers and expert annotators, demonstrating its competitive accuracy and
efficiency. Mirzakhmedova et al. [26] examined the use of large language models (LLMs), specifically
GPT-3 and PaLM 2, to assess argument quality. using a zero-shot learning approach. Recent work
on Relation-based Argument Mining (RbAM) by Gorur et al. [27] evaluates few-shot prompting for
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Figure 1: Overview of the pipeline approach (A) and Multi Task Learning (B)

relation-type classification over argument pairs and shows that instruction-tuned LLMs can outperform
strong RoBERTa baselines on several benchmarks.

Although prior work demonstrates the potential of generative models in specific argument mining
tasks, a unified approach that comprehensively addresses all subtasks of argument mining remains
underexplored. Developing such an integrated framework is crucial to advance the robustness and
applicability of large language models in computational argumentation.

3. Proposed Method

This study explores end-to-end argument mining using two methodologies: Multi-Task Learning
(MTL) and a Pipeline approach (depicted in Figure 1). We employ open-source generative language
models—LLaMA 3 (8B), which is proficient in causal language modeling, and LLaMA 3-instruct (8B),
an instruction-following fine-tuned variant. Additionally, we use Mistral 7B-Instruct v0.3, a 7 billion
parameter pre-trained and fine-tuned model known for its computational efficiency and cost-effective
inference. We employ the tagging frameworks proposed by Paolini et al. [12]. Specifically, we use their
entity augmentation format to annotate argumentative segments (e.g., Major Claim, Claim, Premise)
and their joint entity-relation format to label argumentative relations (Support/Attack). These formats
are used to fine-tune the base models. Both the Pipeline and Multi-Task Learning (MTL) approaches
use identical inputs and produce the same augmented essay output. In this section, we focus on the
Pipeline approach, which follows the traditional two-stage process for argument mining. First, the
system detects and categorizes argumentative segments within the raw essay as Major Claims, Claims,
or Premises. Then, it evaluates these segments to identify and classify the relationships between them
as either supporting or attacking.

3.1. Stage one

Given a raw essay x consisting of n tokens, z = [x1, ..., ], the objective of this stage is to perform two
argument mining subtasks simultaneously: segment identification and component classification. Each
argumentative segment is represented as a 3-tuple (¢, s, €), where ¢ denotes the type of the segment
(Major Claim, Claim, or Premise), and s and e represent the indices of the first and last tokens of the
segment. The output of this stage is an essay with tagged components, following the format used
in TANL’s entity extraction (Figure 3). To ensure a structured representation, each segment type is
assigned a number based on its order of appearance. For example, the first detected claim is labeled
Claim 1, the second Claim 2, and so on. This numbering scheme facilitates tracking and referencing
argument components in the second stage.



3.2. Stage two

Given the augmented essay from the previous stage, each argumentative segment is identified in the
form
[segment content | ¢,],

where the brackets indicate the boundaries of the argumentative segment, and
¢ € C' = {Major Claim, Claim, Premise}.

The objective of this stage is to identify argumentative relationships and classify them by type. Each
identified relationship is represented as a 3-tuple:

(5, i),

where ¢ denotes the source argument component, c%t represents the target argument component,
and r specifies the relationship type. The indices n and m are defined as

ne{l,2,....N}, me{l,2,....M}, n#m,

where N and M represent the total number of argument components of type ¢ € C, ensuring that the
source and target components are distinct. The relationship type is drawn from

r € R = {Support, Attack}.

To structure the argumentative relationships within the original essay, we adapt the output format of
TANL’s joint entity and relation extraction task. The encoded format is expressed as

[segment content | ¢ | r = 8],

After predicting the argumentative structure of an essay, we apply the alignment method proposed
by Paolini et al. [12]. In the Pipeline, alignment is applied at every stage, while in the MTL approach, it
is applied before generating the final output. This method reduces the impact of adding or removing
words or phrases between detected argumentative segments, which could otherwise shift their start
and end positions.

4. Experiments

4.1. Dataset

We evaluate both approaches on the Argument-annotated Essays Corpus (AAEC) to facilitate the study
of argumentation structures in persuasive essays. AAEC consists of 402 structured essays on various
controversial topics (Table 1 for more details). Of the 402 essays, 322 are set aside for the train set and
80 for the test set. The statistics of the PE dataset are given in Table I. Each essay is annotated with
argumentative discourse units (ADUs), which are segments of text that represent individual components
of an argument (Major Claim, claim, or premise) and the relationships between ADUs (Support, Attack).
The argumentative structure is represented as a hierarchical tree. We fine-tuned and evaluated all
models on the essay level rather than on the paragraph level.

