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Abstract

Concepts such as Manufacturing Quality Optimisation and Zero-Defect Manufacturing have
become growing concerns for academia and industry over the past decade, especially in the
context of Industry 4.0. Achieving near zero-defect quality in manufacturing processes
heavily relies on optimizing operating parameters in manufacturing systems. The European
Commission-funded i4Q project provides a set of solutions for manufacturers to optimize
their operations and improve product quality, based on data gathered throughout the
production processes within their manufacturing facilities. A use case within the i4Q project
addresses MQO and ZDM within the operations of RiaStone, a stoneware ceramics factory
situated in Ilhavo, Aveiro, Portugal. This paper discusses the necessary steps for
manufacturing quality improvement at RiaStone, from data cleaning and integration to the
application of manufacturing Data Analytics and Machine Learning solutions towards near
zero-defect manufacturing and describes the methods and techniques that can be exploited
to achieve higher production quality via a system that requires finding the key shop floor
elements that influence final product quality.
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1. Introduction

Despite the considerable advancements in techniques, equipment, and automation in process
manufacturing industries, under the Industry 4.0 umbrella, over the past few decades, there is still a
noticeable gap between discrete and process manufacturing [1], but bridging the existing gap between
discrete and process industries, particularly in terms of production effectiveness and quality analysis,
remains a challenge [2]. Analysis and improvement of product quality in process manufacturing have
become growing concerns for academia and industry [3], since achieving optimal product quality
heavily relies on optimizing operational parameters across manufacturing processes. In the quest for
optimal product quality, the fields of Manufacturing Quality Optimization (MQO) and Zero-Defect
Manufacturing (ZDM) leverage cutting-edge methodologies, such as the development of sophisticated
data-driven machine learning (ML) models. Therefore, the concept of In-Process Quality
Improvement (IPQI) has emerged as a new branch of quality science research dedicated to developing
methodologies and applications to enhance product quality in manufacturing systems [4].

One of the use cases of the European Commission-funded i4Q project [5] focuses on MQO, ZDM
and IPQI under the scope of RiaStone, a stoneware ceramics factory that produces tableware for the
IKEA group, located in Ilhavo, Aveiro, Portugal [6]. An urgent challenge at RiaStone is to improve its
Defect Rate (DR), which is the percentage of final products that present defects in relation to the
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overall final product throughput. Hence, to ease the comprehension, the authors define the Overall
Production Effectiveness (OPE) as the inverse percentage of DR, i.e.:
OPE =100% — DR (1)

Presently, RiaStone has an OPE of around 92%, and its main goal is to achieve an OPE of at least
98%. Such an ambitious goal requires new approaches to promote innovative defect management and
production control methods, namely in-line inspection technologies and integration of Information
and Communication Technologies, as well as tools for autonomous, automatic, and smart decision-
making. There are several challenges and inefficiencies in the processes that are impacting the OPE
metric and causing significant levels of product rejection which are not detected by quality control
and inspection.

This research aims to model the OPE of the final ceramic products, based on the collected data
from shop floor data. The main research question would be: How can one correlate raw matter
properties and composition, in this case from the glazing liquid, with the final OPE?

2. Related Work

MQO and ZDM stand at the forefront of enhancing production processes in vital industries. The
relentless pursuit of higher-quality products in traditional large-scale process industries, driven by
excess production capacity and market competition, has spurred significant advancements.
Incremental improvements in product quality have been shown to yield substantial profits for the
process industry [7] [8]. As the industry shifts towards solving multi-objective optimization problems,
the focus is on methodologies that genuinely capture the complexity of product quality evaluation by
addressing multiple conflicting indicators. By proposing innovative approaches like multi-stage and
multi-model modelling frameworks, the MQO state-of-the-art strives to provide adaptive, accurate,
and efficient solutions, exemplifying the industry's commitment to continual improvement [9].

