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Abstract

This work explores an approach to optimize microstructural development in
thermomechanical aluminum processing using neural networks. The intricate industrial
process involves continuous casting, homogenization heat treatment, reheating, forming
(extrusion), and artificial aging. For a given geometry and chemical composition, the
microstructural evolution of the material during this process chain defines the end-product
properties. Our primary focus is on integrating a neural network combined with an
optimization algorithm to precisely regulate thermomechanical processing parameters,
enhancing processability and end-product quality while minimizing scrap generation in
pursuit of Zero Defect Manufacturing.

A neural network architecture predicts grain size distribution based on extrusion process
parameters and in-situ conductivity measurements. The dataset is derived from in-situ
measurements of conductivity of six different aluminum alloys during homogenization,
implicitly carrying microstructural information, and from finite element simulations of the
extrusion process coupled with physically based microstructure simulation.

The optimization algorithm, using Gradient Decent, dynamically adjusts key parameters for
the extrusion process, such as ram speed, billet temperature, and tool temperature. The
algorithm converges consistently across different initializations to optimized parameters that
match the parameters in the simulation, which shows that the optimization works and the
model is robust to local minima.
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1. Introduction

In the realm of aluminum production, a robust correlation has been established between the
conditions of heat treatment and the processability (e.g., extrusion, rolling, forging) as well as the
final properties of the resulting product [1], [2]. In particular, the extrusion process is important for
the material’s performance and quality, which also depends on the microstructure [3]. Information
about the material's microstructure can be extracted via ex-situ measurements like microscopy [4].

Many approaches to finding optimized process parameters use statistical methods, as
demonstrated in [5], which employs 27 experiments to determine the optimized parameters. These
"trial and error"-methods result in scrap generation, as destructively tested sample parts need to be
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manufactured for process verification. Other approaches, such as those described in [6],utilize finite
simulation models for predicting the quality of the metal.

Besides that, data availability increases in general in the industry with the emerging trend of the
Internet of Things (IoT) and the advancement of artificial intelligence methods, the data-driven
approach has become a more easily available and important tool to use [6]. Building on this trend,
this paper shows a proof of concept of the integration of an optimization process for microstructural
development in Al-Mg-Si alloys with machine learning, particularly neural networks, to finely control
the extrusion process. A similar approach for optimized rolling schedule for desired mechanical
properties with in-situ measurements was shown by [7]. Another similar data driven approach shows
the process parameter optimization for the aluminum alloy casting in [8].

Such process optimization holds the potential to steer the process towards an optimal window,
ensuring both enhanced processability and improved end-product properties while minimizing scrap
generation. By adjusting parameters in the extrusion process such as temperature and ram speed, the
neural network optimization seeks to bring about a substantial increase in productivity within an
industrial setting.

2. Material and Methods
2.1.Data and Machine Learning

A neural network was developed with the goal of predicting the grain size distribution within an
alloy profile. To facilitate the training of the algorithm, a comprehensive dataset was curated
encompassing extrusion process parameters. These parameters were derived from a finite element
simulation of the extrusion process, as detailed in [9], [10]. The dataset includes crucial factors such
as grain size, grain element position, ram speed, billet temperature, and tool temperature. The
simulations were conducted for six different materials, and for each material, 245 simulations were
performed with different parameter combinations [10], providing an extensive range of data for the
machine learning. The extrusion process was simulated for identical Al-Mg-Si profiles, specifically
targeting 6060, 6005A, and 6082, as well as non-standard variations of these alloys with higher Fe
content [11].

In addition, in-situ conductometry measurements were incorporated, involving both real and
imaginary parts of impedance, along with the sensor temperature. These in-situ measurements were
systematically carried out during the homogenization process of six Al-Mg-Si wrought alloys and
implicitly carry information about the microstructural evolution during the heat treatment [11].

Each measurement curve within the dataset comprised a substantial 800 datapoints. To optimize
computational efficiency, accelerating convergence and avoid overfitting, a one-dimensional
convolutional autoencoder (1d-CAE) was employed for dimensionality reduction [12], [13]. This
technique allowed condensing the measurement curves down to just 12 essential features. All of the
ensembled data can be seen in the following Table 1:

Table 1. Summary of data for grain size prediction

Features Range Sequence Length

Ram Speed [mm/s] 1.0, 2.0, 4.0, 8.0, 12.0 1
Billet Temperature [°C] 460, 470, 480, 490, 500, 510, 520 1
Tool Temperature [°C] 460, 470, 480, 490, 500, 510, 520 1
Temperature of the Sensor [°C/min] 1 Measurement 3
Imaginary Curve of Impedance [Q/min] 1 Measurement 6
Real Curve of Impedance [Q/min] 1 Measurement 3

Element Coordinates of the profile 1507 (X[|Y)-Coordinates 2 (X]Y)
Grain Size [pum] ~ 1.5...360 1

The neural network architecture, as illustrated in Figure 1, consisted of an input layer with 17
inputs, three hidden layers, each containing 64 neurons, and an output layer for grain size prediction.
Linear layers and leaky rectified linear [14] unit activation functions were employed in the network



structure. This comprehensive approach facilitated the efficient prediction of grain size distribution
based on the provided features seen in table one (except the grain size, which is the prediction target).
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Figure 1: Neural Network Architecture for predicting the grain size distribution based on extrusion
process parameters and in situ conductivity measurements

2.2.0ptimization Algorithm

To determine the optimal parameters for the model and minimize the objective function (also
called cost function or loss), the Gradient Descent optimization algorithm was employed in
conjunction with the Adam Optimizer [15], [16]. This combination leverages adaptive learning rates
and momentum for enhanced convergence efficiency. The entire process chain, from input variables
through the Neural Network (NN) to the objective or loss function (see Figure 2), comprises
differentiable functions. This continuity enables the application of the Backpropagation method.
The general workflow of the gradient descent optimization is shown in Figure 2.
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Figure 2: Process chain of the optimization algorithm

The first step of the algorithm involves initializing the variables that should be optimized. The
objectives for optimization are the process parameters, including ram speed, billet temperature, and
tool temperature of the extrusion process. These parameters are the input for the neural network
model, which, alongside known material properties obtained from the measurements (see 2.1),
predicts the grain size distribution of the alloy profile. The grain size distribution forms a component
of the objective function, the target for minimization.

