
Manufacturing  and  AI  –  Industrial  Machine  Data 
Generation and Artificial Optimisation 

Marius Dörner1,  Alexander  Schulz1,  Félix Martínez2,  Damjan Murn3,  Dragan  Radolović3, 
Miguel A. Mateo-Casalí4 and Raul Poler4

1 IANUS Simulation GmbH, Sebrathweg 5, Dortmund, 44149, Germany
2 KERLAN Technology Research Centre, Basque Research and Technology Alliance (BRTA), 20500 Arrasate, 
Basque Country, Spain  
3 XLAB d.o.o., Pot za Brdom 100, SI-1000 Ljubljana, Slovenia, EU  
4 Research Centre on Production Management and Engineering (CIGIP), Universitat Politècnica de València, Camino  
de Vera s/n, 46022, Valencia (Spain).

 
Abstract 
The AIDEAS project targets the development of AI technologies strategically designed to 
improve European engineering companies' sustainability, agility, and resilience throughout 
the lifecycle of industrial assets, i.e., in the design, manufacturing, and repair/reuse/recycling 
phases. In the context of the AIDEAS project, this workshop paper focuses on the early stages 
of the product development process to accelerate the development process with the help of 
AI-supported tools. The results of some of these AI solutions will also help at a later stage to 
decide which machine parameters need to be considered and optimised during product 
development to optimise the later life cycle according to the current requirements of the 
repair, reuse, and recycle phases. 
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1. Introduction

This paper outlines the objectives and structure of Work Package 3 (WP3) in the broader context  
of the BUILD process for the AI-assisted lifecycle of industrial plants. WP3 focuses mainly on the 
initial  phase of  the BUILD process,  the DESIGN part,  with the aim of  developing AI-supported 
optimisation modules for the construction of industrial plants.

2. Methodology 

The aims of WP3 include the development of AI-based optimisation modules for industrial plant 
engineering. As a result, companies can improve their resilience by reducing waste and increasing 
their responsiveness to changing customer needs. The aims are specified in the relevant subchapters 
below. Each of the tasks deals with different aspects of AI-supported optimisation. The tasks cover  
optimal design, data synthesis, integration with standard systems, data storage and exchange, and 
continuous validation.  Depending on the task,  competencies  and project  phases,  the companies 
IANUS, IKERLAN, XLAB, CERTH and ITI work together to achieve the objectives of  the work 
package.
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The goal is to create a framework that facilitates the optimal design of industrial machinery by 
integrating AI into mechanisms, structures, and control components. This will be achieved through 
data  synthetization,  integration with  CAD systems,  appropriate  data  exchange mechanisms and 
continuous validation.

3. Machine Design Optimiser (MDO)

This task focuses on developing a toolkit to assist designers in optimally defining the key design  
parameters in multi-physical systems, enhancing machine performance as required for each scenario. 
The toolkit will be based on reduced models developed by AI from physically based model simulations 
that will take account of the degradation of the joints during the entire life cycle of the machine. The 
optimiser will need a theoretical model (physical or data-driven model) that can estimate the system's 
behaviour. The developments done during the first part of the project are related to the following 
topics:

● Definition of the Demonstration Scenarios and Monitoring KPIs Definition for the two pilot 

use cases (PAMA and BBM).

● Definition of the use case specifications, goals, and restrictions for the two pilot use cases.

● Definition of the user interface Mock-ups.

● Significant developments of the use case model to be used as case studies.

The PAMA use case, a dynamic model of the 5-axis machine, has been developed considering the  
wear development of the vertical sliding system. The optimization objective has been defined as a 
trade-off between the static stiffness and the number of cycles before wear creates backlash. The next 
figure represents a schematic representation of the objectives, and the parameter expected behaviour 
is represented (Figure 1).

Figure 1: Schematic representation of the objectives and parameters.

A parametric modelling of the extrusion die head is built for the BBM model. This allows the 
generalisation of different designs of the flow channel of the die just by changing parametric values 
like diameter, number of spirals or total height and directly performing highly accurate 3D-CFD-
Simulation with it. With this opportunity, numerous flow simulations can be performed by the MDG, 
which will be presented in the next chapter. With the calculated data out of the MDG, a meta-model 
can be created, which allows the running of AI-based optimum algorithms within a short period of  
time.

