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Abstract

The AIDEAS project targets the development of Al technologies strategically designed to
improve European engineering companies' sustainability, agility, and resilience throughout
the lifecycle of industrial assets, i.e., in the design, manufacturing, and repair/reuse/recycling
phases. In the context of the AIDEAS project, this workshop paper focuses on the early stages
of the product development process to accelerate the development process with the help of
Al-supported tools. The results of some of these Al solutions will also help at a later stage to
decide which machine parameters need to be considered and optimised during product
development to optimise the later life cycle according to the current requirements of the
repair, reuse, and recycle phases.
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1. Introduction

This paper outlines the objectives and structure of Work Package 3 (WP3) in the broader context
of the BUILD process for the Al-assisted lifecycle of industrial plants. WP3 focuses mainly on the
initial phase of the BUILD process, the DESIGN part, with the aim of developing Al-supported
optimisation modules for the construction of industrial plants.

2. Methodology

The aims of WP3 include the development of Al-based optimisation modules for industrial plant
engineering. As a result, companies can improve their resilience by reducing waste and increasing
their responsiveness to changing customer needs. The aims are specified in the relevant subchapters
below. Each of the tasks deals with different aspects of Al-supported optimisation. The tasks cover
optimal design, data synthesis, integration with standard systems, data storage and exchange, and
continuous validation. Depending on the task, competencies and project phases, the companies
IANUS, IKERLAN, XLAB, CERTH and ITI work together to achieve the objectives of the work
package.
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The goal is to create a framework that facilitates the optimal design of industrial machinery by
integrating Al into mechanisms, structures, and control components. This will be achieved through
data synthetization, integration with CAD systems, appropriate data exchange mechanisms and
continuous validation.

3. Machine Design Optimiser (MDO)

This task focuses on developing a toolkit to assist designers in optimally defining the key design
parameters in multi-physical systems, enhancing machine performance as required for each scenario.
The toolkit will be based on reduced models developed by Al from physically based model simulations
that will take account of the degradation of the joints during the entire life cycle of the machine. The
optimiser will need a theoretical model (physical or data-driven model) that can estimate the system's
behaviour. The developments done during the first part of the project are related to the following
topics:

e Definition of the Demonstration Scenarios and Monitoring KPIs Definition for the two pilot
use cases (PAMA and BBM).

e Definition of the use case specifications, goals, and restrictions for the two pilot use cases.
e Definition of the user interface Mock-ups.

e  Significant developments of the use case model to be used as case studies.

The PAMA use case, a dynamic model of the 5-axis machine, has been developed considering the
wear development of the vertical sliding system. The optimization objective has been defined as a
trade-off between the static stiffness and the number of cycles before wear creates backlash. The next
figure represents a schematic representation of the objectives, and the parameter expected behaviour
is represented (Figure 1).
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Figure 1: Schematic representation of the objectives and parameters.

A parametric modelling of the extrusion die head is built for the BBM model. This allows the
generalisation of different designs of the flow channel of the die just by changing parametric values
like diameter, number of spirals or total height and directly performing highly accurate 3D-CFD-
Simulation with it. With this opportunity, numerous flow simulations can be performed by the MDG,
which will be presented in the next chapter. With the calculated data out of the MDG, a meta-model
can be created, which allows the running of Al-based optimum algorithms within a short period of
time.

For the PAMA use case, the first version of the dynamic model has been developed and validated,
verifying that the model is able to predict the cycles to wear. This model generates data for the next
step of developing the Al optimizer. In the Case of the blow mold dies for BBM, different existing dies



were simulated via the parametric model. They show a good match regarding pressure loss, flow
homogeneity and overlap of the different layers. This shows that the model can be used for
optimization strategies. To ensure that, a manual first optimization of one die was performed,
resulting in significantly shorter residence times, a more homogenous outflow, and thus waste
reduction and the capability of using a higher percentage of recycled material.

In the coming months, the Al optimizer is expected to be developed. The core concept involves
utilizing Al to generate an improved reduced model for efficient iteration, optimizing the design
within a reasonable timeframe. The accompanying image illustrates the proposed implementation,
beginning with the dynamic model and parameter definition. Initial simulations are conducted to
obtain KPIs for these designs, and the results are used to create a reduced-order model of system
behaviour. This reduced model proposes "near-optimum" parameter values, evaluated through the
multibody model. The process is iterated until an optimal value is achieved.

The main anticipated advantages include:

e Improved iteration efficiency.

e  Valuable information about the sensitivity of each design parameter, aiding future design

proposals and evaluations.
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Figure 3: Representation of the flow chart of the optimization process.

An evolutionary Al approach designs spiral distributors with different parameters for the BBM
model, generating thousands of variants for efficient production process simulation. The meta-model
significantly reduces simulation time compared to real 3D-CFD simulations. The MDO identifies
designs that best match the desired KPIs, selects and examines the top 30% for regularities, and creates
new digital twins until an optimal distributor within a confidence interval is identified or the
maximum iteration time (TBD) is reached [1].

Parametric machine designs based on physics models are commonly used in the design stage for
performance verification, reducing development time. Despite the good agreement with real
behaviour, these simulations can be time-consuming, limiting exploration during the design phase.
Optimization is often neglected due to a lack of knowledge and required simulation time. To address
this, the tool simplifies the process by requiring the user to provide:

e A parametric simulation model (physical or data-driven) to calculate the desired KPL
e  Parameter range values.

o Defined total iterations, with initial trials recommending a reduced number for faster

results.

After simulation, the tool provides optimal parameter proposals and sensitivity analysis, assisting
the designer in understanding each parameter's relative effect on the objective. This information is
crucial for defining the design concept.



