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Abstract

This article addresses the growing demand for efficient and high-quality manufacturing
processes, highlighting the importance of the "Zero Defects Manufacturing” concept. It is
explained how a standard tool such as Coordinate Measuring Machine (CMM) - a current
and standard method for dimensional inspection - contributes to ensure product quality in
such and more rigorous procedure. Subsequently, the aurora explains and compare the
automatic recognition of Elementary Functional Geometries (EFGs) with the standard
method, exploring differences and analyzing the advantages of automatic recognition in
terms of efficiency and precision. The article then emphasizes the importance of recognizing
elementary geometries and their tolerancing, including the recognition of flat, spherical,
cylindrical, and conical surfaces. The primary focus of the work is to adapt partial derivatives
to the equations of Gaussian and mean curvatures, highlighting their potential as tools for
geometric shape recognition. The article concludes by presenting decision criteria for
different elementary geometries, emphasizing their relevance for implementing an automatic
recognition algorithm for these geometries.
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1. Introduction

Currently, consumers' rising expectations regarding the performance, quality, and price of future
products have driven the pursuit of efficient and high-quality production, support-ed by agile
innovation, reduced development time, and product life cycle [1].

In this context, efficient and high-quality production goes beyond resource optimization, cost
reduction, and minimizing non-conformities. It plays a crucial role in environmental sustainability
by minimizing waste and resource usage [2][3][4].

The emphasis on product quality becomes crucial to ensure customer satisfaction and loyalty
during the relentless pursuit of efficient production. In addition to meeting customer needs, the
company builds a positive image, laying the foundation for customer loyalty and enabling expansion
into new markets. This commitment to quality not only serves as a competitive strategy but also
drives the development of efficient manufacturing processes, resulting in excellent products [5].

Given this reality, the evolution of the qualities of control systems emerges as an inevitable
necessity to monitor and prevent the occurrence of defects [6].

In this paradigm arises the concept of Zero Defects (ZD), which represents a quality management
strategy that seeks the complete elimination of defects or failures in products or processes [7].
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The central aim of this strategy is to achieve and uphold excellence in quality by completely
eliminating any form of defects or failures in products or processes. Popularized by Philip Crosby,
this strategy aims to prevent the occurrence of defects from the early stages, including the design
phase. To achieve this, it fosters an organizational culture centered on the appreciation of quality,
motivating all employees to consistently strive for perfection and customer satisfaction [8].

In the context of the ZD strategy, automatic metrology plays a crucial role by providing precise
and rapid measurements before, during, and after the production process. Its primary function is to
verify the conformity of product dimensions to established specifications, enabling immediate
detection of deviations or defects. The integration of automatic metrology allows companies to
identify and address potential issues, often in real-time, fostering high-quality production and
minimizing defects. This approach reinforces the preventive nature of the "Zero Defects" strategy,
preventing the production of faulty items from the early stages of the process [9].

Currently, the standard inspection method relies on coordinate measuring machines (CMMs). The
main advantages of this trend are attributed to the following factors:

* High resolution, on the or-der of tenths of a micrometer;

* Versatility, as it allows for measuring parts of different geometries and sizes, as well as
different types of materials, although in the case of soft materials, a non-contact probing
system may be required;

* High repeatability, as the measurement is performed in an automated and programmable
manner [10].

The literature mentions other methods that aim to complement or compensate for the drawbacks
of these machines, such as:

* X-ray Computed Tomography (CT), which utilizes X-rays to obtain two-dimensional images
of thin slices of an object, combining them to generate a three-dimensional image [11], [12];

* 3D Scanning, used to acquire three-dimensional surface data more quickly and flexibly than
CMMs [13];

* Optical Measurement Machines (OMM), employing cameras and software to measure the
shape and dimensions of an object, often complementing CMMs [14], [15];

»  Structured Light Scanners, a method similar to 3D scanning but using structured light instead
of laser [16].

None of the methods mentioned provides a resolution comparable to that of CMM. The choice of
the most suitable method depends on the specific application and the required measurement
specifications. Different specifications necessitate varying levels of measurement resolution in
accordance with the specified requirements. In other words, the measurement result must ensure that
the number of decimal places corresponding to the least significant part of the specification is
guaranteed, and thus, free from error. In practical situations, there is sometimes even a need to use
more than one measurement method or system to achieve a comprehensive dimensional
characterization of the part.

Despite the variety of alternative methods for the automatic recognition of geometric shapes and
the increasing availability of algorithms, operator intervention is still necessary to define regions of
interest, choose measurement strategies, and validate the obtained results. Additionally, the operator
plays a crucial role in assessing the quality of measurement data and making decisions regarding
error correction and other issues related to the measurement process [17]. In this context, automatic
metrology and, more specifically, the automatic recognition of Elementary Functional Geometries
(GEFs) can contribute to the automation of the measurement process across various stages of the pro-
duction chain, from product design to manufacturing and post-sales, with the goal of enhancing
product quality, efficiency, and reliability [18].

