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Abstract  
This article addresses the growing demand for efficient and high-quality manufacturing 
processes, highlighting the importance of the "Zero Defects Manufacturing" concept. It is 
explained how a standard tool such as Coordinate Measuring Machine (CMM) - a current 
and standard method for dimensional inspection - contributes to ensure product quality in 
such and more rigorous procedure. Subsequently, the aurora explains and compare the 
automatic recognition of Elementary Functional Geometries (EFGs) with the standard 
method, exploring differences and analyzing the advantages of automatic recognition in 
terms of efficiency and precision. The article then emphasizes the importance of recognizing 
elementary geometries and their tolerancing, including the recognition of flat, spherical, 
cylindrical, and conical surfaces. The primary focus of the work is to adapt partial derivatives 
to the equations of Gaussian and mean curvatures, highlighting their potential as tools for 
geometric shape recognition. The article concludes by presenting decision criteria for 
different elementary geometries, emphasizing their relevance for implementing an automatic 
recognition algorithm for these geometries. 
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1. Introduction 

Currently, consumers' rising expectations regarding the performance, quality, and price of future 
products have driven the pursuit of efficient and high-quality production, support-ed by agile 
innovation, reduced development time, and product life cycle [1]. 

In this context, efficient and high-quality production goes beyond resource optimization, cost 
reduction, and minimizing non-conformities. It plays a crucial role in environmental sustainability 
by minimizing waste and resource usage [2][3][4]. 

The emphasis on product quality becomes crucial to ensure customer satisfaction and loyalty 
during the relentless pursuit of efficient production. In addition to meeting customer needs, the 
company builds a positive image, laying the foundation for customer loyalty and enabling expansion 
into new markets. This commitment to quality not only serves as a competitive strategy but also 
drives the development of efficient manufacturing processes, resulting in excellent products [5]. 

Given this reality, the evolution of the qualities of control systems emerges as an inevitable 
necessity to monitor and prevent the occurrence of defects [6]. 

In this paradigm arises the concept of Zero Defects (ZD), which represents a quality management 
strategy that seeks the complete elimination of defects or failures in products or processes [7]. 
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The central aim of this strategy is to achieve and uphold excellence in quality by completely 
eliminating any form of defects or failures in products or processes. Popularized by Philip Crosby, 
this strategy aims to prevent the occurrence of defects from the early stages, including the design 
phase. To achieve this, it fosters an organizational culture centered on the appreciation of quality, 
motivating all employees to consistently strive for perfection and customer satisfaction [8]. 

In the context of the ZD strategy, automatic metrology plays a crucial role by providing precise 
and rapid measurements before, during, and after the production process. Its primary function is to 
verify the conformity of product dimensions to established specifications, enabling immediate 
detection of deviations or defects. The integration of automatic metrology allows companies to 
identify and address potential issues, often in real-time, fostering high-quality production and 
minimizing defects. This approach reinforces the preventive nature of the "Zero Defects" strategy, 
preventing the production of faulty items from the early stages of the process [9].  

Currently, the standard inspection method relies on coordinate measuring machines (CMMs). The 
main advantages of this trend are attributed to the following factors:  

• High resolution, on the or-der of tenths of a micrometer;  
• Versatility, as it allows for measuring parts of different geometries and sizes, as well as 

different types of materials, although in the case of soft materials, a non-contact probing 
system may be required;  

• High repeatability, as the measurement is performed in an automated and programmable 
manner [10]. 

 
The literature mentions other methods that aim to complement or compensate for the drawbacks 

of these machines, such as: 
• X-ray Computed Tomography (CT), which utilizes X-rays to obtain two-dimensional images 

of thin slices of an object, combining them to generate a three-dimensional image [11], [12]; 
• 3D Scanning, used to acquire three-dimensional surface data more quickly and flexibly than 

CMMs [13]; 
• Optical Measurement Machines (OMM), employing cameras and software to measure the 

shape and dimensions of an object, often complementing CMMs [14], [15]; 
• Structured Light Scanners, a method similar to 3D scanning but using structured light instead 

of laser [16]. 
 