1. Machine Synthetic Data Generator (MDG)

This task focuses on the synthesis of data for the training of optimisation modules. Preparatory
work has already been carried out on this based on the FeatFlow simulation code used [2]. It involves
the creation of Al solutions for shorter time series and production volumes through the artificial
generation of data using digital twins [3] and simulations. Real and historical data is also used for
training without data synthesis. The front-end components (figure 4) required to implement the given
machine designs and provide operational constraints have been successfully created. These
components have been tested with dummy data sets to ensure their functionality and reliability.
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Figure 4: Frontend for Start-Up-Parameters.

A dedicated front-end for presenting results has been developed in the realm of new material data
generation. Pilot BBM studies have identified material parameter ranges to refine simulations, as
depicted in Figure 5. Initial automated simulations have been rigorously tested with dummy datasets.
This collaborative effort signifies the successful establishment and validation of key components,
laying the groundwork for further project progress.
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Figure 5: Front End for generéfing spiral distributors for different materials.



This collaborative effort signifies the successful establishment and validation of key components,
laying the groundwork for further project progress. Regarding start-up parameters, pilot BBM studies
will define possible data ranges, followed by the creation of an extensive simulation dataset to train
the AL Subsequently, the Al will be integrated into the front-end, significantly advancing overall
project functionality.

Upcoming tasks include developing a valid approximation for various materials to generate new
material data. Simulation results will be validated using diverse materials and real-life data for
accuracy. A substantial set of simulation data, akin to start-up parameters, will be generated for Al
training, and the Al will be integrated into the front-end to streamline the material data generation
process. These planned steps represent the next phase towards achieving the project's overarching
goals. The market gap analysis identifies challenges such as a lack of simulation expertise, insufficient
customer awareness in selecting data analysis tools, and redundant execution of real experiments. To
address expertise gaps, the MDG solution will provide an easy way for any employee to generate data
and initiate simulations effortlessly.

Future developments aim to introduce an automated Al solution to combat insufficient customer
awareness in selecting and using Al for data evaluation and experimental design construction. This
MDG solution ensures optimal data analysis while mitigating the risk of biased sample data.
Customers facing capacity constraints in running real experiments require Al-supported simulations
to generate training data. The project aims to seamlessly integrate into the market, offering accessible
and automated solutions to close existing gaps and enhance the overall user experience [4].

4. CAx Addon (CAXx)

Task T3.3 transfers the Al-supported optimisation modules developed in T3.1 and T3.2 to
production. This includes the compatibility of the modules with standard CAD/CAM/CAE systems,
the integration of APIs and the user interface, and testing and performance optimisation.

For the common CAD Software Autodesk Fusion, which is a low entry in terms of pricing and
therefore used by many small businesses, a plugin was written that connects directly to the IANUS
StréomungsRaum(c), which performs the Machine Data Generator (figure 6). Therefore, a bank
security API and Login were written, enabling direct access via Fusion to perform simulations without
using additional software. Due to the cloud computing approach of StromungsRaum(c), the user can
perform the simulations from any computer, which allows them to run Fusion 360. Fusion was
selected as the first adaptor CAD software; besides the low-end pricing, it is also cloud-based and,
therefore, usable from many different devices [5].
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Figure 6: Example of the Plugln interface

The main advantage of the plugin is that no additional steps need to be taken to start 3D-CFD
Simulations out of an existing construction. The user doesn’t have to export CAD-Files to a common
standard, import them to the simulations software, check the results and get back to the CAD Software



to implement modifications if needed. All these steps will be fully integrated into Fusion and the CAx-
Addon to support seamless access to 3D-Simulations and the results.

The API and Plugin for Fusion 360 also enable continuous development to implement additional
features. Also, the Plugin itself is easily adaptable to different CAD Software, like SolidWorks. This is
extremely important for bringing AIDEAS Suites to a wide variety of customers.

Many different simulations were directly started out of Fusion and were successfully run to
StromungsRaum(c) to generate virtual machine data, capable of building an AL The Simulation has
shown no errors or deviations, depending on running directly to the CAx Addon or directly to
StromungsRaum(c). Therefore, the overall simulation concept is validated and ready to be added with
additional features.

To fully optimise geometries before building them in real life, the CAx-Addon is adapted to the
Machine Data Generator. Therefore, more complex APIs will be integrated. This will result in the
capability, to directly generate Geometries via Parameters in Fusion 360 and optimize them
automatically via the Machine Data Generator. The idea is to start with a parametric Geometry
defined by the customer. The MDG will then perform an optimization via the Meta-Model out of the
MDG and bring back the parametrization and the step-file to Fusion 360. By using the fully integrated
plugin, the Customer will be able to substantially decrease the construction and optimization time
since nearly everything is done automatically out of the common software. These steps will be
included in the second stage of the project.

The Plugin can be used for different approaches. The first is a 3D-CFD Simulation for generating
synthetic data, which can be used for an AI-Module or for the customer itself to optimize geometry
in a classic way. The second approach is much more powerful. With the newly developed API and
the respective Plugin, the customer will be able to highly improve the iterative processes in the
construction of spiral distributors in the plastic industry, by saving significant time and money for
construction. Also, this API directly connects to the Meta-Model, bringing in optimizations of such a
construction in less than one hour - saving more than 90% of time and money regarding the classic
way. Since the API is easily adaptable to new challenges, newly generated meta-models for other
industries could be implemented soon — saving resources in time, money, and material all over the
world.

5. Conclusion

The approach outlined in WP3 includes a comprehensive methodology for integrating Al into the
design phase of industrial plants. The focus is on developing optimisation modules, synthesising
training data, ensuring compatibility with standard systems, and continuously validating to contribute
to a holistic framework for Al-supported design.
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