4.2. Prompting and Input Preparation for Fine-Tuning

We employ the open-source models LLaMA-3 (8B), LLaMA-3-Instruct (8B), and Mistral-7B-Instruct v0.3
as our base large language models to assess their performance in automating argument mining tasks
using both pipeline and MTL approaches. All models are run in an 8-bit quantized configuration, with
each weight stored in 8 bits on the GPU. For each approach, we report the average scores from three
runs on the test set.



INPUT
First of all, through cooperation, children can learn about interpersonal skills which are significant in the future life of all

students. What we acquired from teamwork is not only how to achieve the same goal with others but more importantly, how
to get along with others. During the process of cooperation, children can learn about how to listen to opinions of others, how
to communicate with others, how to think comprehensively, and even how to compromise with other team members when
conflicts occurred. All of these skills help them to get on well with other people and will benefit them for the whole life.

i

First of all, [ through cooperation, children can learn about interpersonal skills which are significant in the future life of all
students | Claim 1 ]. [ What we acquired from teamwork is not only how to achieve the same goal with others but more
importantly, how to get along with others | Premise 1]. [ During the process of cooperation, children can learn about how to
listen to opinions of others, how to communicate with others, how to think comprehensively, and even how to compromise
with other team members when conflicts occurred | Premise 2 ]. [ All of these skills help them to get onwell with other people
and will benefit them for the whole life | Premise 2],

STAGE1

(OUTPUT)

[(Claim 1, 4, 19), (Premise 1, 24, 26), (Premise 2, 51, 41), (Premise 3, 93, 21)]

i

First of all, [ through cooperation, children can learn about interpersonal skills which are significant in the future life of all
students | Claim 1 | Support = Major Claim ]. [ What we acquired from teamwaork is not only how to achieve the same goal
with others but more importantly, how to get along with others | Premise 1 | Support = Claim 1 ]. [ During the process of
cooperation, children can learn about how to listen to opinions of others, how to communicate with others, how to think

STAGE 2
(OUTPUT)
comprehensively, and even how to compromise with other team members when conflicts occurred | Premise 2 | Support =

Claim 1]. [ All of these skills help them to get on well with other people and will benefit them for the whole life | Premise 3 |
Support=Claim1].

[(Claim 1, Major Claim, Suppert), (Premise 1, Claim 1, Support) , (Premise 2, Claim 1, Support) , (Premise 3, Claim 1,
Support]]

Figure 2: Example generating augmented essay in the pipeline approach

Table 1

AAEC statistics
Items Statistics
Essays 402
Paragraphs 1,833
Sentences 7,116
Tokens 147,271
Major Claims | 751
Claims 1,506
Premises 3,832

To guide the models in performing argument mining subtasks, we employ a prompt template adapted
from Stanford Alpaca [28], which comprises instruction, input, and output sections (see Appendix A).

We evaluate the model’s performance on two types of input: (1) raw essay text and (2) text aug-
mented with special tokens indicating paragraph functions (see Figure 3) The special tokens used are:
<intro> and </intro> to mark the introduction paragraph, <body> and </body> to mark the body
paragraph(s), and <conc> and </conc> to mark the conclusion paragraph. To address the computational
demands of fine-tuning large language models (LLMs), we employ Low-Rank Adaptation (LoRA) [29], a
parameter-efficient fine-tuning (PEFT) method. LoRA retains the weights of the original model and
integrates trainable low-rank matrices into the transformer layers to simulate weight adjustments. This
approximation, based on the principle that the adaptation process has a low “intrinsic rank,” reduces
the number of trainable parameters to under 1% while maintaining performance levels comparable to
full fine-tuning.

4.3. Evaluation Criteria

We assessed the performance of component and relation classification using micro F1 scores, following
the approach by Persing and Ng [30]. For component classification, a true positive occurs when a
predicted argumentative component matches both the type (e.g., claim, premise) and boundary of a
gold standard component. For relation classification, a true positive is counted when the predicted



Plain With the rapid development in the standard of people's lives, increasing numbers of animal experiments are being done for new medicines and

Essay foods, for instance. Some opponents say that it is cruel to animals and nature, however, | believe that no sensible person will deny that itis a
dramatically cruel activity to humanity if the latest foods or medicines are allowed to be sold without testing on animals. In my essay, | will
discuss this issue from two aspects.

First of all, as we allknow, animals are friendly and vital for people, because if there are no animals in the waorld, the balance of nature will break
down, and we, humans, will die out as well. The animal experiments accelerate the vanishing of some categories of animals. In other words,
doing these various tests is a hazard to the future of humans and the next generation.

