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Abstract  
This paper aims to evaluate the implementation of Non-Destructive Inspection Techniques 
(NDIT) in the wind energy sector. For this purpose, a use case where AI-enhanced vision 
algorithms for anomaly detection in the painting inspection process in the wind energy 
sector is presented. Limitations and criteria for selecting the optimal hardware will be 
discussed, as well as the different parameters used for selecting, training, testing and 
validating machine vision applications in this field. Finally, the evaluation metrics of the 
algorithm used to evaluate the confidence level of the proposed model are explained, its 
performance on real, unseen data is presented, and future lines of action, as well as potential 
alternative applications, are summarized.  
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1. Introduction 

The use of Non-Destructive Inspection Technologies (NDIT), as opposed to traditional destructive 
procedures, brings numerous benefits, including the competitive advantage of automating the manual 
inspection processes currently used in many industrial processes [1]. Currently, conventional 
methods based on visual inspections that require the human factor may be influenced by subjective 
factors that do not allow standardization, such as experience in the inspection process, the operator's 
level of training and visual fatigue, among others [2]. 

In this context, the use of artificial intelligence (AI) systems allows to solve and automate 
classification and prediction problems in the industrial environment. Integrating NDIT with Artificial 
Intelligence (AI) applications is a zero-defect strategy to improve first-time right rates in production 
environments [3], [4]. Also, deploying NDIT for real-time quality assurance requires a collaborative 
approach for integrating and interoperability with the cyber-physical system for quality inspection 
deployment in an industrial production environment. Exploiting these technologies in the wind 
European industry is essential for achieving sustainable production, waste reduction and enhance the 
decision-making processes in manufacturing quality assurance [5]. In addition, by employing 
technologies under a common unified framework and through platforms such as the one offered by 
Zero Defects Zero Waste (ZDZW), it allows the creation of collaborative networks that enable the 
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sharing of advances in innovation and production in leading companies in the global wind energy 
sector [6], [7]. 
 

1.1. EU Wind Energy Sector 

New policies supported by the European Union based on the 2030 agenda and climate target plan 
foster wind energy generation in the coming years [8]. The EU Green Deal further establishes the 
ambitious objective of transforming Europe into the world's first emission-neutral continent [9]. 
Based on this commitment to the Climate Plan, whose target is to achieve a 55% greenhouse gas 
reduction, the expansion of renewable energy sources in the European Union is inevitable, 
constituting 37.5% of overall energy generation, encompassing various technologies, with wind 
energy contributing significantly at 37.3% in 2021 [10]. The importance of wind energy generation 
can be observed in the increase in installed capacity, which has increased over the past ten years from 
110 GW to 261 GW [11]. It must be noted that the evolution and growth are primarily due to various 
factors such as decreasing costs in renewable electricity from solar PV and wind power, dropping in 
ten years by nearly 75-50% [12].  

Within this energy transition framework, current research focuses on meeting the demand for 
faster, more efficient, and more accurate quality inspection services in the wind energy industry that 
align with the zero defects and zero waste (ZDZW) framework. Implementing NDIT for real-time 
inspection can reduce material and energy consumption and lead times through higher inspection 
rates and a reliable automatic inspection process while improving overall operational costs. The 
increase in operational performance will be achieved through reduced energy and materials 
consumption, improved quality, and reduced labor thanks to automatic inspection solutions, making 
the EU's wind energy industry more resilient and competitive. 

1.2. Sustainable Development Goals  

Integrating Artificial Intelligence (AI) into the European wind energy sector establishes a robust 
connection with several other SDGs, underlining the multifaceted impact of this technological 
advancement. The recent development of artificial intelligence (AI) in the European wind energy 
sector aligns seamlessly with the Sustainable Development Goals [13]. This technological 
development contributes directly to enhancing industrial processes' efficiency and sustainability, 
making cleaner and more efficient energy production processes possible.  