2. Automatic Recognition of Elementary Functional Geometries (GEFs)
vs. Standard Method



Currently, CMMs stand out as a widely adopted three-dimensional measurement system in the
industry due to their flexibility, accuracy, and repeatability. However, despite the widespread
adoption of these machines in geometric inspections, some limitations persist, especially regarding
operator dependence, speed, and the amount of acquired data, representing only a minimal fraction
of the total surface complexity, thereby compromising measurement accuracy. Additionally, it is
important to note that in these measurement systems, decisions regarding the geometric shape of
surfaces are still made manually by the operator. Even in the alternative methods mentioned in the
literature, operator intervention remains crucial in:

+  Defining regions of interest in the point cloud;

+  Selecting measurement strategies and validating the obtained results;

+  Assessing data quality and making decisions on necessary corrections [13].

The primary focus of automatic recognition is to contribute to the automation of the measurement
process, particularly starting from the acquisition of a point cloud on the sur-faces that delineate the
elementary functional geometries obtained through mechanical manufacturing. These geometries
consist of simple shapes, including planes, cylinders, spheres, and cones, playing a crucial role in the
behavior of mechanisms, with a significant impact on their quality in terms of both shape and
roughness [19].

The implementation of automatic metrology has been widely discussed in the literature as a
significant strategy to enhance efficiency, quality, and productivity in the manufacturing industry.
From an economic perspective, a study by Carmignato et al. emphasizes the economic benefits of
metrology in production environments, illustrating how the implementation of automated
measurement systems can reduce costs and enhance efficiency [20]. Regarding trends in metrology,
Imkamp et al. discuss how the concept of Industry 4.0 can contribute to the adoption of intelligent
measurement and inspection technologies, highlighting challenges and trends in metrology for
manufacturing [22].

Another important aspect of automatic metrology is its relationship with decision-making in the
industry. Lazzari et al. discuss the significance of metrology for decision-making in a Big Data context,
illustrating how the availability of accurate and real-time information can contribute to the
optimization of production processes [23].

In summary, the literature emphasizes that the implementation of automatic metrology can bring
several advantages to the manufacturing industry, including cost reduction, im-proved efficiency and
quality of production processes, and contributions to the digital transformation of the industry.
Therefore, to address this purpose, the challenge begins with enabling differential geometry as
mathematical support in determining Gaussian and mean curvatures, which allow defining decision
conditions for the geometric shapes used in this work.

3. Importance of Recognizing Elementary Geometric Shapes and Their
Tolerancing

Nearly all mechanical components exhibit nominally flat surfaces, which inevitably deviate from the
geometric or mathematical plane. Various factors contribute to these deviations, with cutting forces
and thermal variations in the machining process considered as primary causes [24]. In addition to the
micro-geometric irregularities often characteristic of manufacturing processes, these surfaces also
display macro-geometric irregularities, typically classified as form deviations. In metrological
terminology, these deviations are referred to as flatness deviations. The interpretation of these
deviations, according to ISO 1101 standard [25], suggests that the degree of approximation or
deviation of a real flat surface from a nominally flat surface determines the flatness degree of that
surface. Thus, according to this standard, the tolerance zone corresponds to the space limited by two
parallel planes separated by a distance t (see Fig. 1. a).



Fig. 1. Tolerance zone of the flat surface.
a - defined by ISO 1101.
b - obtained by the CMM.

Flatness is a critical feature to be evaluated as it determines the quality of a flat surface. However, the
plane defined by the surface may vary in inclination, and in such cases, the coordinate system must
adopt it as the reference plane and align it with the machine plane. Thus, the Z-axis is defined based
on this alignment. Fig. 2. b illustrates the tolerance zone of the flat surface obtained on the CMM.
The sphere, as mentioned earlier, also represents a fundamental functional geometry obtained
through mechanical manufacturing. Achieving highly precise spherical surfaces, due to the ongoing
development of manufacturing processes, has become increasingly important. In the industry, the
deviation from spherical shape, or sphericity, has a significant impact on the circular motion of
components in various machines. Therefore, defects such as roughness, waviness, or shape
irregularities can lead to the generation of a substantial amount of heat, causing an increase in the
surface temperature of the involved components, resulting in wear and a reduction in lifespan. Hence,
the recognition of spherical shape and the control of its deviation become of paramount importance
in mechanical manufacturing [26].