Though animal experiments have negative impacts on the natural balance, it is necessary to ensure that people can live long lives. To begin
with, itis indisputable that every new kind of food or pill may be noxious, and scientists must do something to ensure that the new invention
benefits people instead of making peaple ill or even dying. The new foods or medicines are invented to promote the quality of human life. Thus,
even if they are volunteers; they cannot take the place of animals to test the new foods or medicines. Furthermore, it alse has potential harm
to human health without any testing.

To sumup, | reaffirm that although there are some disadvantages of animal testing, the merits of animal experiments still outweigh the demerits.

Essay <intro>With the rapid development of the standard of people's life, increasing numbers of animal experiments are done, new medicines and
w|th foods, for instance. Some opponents says that it is cruel to animals and nature, however, | believe that no sensible person will deny thatitis a
A dramatically eruel activity to humanity if the latest foods or medicines are allowed to sold without testing on animals. In my essay, | will
speCIal discuss this issue from twofold aspects.</intro>
to kens <body>First of all, as we all know, animals are friendly and vital for people, because if there are no animals in the world, the balance of nature
will break down, and we, human, will die out as well. The animal experiments accelerate the vanishing of some categories of animals. In other
words, doing this various testing is a hazard of human's future and next generation.</body>
<bedy>Though animal experiments have negative impact on the natural balance, it is necessary to make sure that people can live a long life.
To begin with, it is indisputable that every new kind food or pill may be noxious, and scientists must do something to ensure that the new
invention benefits people instead of making people ill or even dying. The new foods or medicines are invented to promate the quantity af
human's life. Thus, even if they are volunteers; they cannot take the place of animals to test the new foods or medicines. Furthermore, italso
has potentially harm for human's health without any testing. </body>
<conc>To sum up, | reaffirm that although there js some disadvantages of animals' profits, the merits of animal experiments still outweigh the
demerits.</conc>

Figure 3: raw essay vs essay with added special tokens

source and target components correspond exactly to those in the gold annotations and share the same
relation type (e.g., Support, Attack).

4.4. Implementation Details

For this study, both the Multi-Task Learning (MTL) framework and the pipeline approach utilized
a unified set of hyperparameters in all base language models (Table 6). Specifically, we applied a
batch size of 8, trained for 3 epochs, and enabled early stopping. Optimization was carried out using
pagedadamw32bit, with a learning rate of 0.0002, scheduled via a cosine decay strategy, alongside a
weight decay of 0.006. Additionally, we employed a warmup ratio of 0.03 to stabilize training. LoRA-
specific settings were consistently maintained, with a rank of 32, an alpha value of 64, and a dropout
rate of 0.01.

All experiments were conducted on NVIDIA A40 GPU platform using the AdamW optimizer. Training
was conducted over 10 epochs with a maximum token length of 1024. Model checkpoints were saved
every 10 training steps.

4.5. Evaluation and Results

We conducted an ablation study to assess the impact of adding special tokens that encode paragraph
roles. As shown in Table 5, this modification did not improve performance in predicting argumentative
component types, indicating that paragraph-level role encoding does not benefit generative models in
this task.

Table 4 presents the performance of the pipeline and multi-task learning approaches on the AAEC
dataset. The pipeline approach outperforms multi-task learning across all evaluated generative models
in both component and relation identification. The LLaMA-3-8B-Instruct model achieves the highest
micro F1 scores: 80.02 for component identification and 60 for relation identification.

Table 2 compares our best-performing pipeline model with prior studies that conducted end-to-end
argument mining on the AAEC dataset at the essay level. Existing methods include:

« T2TGen by Kawarada et al. [22], which frames argument mining as structured prediction using
the TANL framework and FLAN-T5 XXL.



+ BLCC and LSTM-ER by Eger et al. [19], which introduce sequence tagging and tree-structured
LSTM architectures for component and relation extraction.

« MT Model by Morio et al. [20], employing a biaffine multi-task learning framework built on
Longformer for joint modeling of components and relations.

« BART-CPM by Bao et al. [21], proposing a generative sequence-to-sequence framework with con-
strained decoding and positional encoding to model argumentative structure without dependency

parsing.
Model ACC | ARC
BLCC 63.23 | 34.82
LSTM-ER 66.21 | 29.56
ST Model 76.55 | 54.66
T2T-Gen 80.15 | 61.19
BART-CPM 75.94 | 50.08
LLaMA 3 8B (8-bit) (ours) | 80.02 | 60
Table 2

End-to-end argument mining performance on the AAEC dataset at essay level. ACC: Argument Component
Classification; ARC: Argument Relation Classification. Bold values indicate the highest micro f1 score in each
column.