None of the methods mentioned provides a resolution comparable to that of CMM. The choice of 

the most suitable method depends on the specific application and the required measurement 
specifications. Different specifications necessitate varying levels of measurement resolution in 
accordance with the specified requirements. In other words, the measurement result must ensure that 
the number of decimal places corresponding to the least significant part of the specification is 
guaranteed, and thus, free from error. In practical situations, there is sometimes even a need to use 
more than one measurement method or system to achieve a comprehensive dimensional 
characterization of the part. 

Despite the variety of alternative methods for the automatic recognition of geometric shapes and 
the increasing availability of algorithms, operator intervention is still necessary to define regions of 
interest, choose measurement strategies, and validate the obtained results. Additionally, the operator 
plays a crucial role in assessing the quality of measurement data and making decisions regarding 
error correction and other issues related to the measurement process [17]. In this context, automatic 
metrology and, more specifically, the automatic recognition of Elementary Functional Geometries 
(GEFs) can contribute to the automation of the measurement process across various stages of the pro-
duction chain, from product design to manufacturing and post-sales, with the goal of enhancing 
product quality, efficiency, and reliability [18]. 

 

2. Automatic Recognition of Elementary Functional Geometries (GEFs) 
vs. Standard Method 



Currently, CMMs stand out as a widely adopted three-dimensional measurement system in the 
industry due to their flexibility, accuracy, and repeatability. However, despite the widespread 
adoption of these machines in geometric inspections, some limitations persist, especially regarding 
operator dependence, speed, and the amount of acquired data, representing only a minimal fraction 
of the total surface complexity, thereby compromising measurement accuracy. Additionally, it is 
important to note that in these measurement systems, decisions regarding the geometric shape of 
surfaces are still made manually by the operator. Even in the alternative methods mentioned in the 
literature, operator intervention remains crucial in: 

• Defining regions of interest in the point cloud; 
• Selecting measurement strategies and validating the obtained results; 
• Assessing data quality and making decisions on necessary corrections [13]. 
The primary focus of automatic recognition is to contribute to the automation of the measurement 

process, particularly starting from the acquisition of a point cloud on the sur-faces that delineate the 
elementary functional geometries obtained through mechanical manufacturing. These geometries 
consist of simple shapes, including planes, cylinders, spheres, and cones, playing a crucial role in the 
behavior of mechanisms, with a significant impact on their quality in terms of both shape and 
roughness [19]. 

The implementation of automatic metrology has been widely discussed in the literature as a 
significant strategy to enhance efficiency, quality, and productivity in the manufacturing industry. 
From an economic perspective, a study by Carmignato et al. emphasizes the economic benefits of 
metrology in production environments, illustrating how the implementation of automated 
measurement systems can reduce costs and enhance efficiency [20]. Regarding trends in metrology, 
Imkamp et al. discuss how the concept of Industry 4.0 can contribute to the adoption of intelligent 
measurement and inspection technologies, highlighting challenges and trends in metrology for 
manufacturing [22]. 

Another important aspect of automatic metrology is its relationship with decision-making in the 
industry. Lazzari et al. discuss the significance of metrology for decision-making in a Big Data context, 
illustrating how the availability of accurate and real-time information can contribute to the 
optimization of production processes [23].  

In summary, the literature emphasizes that the implementation of automatic metrology can bring 
several advantages to the manufacturing industry, including cost reduction, im-proved efficiency and 
quality of production processes, and contributions to the digital transformation of the industry. 
Therefore, to address this purpose, the challenge begins with enabling differential geometry as 
mathematical support in determining Gaussian and mean curvatures, which allow defining decision 
conditions for the geometric shapes used in this work. 