For the PAMA use case, the first version of the dynamic model has been developed and validated, 
verifying that the model is able to predict the cycles to wear. This model generates data for the next 
step of developing the AI optimizer. In the Case of the blow mold dies for BBM, different existing dies 



were simulated via the parametric model. They show a good match regarding pressure loss, flow 
homogeneity  and  overlap  of  the  different  layers.  This  shows  that  the  model  can  be  used  for 
optimization strategies.  To  ensure  that,  a  manual  first  optimization of  one  die  was  performed, 
resulting in  significantly shorter  residence times,  a  more homogenous outflow,  and thus waste 
reduction and the capability of using a higher percentage of recycled material.

In the coming months, the AI optimizer is expected to be developed. The core concept involves 
utilizing AI to generate an improved reduced model for efficient iteration, optimizing the design 
within a reasonable timeframe. The accompanying image illustrates the proposed implementation, 
beginning with the dynamic model and parameter definition. Initial simulations are conducted to 
obtain KPIs for these designs, and the results are used to create a reduced-order model of system 
behaviour. This reduced model proposes "near-optimum" parameter values, evaluated through the 
multibody model. The process is iterated until an optimal value is achieved. 

The main anticipated advantages include:

● Improved iteration efficiency.

● Valuable information about the sensitivity of each design parameter, aiding future design 

proposals and evaluations.

Figure 3: Representation of the flow chart of the optimization process.

An evolutionary AI approach designs spiral distributors with different parameters for the BBM 
model, generating thousands of variants for efficient production process simulation. The meta-model 
significantly reduces simulation time compared to real 3D-CFD simulations. The MDO identifies 
designs that best match the desired KPIs, selects and examines the top 30% for regularities, and creates 
new digital  twins  until  an  optimal  distributor  within  a  confidence  interval  is  identified  or  the 
maximum iteration time (TBD) is reached [1].

Parametric machine designs based on physics models are commonly used in the design stage for 
performance  verification,  reducing  development  time.  Despite  the  good  agreement  with  real  
behaviour, these simulations can be time-consuming, limiting exploration during the design phase. 
Optimization is often neglected due to a lack of knowledge and required simulation time. To address 
this, the tool simplifies the process by requiring the user to provide:

● A parametric simulation model (physical or data-driven) to calculate the desired KPI.

● Parameter range values.

● Defined  total  iterations,  with  initial  trials  recommending  a  reduced  number  for  faster 

results.
After simulation, the tool provides optimal parameter proposals and sensitivity analysis, assisting 

the designer in understanding each parameter's relative effect on the objective. This information is 
crucial for defining the design concept.



1. Machine Synthetic Data Generator (MDG)

This task focuses on the synthesis of data for the training of optimisation modules. Preparatory  
work has already been carried out on this based on the FeatFlow simulation code used [2]. It involves 
the creation of AI solutions for shorter time series and production volumes through the artificial  
generation of data using digital twins [3] and simulations. Real and historical data is also used for 
training without data synthesis. The front-end components (figure 4) required to implement the given 
machine  designs  and  provide  operational  constraints  have  been  successfully  created.  These 
components have been tested with dummy data sets to ensure their functionality and reliability.

Figure 4: Frontend for Start-Up-Parameters.

A dedicated front-end for presenting results has been developed in the realm of new material data 
generation. Pilot BBM studies have identified material parameter ranges to refine simulations, as 
depicted in Figure 5. Initial automated simulations have been rigorously tested with dummy datasets. 
This collaborative effort signifies the successful establishment and validation of key components, 
laying the groundwork for further project progress. 

Figure 5: Front End for generating spiral distributors for different materials.



This collaborative effort signifies the successful establishment and validation of key components, 
laying the groundwork for further project progress. Regarding start-up parameters, pilot BBM studies 
will define possible data ranges, followed by the creation of an extensive simulation dataset to train 
the AI. Subsequently, the AI will be integrated into the front-end, significantly advancing overall 
project functionality.

Upcoming tasks include developing a valid approximation for various materials to generate new 
material  data.  Simulation results  will  be  validated  using diverse  materials  and real-life  data  for 
accuracy. A substantial set of simulation data, akin to start-up parameters, will be generated for AI 
training, and the AI will be integrated into the front-end to streamline the material data generation 
process. These planned steps represent the next phase towards achieving the project's overarching  
goals. The market gap analysis identifies challenges such as a lack of simulation expertise, insufficient 
customer awareness in selecting data analysis tools, and redundant execution of real experiments. To 
address expertise gaps, the MDG solution will provide an easy way for any employee to generate data 
and initiate simulations effortlessly.