The second component consists of constraints for the process parameters. The goal is to predict
the smallest possible grain size distribution with a process parameter combination within an
extrusion ram speed of 4-8 mm/s. Additionally, the model should not extrapolate on the data but find
the best set of parameters within its known range. Therefore, in addition to the ram speed constraint,
the temperatures are also constrained between 460-520°C.

For the constraints, the following regularization function is implemented, used to regulate the
three process variables (ram speed, billet temperature, and tool temperature) in the desired range:
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Here in equation (1), width is a constant parameter affecting the position and width of the area to
regulate, while ¢ is used to smooth the function, and ¢ scales the output of it. Combining the
regularization functions for the process parameters and the model for the grain size distribution that
should be minimized, the objective or loss function looks as follows:

Loss = NN(r,ty,t;) + regularization(r) + regularization(t,) + regularization(t,) (2)

Here, r, t1 and t; are respectively the ram speed, tool temperature, and billet temperature, while
NN stands for the Neural Network, and Loss represents the objective function in equation (2). After
evaluating the objective function, the optimization algorithm evaluates the gradients and optimizes
the process parameters through backpropagation.

3. Results and Discussion

To test the optimization algorithm in conjunction with the neural network for predicting grain
size distribution, eight different optimization runs were conducted using various initial values for the
process parameters. After that, the optimized parameter get compared to the simulation data. The
results, including the optimized parameters and the corresponding final grain size distribution, are
presented in Table 2:

Table 2. Optimized Parameters - ram speed (r) [mm/s], tool temperature (t;) [°C] and billet
temperature (t2) [°C] - from different Initializations of the Optimization

Starting Value Optimized Parameters Average Grain
[r, ty, t2] [r, t1, 2] Size [um]
[2.1, 466, 466] [4.03, 461.34, 461.59] 52.32
[3.2, 472, 472] [4.03, 461.34, 461.59] 52.32
[4.3, 478, 478] [4.03, 461.34, 461.59] 52.32
[5.4, 484, 484] [4.03, 461.34, 461.59] 52.32
[6.5, 490, 490] [4.03, 461.34, 461.59] 52.32
(7.6, 496, 496] [4.03, 461.34, 461.59] 52.32
[8.7, 502, 502] [4.04, 461.34, 461.59] 52.35
[9.8, 508, 508] [4.04, 461.34, 461.59] 52.35
[10.9, 514, 514] [4.04, 461.34, 461.59] 52.35

The results indicate that, irrespective of the initialized parameters, the optimized parameters
consistently converge to approximately 4 mm/s, 461°C, and 461°C. The consistent convergence of the
neural network towards the same optimized process parameters across various initial conditions
suggests that the model possesses a robust and reliable capability for parameter optimization. The
resilience to different initializations indicates that the network model is less susceptible to local
minima.

In Table 3, simulation values are listed, showing the temperatures for achieving the smallest Grain
Size Distribution in the simulation from [9] for each simulated ram speed.

Table 3. Smallest average grain size for each ram speed from the simulation data of [9]

Process Parameter Average Grain
[1, t1, t2] Size [um]
[1, 460, 470] 41.86

[2, 460, 460] 45.74



[4, 460, 460] 51.15
[8, 460, 460] 58.84
[12, 460, 460] 65.4

The relevant ram speeds of the simulations are 4 mm/s and 8 mm/s, as that is the regulated area
of the optimization algorithm. The values of the optimized parameters, calculated using the
optimization procedure, with 4 mm/s, 461°C, and 461°C, align with the simulation parameters from
[9] of 4 mm/s, 460°C, and 460°C. Additionally, the prediction of the average grain size between the
neural network with 51.15 pm and the simulation from [9] with 52.33 um aligns.

In summary, the algorithm converges consistently across different initializations to optimized
parameters that match the parameters in the simulation, which shows that the optimization works
and the model is robust to local minima.

4. Conclusion

This study introduces a proof of concept for a data-driven approach, utilizing neural networks and
an optimization algorithm, to optimize the extrusion process of Al-Mg-Si alloys. Other approaches
for process optimization use statistical methods with trial and error experiments or attempt to
simulate the quality of the extruded alloy [5], [6]. Our optimization approach with machine learning
advocates the possibility to eliminate these ‘trial and error’ methods without the need for simulations
by leveraging microstructural information contained in in-situ conductivity curves alongside process
parameters such as time/temperature curves and extrusion parameters. Using this data, the neural
network predicts the microstructure of the alloy. Furthermore, this model serves as the objective
function for the optimization algorithm, dynamically adjusting key parameters. The optimized
process parameters consistently converge to values aligned with simulations, which serve as ground
truth data, indicating successful optimization.

Despite the challenges posed by limited real-world data availability and the reliance on simulation-
driven training, our approach demonstrates robustness in converging towards optimized parameters
closely aligned with simulated results. This suggests the potential applicability of our optimization
framework in industrial settings.

Future research will focus on accumulating larger datasets of real process data, which could aid in
predicting additional product properties beyond grain structure. Furthermore, with these real-world
data, the optimization model should be again tested and verified.
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