 

3. Importance of Recognizing Elementary Geometric Shapes and Their 
Tolerancing 

Nearly all mechanical components exhibit nominally flat surfaces, which inevitably deviate from the 
geometric or mathematical plane. Various factors contribute to these deviations, with cutting forces 
and thermal variations in the machining process considered as primary causes [24]. In addition to the 
micro-geometric irregularities often characteristic of manufacturing processes, these surfaces also 
display macro-geometric irregularities, typically classified as form deviations. In metrological 
terminology, these deviations are referred to as flatness deviations. The interpretation of these 
deviations, according to ISO 1101 standard [25], suggests that the degree of approximation or 
deviation of a real flat surface from a nominally flat surface determines the flatness degree of that 
surface. Thus, according to this standard, the tolerance zone corresponds to the space limited by two 
parallel planes separated by a distance t (see Fig. 1. a). 



 

 

a. b. 

Fig. 1. Tolerance zone of the flat surface. 
a - defined by ISO 1101. 

  b - obtained by the CMM. 
Flatness is a critical feature to be evaluated as it determines the quality of a flat surface. However, the 
plane defined by the surface may vary in inclination, and in such cases, the coordinate system must 
adopt it as the reference plane and align it with the machine plane. Thus, the Z-axis is defined based 
on this alignment. Fig. 2. b illustrates the tolerance zone of the flat surface obtained on the CMM. 
The sphere, as mentioned earlier, also represents a fundamental functional geometry obtained 
through mechanical manufacturing. Achieving highly precise spherical surfaces, due to the ongoing 
development of manufacturing processes, has become increasingly important. In the industry, the 
deviation from spherical shape, or sphericity, has a significant impact on the circular motion of 
components in various machines. Therefore, defects such as roughness, waviness, or shape 
irregularities can lead to the generation of a substantial amount of heat, causing an increase in the 
surface temperature of the involved components, resulting in wear and a reduction in lifespan. Hence, 
the recognition of spherical shape and the control of its deviation become of paramount importance 
in mechanical manufacturing [26]. 
International standards, including ISO 1101, do not explicitly characterize this deviation, leading to 
the emergence of various proposed contributions, some of which are presented in the references [16] 
[17] [25], [2]. In practice, the method used to assess sphericity involves projecting the sphere onto 
the plane, subsequently evaluating it in accordance with ISO 1101 for circular form (see Fig. 2. a). 

 

 

a. b. 

Fig. 2. Tolerance zone of circularity. 
a - defined by ISO 1101. 

  b - obtained by the CMM. 

The spatial position of a spherical shape is adequately defined by the coordinates of the center and 
the radius value. Therefore, solving the position problem can be achieved by determining the mean 
position of the center, utilizing the curvature and local normal vector at each point in the cloud 
belonging to the surface. 
The sphericity assessment with Coordinate Measuring (CM), as depicted in Fig. 2. b complies with 
the guidelines established by ISO 1101 standard. 
Revolution surfaces, especially cylindrical ones, are common in mechanical construction, finding 
application in shafts and holes. From a geometric perspective, these surfaces can be visualized as 
being generated by a line (generatrix) that moves parallel to another line (the axis of the cylinder or 
cylindrical surface). This generatrix is constantly supported on a circumference (directrix) that is 
concentric with the axis and located in a plane normal to it. Several factors contribute to the surfaces 
generated by mechanical manufacturing not being perfect, often requiring the assessment of the 
deviation between the real and mathematically perfect surfaces. ISO 1101 standard defines the 



deviation from cylindrical form, or cylindricity, as the tolerance zone between two coaxial cylinders, 
within which the real surface must be contained (see Fig. 3). 

 

 

a. b. 

Fig. 3. Tolerance zone of circularity. 
a - defined by ISO 1101. 

  b - obtained by the CMM. 