Future developments aim to introduce an automated AI solution to combat insufficient customer 
awareness in selecting and using AI for data evaluation and experimental design construction. This 
MDG  solution  ensures  optimal  data  analysis  while  mitigating  the  risk  of  biased  sample  data. 
Customers facing capacity constraints in running real experiments require AI-supported simulations 
to generate training data. The project aims to seamlessly integrate into the market, offering accessible 
and automated solutions to close existing gaps and enhance the overall user experience [4].

4. CAx Addon (CAx)

Task  T3.3  transfers  the  AI-supported  optimisation  modules  developed  in  T3.1  and  T3.2  to 
production. This includes the compatibility of the modules with standard CAD/CAM/CAE systems, 
the integration of APIs and the user interface, and testing and performance optimisation.

For the common CAD Software Autodesk Fusion, which is a low entry in terms of pricing and 
therefore used by many small businesses, a plugin was written that connects directly to the IANUS  
StrömungsRaum(c),  which  performs  the  Machine  Data  Generator  (figure  6).  Therefore,  a  bank 
security API and Login were written, enabling direct access via Fusion to perform simulations without 
using additional software. Due to the cloud computing approach of StrömungsRaum(c), the user can 
perform the simulations from any computer, which allows them to run Fusion 360.  Fusion was 
selected as the first adaptor CAD software; besides the low-end pricing, it is also cloud-based and, 
therefore, usable from many different devices [5]. 

Figure 6: Example of the PlugIn interface

The main advantage of the plugin is that no additional steps need to be taken to start 3D-CFD 
Simulations out of an existing construction. The user doesn’t have to export CAD-Files to a common 
standard, import them to the simulations software, check the results and get back to the CAD Software 



to implement modifications if needed. All these steps will be fully integrated into Fusion and the CAx-
Addon to support seamless access to 3D-Simulations and the results.

The API and Plugin for Fusion 360 also enable continuous development to implement additional  
features. Also, the Plugin itself is easily adaptable to different CAD Software, like SolidWorks. This is 
extremely important for bringing AIDEAS Suites to a wide variety of customers.

Many different simulations were directly started out of Fusion and were successfully run to 
StrömungsRaum(c) to generate virtual machine data, capable of building an AI. The Simulation has 
shown no errors or deviations, depending on running directly to the CAx Addon or directly to 
StrömungsRaum(c). Therefore, the overall simulation concept is validated and ready to be added with 
additional features.

To fully optimise geometries before building them in real life, the CAx-Addon is adapted to the 
Machine Data Generator. Therefore, more complex APIs will be integrated. This will result in the  
capability,  to  directly  generate  Geometries  via  Parameters  in  Fusion  360  and  optimize  them 
automatically via the Machine Data Generator. The idea is to start with a parametric Geometry 
defined by the customer. The MDG will then perform an optimization via the Meta-Model out of the 
MDG and bring back the parametrization and the step-file to Fusion 360. By using the fully integrated 
plugin, the Customer will be able to substantially decrease the construction and optimization time 
since nearly everything is done automatically out of the common software. These steps will  be  
included in the second stage of the project.

The Plugin can be used for different approaches. The first is a 3D-CFD Simulation for generating 
synthetic data, which can be used for an AI-Module or for the customer itself to optimize geometry 
in a classic way. The second approach is much more powerful. With the newly developed API and 
the respective Plugin, the customer will be able to highly improve the iterative processes in the 
construction of spiral distributors in the plastic industry, by saving significant time and money for 
construction. Also, this API directly connects to the Meta-Model, bringing in optimizations of such a 
construction in less than one hour – saving more than 90% of time and money regarding the classic 
way. Since the API is easily adaptable to new challenges, newly generated meta-models for other  
industries could be implemented soon – saving resources in time, money, and material all over the 
world. 

5. Conclusion

The approach outlined in WP3 includes a comprehensive methodology for integrating AI into the 
design phase of industrial plants. The focus is on developing optimisation modules, synthesising 
training data, ensuring compatibility with standard systems, and continuously validating to contribute 
to a holistic framework for AI-supported design.
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