As shown in Table 2, our model performs competitively with existing approaches. It achieves
strong ACC and ARC scores with the LLaMA-3-8B pipeline using 8-bit quantization, demonstrating the
efficiency and robustness of our approach.

To evaluate the second stage of our pipeline for relation classification on the AAEC dataset, we
perform an oracle analysis using annotated essays. These annotations specify the boundaries
and types of argument components in the raw text, effectively removing errors from component
identification. F1 scores are computed separately for support and attack relations, as well as an overall
F1 score. We use 10-fold cross-validation, testing the model on 10% of the dataset in each fold.
True Positives (TP), False Positives (FP), and False Negatives (FN) are aggregated across folds to
compute dataset-level F1 scores. In this binary setting, a false negative for one class is treated as a false
positive for the other.

Table 3 compares our results with those of Gorur et al.[27], who employed an instruction-tuned
LLaMA 2 70B (70 billion parameters, 4-bit precision) model for few-shot relation-type classification.
In contrast, our best system uses the much smaller LLaMA-3-8B-Instruct (8 billion parameters, 8-bit
precision) model yet achieves closely comparable performance across relation types. This clearer
comparison highlights that our relation classification framework approaches state-of-the-art few-shot
results while being significantly more parameter-efficient.

Model Support | Attack | Both
LLaMA 2 70B (4-bit) 94 52 90
LLaMA 3 8B (8-bit) (ours) 92 49 88

Table 3
F1 scores for support, attack, and overall relation prediction for each model. Bold values indicate the highest
performance in the “Both” column.

5. Conclusion and limitation

This study evaluated the Pipeline and Multi-Task Learning (MTL) approaches for end-to-end argument
mining using three generative models on the AAEC dataset. The Pipeline approach consistently
outperformed MTL in both component and relation classification, highlighting the benefits of task
decomposition and sequential processing for decoder-only architectures. While these results are



promising, future work should assess the generalizability of the Pipeline framework across diverse
datasets and domains. By separating the two main subtasks, the Pipeline design not only improves
classification performance but also supports user involvement in refining argumentative structure. This
allows users to revise predicted components before relation generation. However, this performance gain
comes at the cost of lower inference efficiency. Adapter switching and dual generation steps introduce
computational overhead that may limit real-time deployment.

6. Declaration on Generative Al

During the preparation of this work, ChatGPT was employed to assist with grammar and spelling
correction as well as paraphrasing. We thoroughly reviewed and edited the text generated with ChatGPT
and retain full responsibility for the content presented.
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A. Appendix

Model ACC ARC
MTL | Pipeline | MTL | Pipeline
LLAMA 3 (8B) 77 | 78.4 54.4 | 56.3
LLAMA 3-Instruct (8B) | 78.2 | 80.02 54.3 | 60
Mistral 7B-Instruct v0.3 | 72.1 | 73.6 441 | 47.9
Table 4

Compare the predictions made for ACC (Argument Component Classification) and ARC (Argument Relation
Classification) from MTL (Multitask learning) and pipeline approaches in terms of micro F1 scores

Model w/ Special tokens | w/o Special tokens
ACC | ARC ACC | ARC
LLAMA 3 (8B) 77.2 | 55.3 784 | 56.3
LLAMA 3-Instruct (8B) | 79 | 56.7 80.02 | 60
Mistral 7B-Instruct v0.3 | 72.8 | 46.6 73.6 | 47.9

Table 5
The effects of adding special tokens to the raw essay



Hyperparameter Value
Batch size 8
Epochs 3
Early stop yes
Optimizer paged_adamw_32bit
Learning rate 0.0002
Learning rate scheduler cosine
Weight decay 0.006
Warmup ratio 0.03
LoRA rank 32
LoRA alpha 64
LoRA dropout 0.01

Table 6
Hyperparameters for language models



Prompt template for MTL approach

You are an argument analysis expert. Follow these steps EXACTLY:
Step 1: Identify Argument Components
- Major Claim: The essay’s central argument. Label exactly once or twice if repeated.

- Claims: Debatable assertions that support or attack other components. Claims require support from Premises
and can be challenged or defended. Label as Claim 1, Claim 2, etc.

- Premises: Supporting reasons, evidence, or justification for a Claim or another Premise. Premises do not stand
alone as arguments but provide necessary reasoning. They may contain factual evidence, logic-based reasoning,
or expert opinions.