The characterization of the conical surface is adequately defined by the angle formed between its 
generatrix and the axis, as well as the angles that the axis itself makes concerning the coordinate axes 
X, Y, and Z.  
The deviation from conical form, also known as conicity, can be defined similarly to the geometric 
forms discussed earlier, characterized as the tolerance zone between two coaxial cones (see Fig. 4). 
However, it is important to note that the ISO 1101 standard still does not encompass the specification 
of the tolerance zone for conical form. 

 

 

a. b. 
Fig. 4. Tolerance zone of conicity. 

a - defined by ISO 1101. 
  b - obtained by the CMM. 

4. Principal Curvatures as a Recognition Tool for Elementary 
Geometric Shape Recognition 

The curvature of a surface is a measure that describes how "curved" or "twisted" a sur-face is in 
relation to a flat surface. It is a significant geometric measure that indicates the degree of curvature 
of a curve or surface at a specific point P. 
Associated with this point P, for the elementary geometries used in this study, Figure 1 il-lustrates 
the representation of two tangent directions to the surface that are mutually perpendicular: e₁ and e₂. 
These directions are designated as principal directions at point P, and associated with them are the 
principal curvatures K₁(P) and K₂(P), representing the maxi-mum and minimum curvature values at 
that point on the surface. 



  

a. b. 
  

c. d. 
Fig. 4. Representation at point P: principal directions, principal 

curvatures, and normal vector. 
a. Plane; b. Sphere; c. Cylinder; d. Cone. 

From the principal curvatures of the surface at point P, the Gauss curvature (Eq. 1) and the mean 
curvature (Eq. 2) can be defined. 

 𝐾(𝑃) = 𝐾!(𝑃) × 𝐾"(𝑃) (1) 

The Gaussian curvature is an intrinsic measure of the curvature of a surface at a specific point. This 
measure indicates the magnitude to which the surface bends in relation to its principal directions. 
The mean curvature, in turn, represents a measure of the average of the principal curvatures of a 
surface at a specific point. It provides information about the average curvature of the surface with 
respect to its principal directions. Its calculation is also carried out using the first and second-order 
partial derivatives of the surface. 

 𝐻(𝑃) = #!(%)'#"(%)
"

= !
"(!

  (2) 

These curvature measures are essential in geometry recognition, as they enable the extraction of 
important information about the local shape of the surface. By analyzing Gaussian and mean 
curvatures at various points on a surface, it is possible to identify characteristic patterns of different 
geometric shapes, such as planes, cylinders, spheres, and cones. Each of these geometries exhibits 
specific curvature patterns, and recognizing these patterns through curvatures allows for 
distinguishing and characterizing the various geometries present in an object or component. 
In the case of a flat surface, principal curvatures (Eq. 3) are associated with all directions on the 
surface. 

 𝐾!(𝑃) = 𝐾"(𝑃) = 0  (3) 



The same occurs on the spherical surface of radius r, where the curvature, regardless of the tangent 
direction, is always equal to the inverse of the radius (Eq. 4). 

 𝐾!(𝑃) = 𝐾"(𝑃) =
!
(
      (4) 

In the cylindrical surface, since the direction corresponding to the minimum curvature is that of the 
generator, which is parallel to the axis, the principal curvature in this direction is zero. Therefore, the 
curvature is determined in the direction perpendicular to the cylinder's axis, corresponding to the 
directrix, where the curvature takes on its maximum value (Eq. 5). 

 𝐾!(𝑃) =
!
(
 (5) 

When the directrix is not a circle, as is the case with an ellipse, the radius is not constant, and the 
curvature will be between 0 and 1/r.  
The curvature of the conical surface in the direction of the axis is zero. In the radial direction, 
perpendicular to the axis, it is maximum (Eq. 5), as the radius decreases towards the vertex. 

 𝐾!(𝑃) = 1/2𝑟)  (6) 

5. Adaptation of partial derivatives of Gaussian Equation curvature  

The Gaussian and mean curvatures, as mentioned earlier, arise respectively from the product and 
average of the principal curvatures. In Manfredo Carmo's book [27], these curvatures are defined in 
terms of the coefficients of the fundamental forms of a surface (Eq. 7). 