As an entry point for MQO and ZDM state-of-the-art, the authors of [10] present a review on
several works that apply innovative ML solutions for defect detection and prediction. These
techniques range from classification or regression to clustering analyses and are applied to several
type of defect detection and prediction, such as in the case of voltage control to mitigate droplet
jetting defects or the classification and prediction of geometric deviation defects in CAD models. The
authors of another recent review, [11], describe the usage of deep learning techniques for detecting
defects in manufacturing scenarios. The authors of [12] and [13] present several ML-based defect
detection approaches in industrial settings. In the former work, the study was carried out at a
transmission axle assembly factory, in which a regression model was developed to simulate the
typical vibration patterns of axles, enabling the identification of anomalies through the assessment of
deviations between new products and the model, whereas in the latter work, the case study was
conducted at a heavy-duty vehicle manufacturing factory with advanced manufacturing technology
and automation levels, and applied the Cross Industry Standard Process of Data Mining (CRISP-DM)
model to detect defects in the final product. As a final example, the authors of [14] present a process
to introduce ML in plastic moulding processes towards MQO and ZDM. Specifically, this approach
enabled the prediction and notification of process quality deterioration, resulting in fewer non-
compliant parts being produced, consequently enhancing productivity while simultaneously lowering
costs and minimizing environmental impact.

3. Research Methodology

In a well-defined ML problem, if enough data is available, it is possible to distinguish key features,
and their combinations, which may have an impact on the target (the object of the problem). In the
proposed research work, the target is defined as the hourly production quality which is given as the
ratio between products within accepted quality thresholds and the total number of products, whether
they have defects or not, i.e. the OPE.

The chosen research methodology is the CRISP-DM model [15], which splits into six phases:
Business Understanding, Data Understanding, Data Preparation, Modelling, Evaluation and
Deployment. The methodology starts by understanding the business, production, and data-related



processes in the factory, followed by the collection and storage of raw data. Afterwards, the collected
data is cleaned and integrated and finally, ML methods are applied to achieve a prediction model that
can predict the final product quality depending on the raw-matter composition and properties.

3.1. Business Understanding

The process starts by understanding the production process in the factory which includes studying
the role and task of each part, the relation of data sets processes, and the interpretation of data values
in each record of data. Namely, RiaStone has two main challenges related to OPE: First, density, and
composition variations of incoming ceramic prime matters, produce volumetric mass density
differences in post-pressing raw greenware, directly affecting the quality levels in finished stoneware
products; Second, glazing and painting raw liquid matters, made at RiaStone to colour the produced
tableware before the ceramic firing process, present high fluctuations in density and temperature
parameters, also affecting the final OPE directly. This work tackled specifically the second challenge,
related to the glazing process.

3.2. Data Understanding

Raw data collected from glazing liquid analysis records the liquid’s composition in 15-minute
intervals. To simplify the process only a few columns were considered, as shown in Figure 1. Linha’
is the line number, ‘ef atual’ is the product reference, ‘cor_atual’ is the product colour,
‘densidade_act’ means current density, and ‘temperaturavid_act’ means current temperature.
Data_inicio_leitura’ and Data_fim_leitura’, correspond respectively to the recording beginning and
ending timestamps.

id Unha ref_atual cor_atual  Data_inicio_leitura Data_fim_leitura densidade_act densidade_min densidade max temperaturavid_act
887886 1 TIGELAFX 16 Cz Escuro 2021-10-28 14:38:20.000 2021-10-28 14:43:20.000 0 1688 1652 4800
887885 2 SOPAFK 23 Verde Seco 2021-10-28 14:36:23.080 2021-10-28 14:41:23.080 1673 1688 1692 3
887884 3 SOPAFK23 Cz Escuro 2021-10-28 14:34:45.020 2021-10-28 14:35:48.020 0 1688 1652 4800
887882 4 SOBREMESA FX 20 CzEscuro  2021-10-28 14:34:25.000 2021-10-28 14:39:25.000 0 1688 1652 4800
887878 1 TIGELA FX 16 Cz Escuro 2021-10-28 14:33:20.000 2021-10-28 14:33:20.000 0 1688 1692 4800
887881 7 SOBREMESA FX 20 Aul Esc 2021-10-28 14:33:13.030 2021-10-28 14:38:13.030 0 1688 1652 4800

