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Abstract

The Time-critical term emphasizes the dominance of time as a factor in systems, operations, processes, and
activities. As an example, processing animal by-products is a time-critical process as the material can rapidly
degrade and become potentially harmful, hence, not suitable for using as raw material in added value
products. In this industry, time estimation and prediction enlarge the margin for making decisions in
logistics and processes. This paper presents a comparative review of Al algorithms that predict the readiness
of by-product containers at slaughterhouses. The prediction allows the logistic planner to schedule the
logistic resources earlier than usual. Consequently, the generated delay in the logistics can be reduced, or
even eliminated. The trained models used real collected data from a processing facility for 10 months. Among
several Al algorithms, both Decision Tree and Extra Trees regressors provided the lowest error. Then, the
voting regressor of these two models provided better results and higher stability.
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1. Introduction

Organic by-products from animal food production are usually not fit for human consumption.
Nonetheless, they are used as raw materials to produce a wide range of commodities such as animal
food, fertilizers, and biofuels, which in return, increases the sustainability of the entire food chain and
improves environmental impact [1].

According to EU legislation EU 1069/2009 [2] and EU 142/2011 [3], the quality and category of the
animal by-products depends on two main factors: the contents of the by-products and the age of the
by-product. These two factors affect the types and quality of the produced commodities [4].
Therefore, it is necessary to optimize the logistics activities to maximize the quality of the by-
products. One of the main challenges in this optimization problem is the narrow time window for the
material before it starts decomposing. This time-critical nature increases the constraints, which in
return, reduces the margin around the optimal solution.

With a substantial need for finding solutions to improve the environmental impact, the EU
Commission is funding several research projects. One of these projects is titled Optimizing Production
and Logistic Resources in the Time-critical Bio Production Industries in Europe (CLARUS) [5].
CLARUS project, funded by the EU Commission, intends to develop Al solutions for improving and
sustaining the food industry. To validate the project goals, Honkajoki Oy - the leading animal by-
product processing company in Finland- has been chosen in a use case involving logistics
optimization. One scenario of this use case involves optimizing the selection of time-critical
containers with the highest quality (i.e., category three material [3]) of animal by-products for
transportation from slaughterhouses to Honkajoki’s processing facilities. In this regard, this paper
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presents the performance results of several machine-learning models trained on historical logistics
data. The main objective of this research is to provide an empirical comparison of Al algorithms that
provide accurate predictions of the availability of the material. Such a prediction may help the end
users to react early, which in return, enlarges the narrow time window.

This paper is structured into several sections. The introduction section provides the context of the
paper and the CLARUS project. Section 2 contains insights into by-product logistics optimization and
the goal of forecasting the transit time. The approach developed to tackle the issue is explained in
Section 3, while the preliminary results are presented in Section 4. Lastly, Section 5 describes the
concluding remarks and potential next research steps.

2. Review of animal by-product logistics

Logistics is an integral part of supply chains and directly influences expenses [6]. Not only does
optimized logistics improve supply chains’ efficiency and enhance customer satisfaction, but it also
leads companies toward greenness and sustainability. Better logistics means better resource allocation
and less energy consumption and pollution [7]. Moreover, due to their deteriorating nature, food
products differ from other types of material; hence, they require specific needs in their transportation
(8].

In the case of Honkajoki Oy, logistics is of great significance since the material that is processed
is highly time-critical. Raw material degrades gradually; hence, it should arrive at the factory for
processing as soon as possible. Otherwise, the material quality would decrease to lower categories
that require much more energy to process or be discarded due to the biochemical and chemical
deterioration of the contents, especially in the case of category three animal by-products [3]. In the
use case mentioned in this paper, category three chicken by-products are transported from three
slaughterhouses to the Honkajoki processing facility by fleets of trucks. In a scenario, there can be
multiple filled containers waiting for transport. To this end, an optimization algorithm is designed to
analyze and guide operators in container selection at the slaughterhouse to maximize the quality and
the number of category three containers. This optimization algorithm makes use of a machine
learning model that predicts the container transit time from slaughterhouses to the Honkajoki factory
yard instead of using average values.

3. Approach

3.1. Data collection

In the Honkajoki use case, data collection and management are arranged according to the system map
as shown in Figure 1. Honkajoki has collected several years’ worth of logistics and processing data
and stored them on an Amazon AWS server (called Honkajoki Cloud). Historical logistics data used
in the scenario described in this paper are collected from the Honkajoki Electronic Logistic System
(HELOS) hosted within the Honkajoki cloud. The logistics data include container and truck data and
timestamps of all logistics actions.
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Figure 1: Honkajoki system map.

Figure 2 shows an example of a logistic dataset provided by Honkajoki.

containerlD| | Category | Weight| Filling start | Filling end | Pickup Plate Arrival

617 shl Sekatuote siipikarja luokka 3 13760kg 2020-12-30T15:48:00Z 2020-12-30T17:38:00Z 2020-12-31T08:41:00Z truckl  2020-12-31T10:59:00Z
635 shl Sekatuote siipikarja luokka 3 12096kg 2020-12-30T07:02:00Z 2020-12-30T11:13:00Z 2020-12-31T08:42:00Z truckl  2020-12-31T11:15:00Z
653 sh2 Sekatuote siipikarja luokka 3 13220kg 2020-12-31T06:10:00Z 2020-12-31T10:34:00Z 2020-12-31T12:23:00Z truck2  2020-12-31T14:42:00Z
_'651 sh2 Sekatuote siipikarja luokka 3 16540kg 2020-12-31T05:49:00Z 2020-12-31T10:34:00Z 2020-12-31T12:24:00Z truck2  2020-12-31T14:55:00Z

Figure 2: Historical logistics data example

3.2. Data modeling

The dataset used in this research holds information on containers, such as their raw material type,
weight, and the slaughterhouse they have filled. Also, there are logistics-related attributes, e.g., the
truck plate, the timestamp when a container finishes filling, and the timestamp when a truck reaches
the Honkajoki yard.