Step 2: Determine Argumentative Relationships

- Support: The component strengthens or reinforces another.

- Refute: The component provides counterarguments that directly challenge another.

- Contradict: The component presents opposing ideas without direct refutation.

- Always reference the exact label of the target component (e.g., Major Claim, Claim 1, Premise 2).

- Recognize implicit relationships where direct connections are not explicitly stated but inferred from meaning,
tone, and structure.

Formatting Rules (DO NOT DEVIATE):
. Wrap components in brackets: [Exact Text | Label].
. For relationships: Add ’| Relationship = Target Component’ after the label.
. If a component spans multiple sentences, include ALL sentences inside one bracket.

1

2

3

4. Preserve original text order and wording—do NOT add or remove words.

5. Labels must follow this syntax: Major Claim, Claim X, Premise X (X = number).
6

. DO NOT include transitional phrases, introductory/reinforcing phrases, or stance markers (e.g., ’|
believe,) inside the brackets.

7. If a sentence contains multiple distinct ideas separated by semicolons, conjunctions (which’, ’but’, etc.), or
implicit contrasts, they must be annotated separately. Only annotate the core argument component itself.

Additional Guidance:

- Some argumentative components do not function as supporters or refuters, yet they can still be targets of
argumentation.

- Transitional words and phrases serve as clues for relationships:
Support indicators: ‘therefore, ‘as a result, ‘consequently, ‘this proves’
Refutation indicators: ‘however, ‘on the contrary, ‘while, ‘although’
Contradiction indicators: ‘despite, ‘in contrast, ‘alternatively, ‘whereas’
- If an argument contains both supportive and opposing elements, label it according to its dominant function.
Input:
{essay}
Output:
{Augmented essay}

Table 7
Prompt for annotating arguments in the MTL approach.




Template prompt for the first stage of the pipeline approach

Identify and annotate the argument components in the input, including Major Claims, Claims, and Premises.
- Major Claim: The essay’s central argument. Label exactly once or twice (if repeated).

- Claims: Statements that directly assert a position, opinion, or viewpoint regarding the Major Claim. A Claim
should make a debatable assertion rather than just provide background context. Claims must require support
from Premises and can be challenged or defended.

- Premises: Statements that provide justification, evidence, or reasoning for a Claim or another Premise. A
Premise does not stand alone as an argument but instead supports a Claim. It may contain factual evidence,
logic-based reasoning, or expert opinions.

Formatting Rules (DO NOT DEVIATE):

- Wrap components in brackets: [Exact original text | Label].

- If a component spans multiple sentences, include ALL its sentences inside one bracket.

- Preserve the original essay’s text and order. Do NOT add/remove words.

- Labels MUST follow this syntax: Major Claim, Claim X, Premise X (X = number).

- DO NOT include transitional phrases, introductory/reinforcing phrases, or stance markers (e.g., ’l
believe,) inside the brackets.

- If a sentence contains multiple distinct ideas separated by semicolons, conjunctions (which’, ’but’, etc.), or
implicit contrasts, they must be annotated separately. Only annotate the core argument component itself.
The essay is:

{input_text}

Output:

{Augmented essay}

Table 8
Template prompt for the first stage of the pipeline approach.




Template prompt for the second stage of the pipeline approach

You will analyze tagged text spans representing argumentative components.

Task:

1. Identify the argumentative relationships between the tagged text spans.

2. Preserve the original content without modifying or removing any parts.

3. Explicitly state whether each tagged span SUPPORTS, REFUTES, or CONTRADICTS another span.

4. Recognize implicit relationships where direct connections are not clearly stated but can be inferred from
meaning, tone, and structure.

Guidelines:
- SUPPORT: A span strengthens or reinforces the claim of another component.
- ATTACK: A span challenges another component by either:
« Refuting it with direct counterarguments that explicitly disprove or weaken the claim.
« Contradicting it by subtly undermining or presenting an opposing idea without outright refutation.

- Some argumentative components do not function as supporters or refuters, yet they can still be the target of
support, contradiction, or refutation.

- Transitional words and phrases serve as clues for relationships. These include:
Support indicators: therefore, as a result, consequently, this proves
Refutation indicators: however, on the contrary, while, although
Contradiction indicators: despite, in contrast, alternatively, whereas

- Consider cases where grammar or phrasing is unconventional—recognize argumentative intent even when
structure is not ideal.

- When an argument contains both supportive and opposing elements, identify the dominant argumentative
function.

Input:
{input_text}
Output:
{Augmented essay}

Table 9
Template prompt for the second stage of the pipeline approach.
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