 𝐾 = *+,-"

./,0"
   (7) 

The mean curvature (H) is another important measure related to the coefficients of the fundamental 
forms (Eq. 8). 

 𝐻 = */,"-0'+.
"(./,0")

    (8) 

In equations 5.1 and 5.2, E, F, and G are the coefficients of the first fundamental form, which is an 
intrinsic metric of the surface describing how distances and angles are measured on the surface. The 
coefficients e, f, and g are the coefficients of the second fundamental form, which is related to the 
curvature of the surface. 
In general terms, the first fundamental form of a surface is related to the local metric of the surface, 
describing how distances and angles are measured. It is fundamental for the study of the intrinsic 
geometry of the surface. On the other hand, the second fundamental form is related to the curvature 
of the surface, providing information about how the surface bends in relation to its normal. More 
specifically, the second fundamental form is related to how the normal vector to the surface varies 
along the surface [27]. 

 

Fig. 5. Mesh points projected on the plane XOY. 



The coefficients of the fundamental forms can be expressed in terms of partial derivatives. Since the 
primary aim of their application is to automate the measurement process, it is crucial that the data 
acquired about the surface is obtained quickly, for example, through 3D scanning or photography. 
Thus, as this data corresponds to the three-dimensional coordinates of points, it takes the following 
format (x_i, y_j, f(x_i, y_j)), with i = 1,2,...,n and j = 1,2,...,p, where z_((i,j)) = f(x_i, y_j). Fig. 1 illustrates 
a point mesh representing the variables involved in the process. 
Subsequently, as there is no function characterizing the surface represented by the acquired data 
points, the method of divided differences is employed to determine a numerical approximation for 
the first and second-order partial derivatives at each point (Eq. 9). Thus, the first-order derivatives at 
each point were obtained using (Eq. 9) and (Eq. 10). 
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Where hx and hy represent the distance between two consecutive points along the x and y axes, 
respectively. The numerical approximation for the second-order partial derivatives was obtained 
using the same method. In this case, using (Eq. 11), (Eq. 12) and (Eq. 13). 
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Therefore, for a point P(x, y, f(x, y)) on a surface, the Gaussian and mean curvatures are expressed, 
respectively, by (Eq. 14) and (Eq. 15). 
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Both curvatures are significant in the context of differential geometry, as they provide information 
about the shape and curvature of the surface at a specific point. 

6. Decision Conditions for Different Geometries 

The recognition of different geometric shapes was performed based on satisfying the decision 
conditions presented in Table 1, where r is the radius of the considered shape. 

Table 1. Decision conditions for different geometric shapes. 
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Based on the defined decision criteria, the aim is to develop an algorithm in the near future for the 
automatic recognition of elementary functional geometries. Subsequently, an-other concern will be 
to analyze how to enable the successful implementation and integration of this algorithm in the 
context of Industry 4.0, in order to facilitate the efficient and integrated identification and analysis of 
elementary functional geometries. 

7. Conclusions 

The literature underscores that the implementation of automatic metrology can bring various 
advantages to the manufacturing industry, including cost reduction, improved efficiency, enhanced 
quality in production processes, and contribution to the digital transformation of the industry. Thus, 
to address this purpose, the problem began by establishing differential geometry as mathematical 
support in determining Gaussian and mean curvatures, which, in turn, define the decision conditions 
for the geometric shapes used in this work. These conditions lay the groundwork for, in the near 
future, establishing an algorithm for automatic recognition of elementary functional geometries 
integrated into efficient and defect-free manufacturing. This step represents a promising 
advancement in the continuous improvement of industrial manufacturing. This research not only 
contributes to understand-ing the automatic recognition of elementary functional geometries but also 
points to the feasibility and necessity of automated solutions, paving the way for an imminent future 
of enhanced and reliable manufacturing. 
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