By including non-destructive techniques and inspection algorithms within the European wind 
energy sector, process times and costs are reduced for the generation of resources that contribute 
directly to the European wind energy generation capacity (SDG 7 'Affordable and Clean Energy') and 
indirectly to the optimization of material and energy resources (SDG 13 'Climate Action') while 
encouraging the practice and integration of these systems that promote innovation in the industrial 
sector (SDG 9, Industry, Innovation and Infrastructure). It must be noted that integrating machine 
vision systems in industrial environments with harmful particles in suspension, as occurs in the 
painting process, increases safety in the inspection operations by mitigating the risks associated with 
manual labor while promoting the training and creation of new jobs related to AI (SDG 8 'Decent 
Work and Economic Growth'). Finally, collaboration between technology developers, energy 
producers, and policymakers is fostered thanks to AI integrations (SDG 17 ‘Partnership for the goals’). 
Partnerships forged through shared objectives, technological advancements, law-making and 
knowledge exchange are essential. 

1.3. Use Case Scenario  

The deployment of automated inspection systems represents an innovation in the quality 
assurance policies in manufacturing steel towers for wind energy equipment, whose goal is the 
implementation of new approaches such as zero defect and zero waste methodologies. Currently, the 
paint inspection process is carried out manually by operators inside the painting cabin, so it ends up 



being a repetitive task based on the subjectivity of each operator and visual fatigue due to the 
inspection of large objects during significant periods. Implementing automated inspection systems 
reduces human fatigue associated with manual labor, ensuring consistent attention to detail 
throughout the painting process. The vision systems based on artificial vision improve reliability and 
accuracy in detecting anomalies, which are required to comply with Original Equipment 
Manufacturer (OEM) quality standards of the wind energy sector. 
 

2. Artificial Vision System 

The efficacy of the AI-enhanced vision system has received considerable attention over the last 
years [14], [15], thanks mainly to recent advancements in computer vision algorithms for real-time 
object detection and segmentation models. The proposed artificial vision system has been designed 
to operate within a critical working distance defined in the range between 50 and 54 cm. This working 
distance specification is driven by the system's requirements to identify anomalies in the painting 
inspection process. The image acquisition system selected for the current use case is the Basler 
acA5472-5gc camera, which uses the Sony IMX183 sensor of 5472x3648 pixel. Besides, the vision 
system is completed with 25 mm focal length lens which provides for a field of view (FOV) of around 
30 cm in width and 20 cm in height (giving around 18 px/mm of spatial resolution). Therefore, this 
configuration ensures full coverage and time reduction for the inspection area while enabling the 
system to discern defects ranging from 1 mm up to 1 cm. Deploying up to six cameras strategically 
mounted on an autonomous robotic platform makes the quality inspection process more efficient and 
faster. 

2.1. Artificial Intelligence algorithm for painting inspection 

The adequate neural network and model selection depends on the trade-off between 
computational resources and accuracy requirements. It is within this framework where YOLOv8 
capabilities are presented is a state-of-the-art object detection algorithm known for its real-time 
processing capabilities and enhanced accuracy and speed in the detection of painting defects in real-
time applications [16], [17], [18], [19]. This vision aligns with the objectives of ZDZW, whose 
inspection suites are designed to provide robust support for anomaly detection by relying on 
extensively customized datasets and machine-learning algorithms for comprehensive analysis. In the 
current industrial use-case scenario, the algorithm YOLOv8n was selected because it presents a better 
response in the inference speed (Table 1).  

 
Table 1  
Performance parameters depending on the neural network and model selected. (Adapted 
from: Ultralytics) 
Model Params (M) FLOPs (B) Size (pixels) mAP (50-95)* Speed (ms)** 
YOLOv8n 3.2 8.7 640 37.3 0.99 
YOLOv8s 11.2 28.6 640 44.9 1.20 
YOLOv8m 
YOLOv8l 
YOLOv8x 

25.9 
43.7 
68.2 

78.9 
165.2 
257.8 

640 
640 
640 

50.2 
52.9 
53.9 

1.83 
2.39 
3.53 

* mAP values for single-model single scale on COCO val2017 dataset ** Speed averaged over COCO val images using a A100 
TensorRT 

 

2.2. Data Acquisition 

Achieving higher levels of accuracy and reliability for Artificial Vision systems requires specific 
model training and high-quality data. The use case scenario dataset encompasses diverse scenarios, 
replicating real-world conditions along the manufacturing process. The model objective lies in 



detecting the six most recurrent defects within the painting process. Pinholes, blistering, inclusions, 
scratches, delamination and crumples are identified as critical defect classes, each with distinct 
characteristics and implications for the quality of the painted surface (Figure 1). The dataset utilized 
for the development and fine-tuning of the YOLOv8 model has undergone significant expansion 
throughout model iterations. Initially comprising 299 annotated anomalies, the dataset has grown to 
incorporate 401 annotated anomalies in its latest version, allowing the model to learn and generalize 
from a more diverse set of anomaly instances. However, more than 85% of the images used for training 
are anomalies of the inclusion type, resulting in a phenomenon known as sampling bias. 
 