0 4800

887879 8 PRATOFX 26 Verde Seco 2021-10-28 14:32:55.090 2021-10-28 14:37:59.090 1688 1692

Figure 1. Example of glazing data

Quality data are extracted from quality control teams’ reports that are manually filled by human
operators. Presently, the quality ratio is measured by checking 40 random samples for every 1000
products per hour. The files are divided into eight tables corresponding to the eight production lines.
The quality report for each line is divided into hourly quality records, as noticeable in Figure 2, from
which ‘hora’ is the shift hour, ‘colaborador’ is the collaborator’s name, ‘referencia’ is the product
reference, ‘Cor’ is the product colour, ‘1°”is the number of products with optimal quality, 2°’is the
number of products with second level quality, R’ is the number of rejected products, ‘%qld’ is the
hourly quality percentage (OPE), Frete colado’is the number of glued products and ‘defeitos/obs’ is
the description of the highest occurring defect reasons during that hour.

hora colaborador referéncia 12 22 R total %6 qld. Frete colado defeitos/obs.

1 Lalimar FK 26 Azul Escuro 816 20 35 871 93,7% 36 empeno frete colado
2 Lalimar FK 26 Azul Escuro 744 20 24 788 94,45 72 empeno frete colado
3 Barbara FK 26 Azul Escuro 545 20 80 748 86,6% 48 pingos

4 Barbara FK 26 Azul Escuro 600 20 133 808 74,3% 43 pingosfescorrido zona &
5 Barbara FK 26 Azul Escuro 576 60 137 833 69,1% 36 pingostescorrido zona &
3 Yeni FK 26 Azul Escuro S76 20 103 699 82,43 36 pingosipicosiresiduos
7 Yeni FK 26 Azul Escuro 744 20 128 892 83 4% 216 pingosipicosiresiduos
8 Yeni FK 26 Azul Escuro 600 20 35 705 85,15 216 pingosipicosiresiduos

total/média 5304 200 340 6344 83,6% 388

Figure 2. Example of a quality report for one shift of eight hours in an inspection table

3.3. Data Preparation

A key challenge in the RiaStone use case is the large amount of data that needs to be collected and
analysed. Both data sets presented in the subsequent section present problems in terms of data
veracity and validity. The glazing data set (Figure 1) presents the following challenges: (i) several
columns are deemed not relevant for this specific use case, like line velocity, stoppage times, or



number of breakdowns, since they were not significant for the defect prediction model; (ii) several
data records had to be cleaned since, data is collected by different sensors at different time intervals,
but the density measurement occurs at 15-minute intervals, hence the data was cleaned to only
account for this temporal granularity; (iii) other parameters, like the theoretical, minimum, and
maximum thresholds of several measured properties (temperature, density, viscosity, etc.) presented
values that were often wrong or simply zero and were removed. Regarding the quality control data
set (Figure 2), each report table is separated into three shifts, with eight hours each, and has a list of
the main defect types encountered in those hours. The issue here is that there is no standardization
of the defect types’ nomenclature; rather it is based on operators’ inputs, which are not uniformized
across operators, nor the number of corresponding products that possess these defect types, which
entails that no specific defect tracking of individual products is realized. Furthermore, there is no
certainty that the recorded quality and, consequently, defects’ numbers are completely correct and in
line with the production reality.