Intuitively, the transit time of containers from slaughterhouses to the yard should depend on the
time trucks leave slaughterhouses, which slaughterhouse they depart from, and the plate numbers
identifying trucks. Weights of the containers are not considered since weighing containers takes place
after reaching the Honkajoki yard. Consequently, the corresponding features in the preprocessing
stage were selected and then encoded the string attributes, ie., slaughterhouse name and plate
number, to numerical values. Afterward, the timestamps were divided into four subparts, namely
week number, weekday number, hour, and minute. Figure 3 shows five random rows of the dataset
for training transit time predictors.

Leaving Hour

Leaving Day

SH Plate Leaving Week No. Leaving Minute
0 24 4 1 17
18 12 40
22 7 57
52 20
1 3 1

Figure 3: A brief overview of the dataset after preprocessing

The time difference in seconds between trucks leaving the slaughterhouse and arrival at the yard was
used as labels to train the models. A sample of the transit time of containers from slaughterhouse 1



(SH1) recorded in the historical dataset from 5/12/2022 to 25/12/2022 and their departure timestamps
are plotted in Figure 4.
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Figure 4: Container transit time plot.

3.3. Prediction model development

Predictive analytics uses historical data and statistics to analyze trends and predict or forecast the
data. Predictive analytics is done by utilizing statistical algorithms and machine learning algorithms,
allowing organizations to be proactive in situations in the future based on examining predicted data.
Hence, predictive analytics has grown significantly, and multiple machine learning algorithms for
various prediction tasks, including time-series forecasting, have been developed to improve the
overall accuracy of the forecasted data [9] [10].

Commonly used models in time-series forecasting and predictive analysis, such as deep learning
regression models, e.g., multi-layer perceptron (MLP) and long short-term memory (LSTM) neural
networks, and ensemble learning algorithms, such as Random Forest regressor were considered for
this use case. These models considered for testing are presented in Table 1.

Table 1
Machine learning algorithms used for testing.

Machine learning Algorithm
technique
Ensemble learning Random Forest regressor

Decision Tree regressor
Gradient Boosting regressor
Extreme Gradient Boosting

regressor

Support Vector Machine

regressor
Extra Trees regressor

Voting regressor
Deep learning LSTM neural network regressor
MLP neural network regressor




4. Preliminary results

In this paper, ensemble learning models are created using existing algorithms from the scikit-learn
Python library [13], except the Extreme Gradient Boosting regressor, while deep learning models use
components from the TensorFlow library. Several models from the algorithms are created with
multiple parameter configurations, e.g., different numbers of layers and neurons in the case of neural
networks. The configurations yielding the best results based on Mean Absolute Error are shown in
Table 2. Additionally, a linear regression model was used as the baseline for comparison.

The logistics data is randomly split into training and test sets with a ratio of 4:1, and all the models
are trained and tested with the same dataset. The performance results of all the models are shown in
Table 2.

Table 2: Machine learning algorithms used for testing.

Algorithm Additional parameter configuration Mean Absolute

note Error (seconds)
Random Forest regressor no maximum tree depth 491
Decision Tree regressor 381
Gradient Boosting regressor 753
Support Vector Machine regressor 832
Extreme Gradient Boosting 464

regressor
Extra Trees regressor 285
Voting regressor Extra Trees regressor, Decision Tree 357
regressor

LSTM neural network model 1 51265 parameters 900
LSTM neural network model 2 200833 parameters 895
LSTM neural network model 3 84289 parameters 964
MLP neural network model 1 17550 parameters 985
MLP neural network model 2 67854 parameters 925
MLP neural network model 3 34062 parameters 895
Linear regression (baseline) N/A 951

Table 2 shows that ensemble learning models perform better than deep learning models and the
baseline model using the current dataset and input modeling method. The voting regressor combines
Decision Tree and Extra Trees regressors, which already have low error margins, to produce final
predictions with the lowest Mean Absolute Error. According to Table 2, the extra trees regressor
performs the best; however, since there is randomness involved with this method, the voting
regressor that combines the two best-performing models was chosen to ensure the stability of the
predictions. Additionally, from testing results, while increasing the number of trainable parameters
to the deep learning models can improve the forecasting results in some cases, the improvements do
not scale well with the training cost of the models.

5. Conclusion

Processing animal by-products is a time-critical operation that requires minimizing any wasted time.
The process itself can be well-planned. However, the transportation of the material from the
slaughterhouses to the processing facility may generate delays and unplanned changes. Thus,
predicting such disruptions in the logistic operations improves the overall result of the process of the
by-product. As presented in this paper, Al- trained model on historical data can provide the needed
prediction. As observed in this research, the voting regressor combining Decision Tree and Extra
Trees regressors provides the lowest error with better performance in terms of stability. Future work
may include better testing results from other prediction algorithms with different approaches to
feature engineering. According to the requirements of the original scenario of the use case, the results
from the optimization algorithm using data produced by prediction models will also be presented in
the future.
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