 
Figure 1 Painting defects on wind tower section: (A) inclusion, (B) pinhole, (C) scratches, (D) delamination 
and (E) crumple. 
  

2.3. Model Training Methodology 

Once the data acquisition for the use case is performed, all these images are annotated using 
squared Bounding Boxes (BB) that enable the anomaly location within the image. To use the dataset 
in a suitable way, it is subdivided into three categories: train, test and validation using 70%, 20% and 
10% of the images in the dataset, respectively (Table 2). The training hyperparameters selected for the 
current study determine a batch size of 16 images, 200 epochs, considering that the training stops if 
there is no improvement in the last 50 epochs. The remaining parameters have been set to their default 
value for the training process. At the hardware level, the resources that have been allocated for 
training correspond to NVIDIA RTX 3090 24 GB x1, 525.60.11 drivers & CUDA 12.0, MSI Z270 (MS-
7A63); 32 GB and Intel i7-7700K (4.2 GHz). 
 
Table 2  
Dataset arranged in categories for model training. 

Iteration Train Validation Test Total 
1st iteration 185 (62%) 38 (13%) 76 (25%) 299 
2nd iteration 290 (72%) 50 (12%) 61 (15%) 401 
 

 

3. Artificial Vision System 

For the evaluation of the trained model in both iterations, it is represented by the Average 
Precision (AP) to measure the prediction accuracy and Intersection over Union (IoU) to measure the 
overlap between two BBs. An IoU limit over 50% is defined to determine whether a prediction is 
regarded as truth. For the presented use case, maximum mAP50 and mAP50-95 metrics achieved 
during training were collected and summarized (Table 3). The results show that an increase of 100 
images with defects in the training set improved the mAP50 by 37%.   
 
Table 3  
Use case model metrics results 

Iteration Model mAP50 mAP50-95 

1st iteration YOLOv8n 0.27 0.12 



2nd iteration YOLOv8n 0.37 0.16 
 

 
Once the training results of the customized YOLOv8nano model have been theoretically evaluated, 

its performance is assessed in an industrial production environment by inferencing images collected 
and never used in the training process. By evaluating the prediction results, the class anomaly, 
bounding box region, and confidence level can be observed, and all provide information on how 
specific the algorithm is to the provided prediction. For the proposed use case, inclusions are easily 
detected by the YOLOv8 model (Figure 2). 
 

 
 

Figure 2 Inclusion detection on unseen data with 2nd model iteration. 
 
 

The results from the current AI algorithm are based on the neural network and trained with a 
dataset of 290 images, and the inclusion detection defect (Figure 1A) in the painting process is easily 
detected. The current trained algorithm allows the identification of inclusion anomalies, but it cannot 
correctly identify the remaining anomaly classes due to the low dataset employed. Further action will 
include the dataset augmentation with new high-quality data and improve the detection capabilities 
on the non-inclusion classes.   
 

4. Conclusions 

1. In this paper, it has been developed an artificial vision system to implement automatic 
inspection of painted surfaces of windmill towers. The model has proven good performance 
(0.37 mAP50) in detecting inclusions, the most common defect of the use case. Promising 
results in the aiming fully automating the task and reducing waste. Challenge of data 
collection and maintenance of production machine learning models. It is essential to consider 
that data collection for model training is a recurring task that must be carried out periodically 
to adapt our model to new types of defects and to balance the dataset so that all classes of 
anomalies are correctly represented. Increasing the number of annotated anomalies in the 
dataset contributes to the model's enhanced ability to detect and classify anomalies in diverse 
scenarios, including different lighting conditions, and ultimately improves the deployed 
solution's reliability and effectiveness. As future work, it is planned to extend the dataset 
samples to properly cover other types of defects. 
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