3.3.1. Data Cleaning and Integration

After removing columns in both datasets and handling the previous issues in the data records, the
total amount of usable data records in the glazing and quality data sets are, respectively 580538 rows
and 21373 rows. The data sets were stored in a relational database (based on PostGreSQL): the cleaned
glazing data was stored directly, while the unstructured monitoring reports were converted into
relational data via a Python script. Since there is no track-and-trace system for individual products, a
data correlation analysis was performed to integrate both data sets. From such correlation analysis,
it was decided that a time gap of eight and a half hours would be used to integrate the data sets,
corresponding to the time between the glazing process and the quality process. Hence, a soft margin
was used to integrate as much row data from two tables as possible, aligning the data from the two
data sets based on common identifiers such as ‘prod_id'and 'color_id'". The resulting dataset combines
the quality and glazing data sets. Finally, other data pre-processing steps were made, such as various
transformations including adding new columns ('hour’, 'date’, 'end_date', 'shift’), populating them with
calculated values based on existing columns, and excluding records that do not have glazing-related
defects.

3.4. Modelling, Feature Engineering and Feature Selection

In the feature engineering and selection step, some categorical features like defect type are
encoded via the one-hot encoder algorithm. For feature selection, Extra Tree-based stepwise,
variance-based, and importance-based methods were used to come up with a narrower feature subset
which was more significant as input for the ML model. The result of the feature importance analysis
is shown in Figure 3. The most important features are the day of the year and, most importantly, the
density of the glazing liquid. The data set has a time-series nature, and its target values are
numerically continuous, thus the problem considers a time-series regression problem. Different
regression models (Lasso, ridge regression, linear Support Vector Regression, Decision Tree
Regression (DTR), and Extra Tree) were trained and evaluated for the given quality prediction
problem, from which DTR was selected, fine-tuned and adapted to the proposed problem. The models
were evaluated through a 3-fold Cross Validation approach specific for time-series data and several
precision metrics were reported. For training the and evaluating the models, the following algorithm
was used:

1. Split dataset into features (X) and target variable (y).

Split data into training and testing sets using the ‘train_test_split’ function from scikit-learn.
Define the model.

‘TimeSeriesSplit’ 3-fold cross-validation is used to handle time series data.

nuhwb

‘GridSearchCV’ is used to perform a grid search over the parameter grid, optimizing for negative
mean squared error to find the best value for the hyperparameters.



6. Train the model with training data and the best possible hyperparameters from the previous
step.

7. Make predictions on the testing data using the trained model.

8. Evaluate the model's performance by calculating the Mean Squared Error (MSE), Root Mean
Squared Error (RMSE), and R-squared (R?) score using the predicted and actual target values.

viscosity
dens_mand
weight_raw
prod_id

month
sup_nr_missing
color_id
part_nr_in

shift
turning_speed
dens_reservoir
dens_curr

day

0. 0’00 00‘25 0. 0‘50 0. 675 0. 1‘00 0. 1'25 0. £50 0. 1‘75 0. 2‘00
Figure 3. Feature importance analysis
The DTR model was chosen due to the precision metrics’ results, its interpretability characteristics
and the feature importance report presented in Figure 3, which shows several features with relative
importance for predicting the target. Figure 4 shows the error distribution of the DTR model.
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Figure 4. DTR regression model residual distribution

4. Conclusion and Discussion

The application of the DTR model had a significant impact on RiaStone’s pursuit for ZDM and
MQO, mainly because, from the decision tree structure that resulted from the DTR model and also
the feature importance analysis shown in Figure 3, the density of the glazing liquid is crucial for the
overall OPE. Hence, a simple liquid stirring and mixing procedure was added to the process, and the
OPE automatically raised from 92% to at least 96% in the following weeks. Hence, one can correlate
the raw matter properties of the glazing liquid with the OPE by applying explainable regression models,
such as the DTR mode to find the most important characteristics for the prediction of the OPE.

The presented work is part of an ongoing research, and it is the authors’ opinion that, although
the DTR got the best results and was chosen due to the explainability potential of decision trees, other



models could have better results with some fine-tuning work. In fact, these model fine-tuning
procedures will continue until the end of the i4Q project.
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