International standards, including ISO 1101, do not explicitly characterize this deviation, leading to
the emergence of various proposed contributions, some of which are presented in the references [16]
[17] [25], [2]. In practice, the method used to assess sphericity involves projecting the sphere onto
the plane, subsequently evaluating it in accordance with ISO 1101 for circular form (see Fig. 2. a).
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Fig. 2. Tolerance zone of circularity.

a - defined by ISO 1101.

b - obtained by the CMM.
The spatial position of a spherical shape is adequately defined by the coordinates of the center and
the radius value. Therefore, solving the position problem can be achieved by determining the mean
position of the center, utilizing the curvature and local normal vector at each point in the cloud
belonging to the surface.
The sphericity assessment with Coordinate Measuring (CM), as depicted in Fig. 2. b complies with
the guidelines established by ISO 1101 standard.
Revolution surfaces, especially cylindrical ones, are common in mechanical construction, finding
application in shafts and holes. From a geometric perspective, these surfaces can be visualized as
being generated by a line (generatrix) that moves parallel to another line (the axis of the cylinder or
cylindrical surface). This generatrix is constantly supported on a circumference (directrix) that is
concentric with the axis and located in a plane normal to it. Several factors contribute to the surfaces
generated by mechanical manufacturing not being perfect, often requiring the assessment of the
deviation between the real and mathematically perfect surfaces. ISO 1101 standard defines the



deviation from cylindrical form, or cylindricity, as the tolerance zone between two coaxial cylinders,
within which the real surface must be contained (see Fig. 3).
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Fig. 3. Tolerance zone of circularity.

a - defined by ISO 1101.

b - obtained by the CMM.
The characterization of the conical surface is adequately defined by the angle formed between its
generatrix and the axis, as well as the angles that the axis itself makes concerning the coordinate axes
X,Y,and Z.
The deviation from conical form, also known as conicity, can be defined similarly to the geometric
forms discussed earlier, characterized as the tolerance zone between two coaxial cones (see Fig. 4).
However, it is important to note that the ISO 1101 standard still does not encompass the specification
of the tolerance zone for conical form.
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Fig. 4. Tolerance zone of conicity.
a - defined by ISO 1101.
b - obtained by the CMM.

4. Principal Curvatures as a Recognition Tool for Elementary
Geometric Shape Recognition

The curvature of a surface is a measure that describes how "curved" or "twisted" a sur-face is in
relation to a flat surface. It is a significant geometric measure that indicates the degree of curvature
of a curve or surface at a specific point P.

Associated with this point P, for the elementary geometries used in this study, Figure 1 il-lustrates
the representation of two tangent directions to the surface that are mutually perpendicular: e, and e,.
These directions are designated as principal directions at point P, and associated with them are the
principal curvatures K,(P) and K,(P), representing the maxi-mum and minimum curvature values at
that point on the surface.
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Fig. 4. Representation at point P: principal directions, principal
curvatures, and normal vector.
a. Plane; b. Sphere; c. Cylinder; d. Cone.
From the principal curvatures of the surface at point P, the Gauss curvature (Eq. 1) and the mean
curvature (Eq. 2) can be defined.

K(P) = K, (P) X K>(P) (1)

The Gaussian curvature is an intrinsic measure of the curvature of a surface at a specific point. This
measure indicates the magnitude to which the surface bends in relation to its principal directions.
The mean curvature, in turn, represents a measure of the average of the principal curvatures of a
surface at a specific point. It provides information about the average curvature of the surface with
respect to its principal directions. Its calculation is also carried out using the first and second-order
partial derivatives of the surface.

K (P)+K,(P) _ 1
2 2rp

H(P) = (2)

These curvature measures are essential in geometry recognition, as they enable the extraction of
important information about the local shape of the surface. By analyzing Gaussian and mean
curvatures at various points on a surface, it is possible to identify characteristic patterns of different
geometric shapes, such as planes, cylinders, spheres, and cones. Each of these geometries exhibits
specific curvature patterns, and recognizing these patterns through curvatures allows for
distinguishing and characterizing the various geometries present in an object or component.

In the case of a flat surface, principal curvatures (Eq. 3) are associated with all directions on the
surface.

Ki(P) =K,(P)=0 3)



The same occurs on the spherical surface of radius r, where the curvature, regardless of the tangent
direction, is always equal to the inverse of the radius (Eq. 4).

Ki(P) = K,(P) =~ (4)

In the cylindrical surface, since the direction corresponding to the minimum curvature is that of the
generator, which is parallel to the axis, the principal curvature in this direction is zero. Therefore, the
curvature is determined in the direction perpendicular to the cylinder's axis, corresponding to the
directrix, where the curvature takes on its maximum value (Eq. 5).

Ky(P) =+ (5)

When the directrix is not a circle, as is the case with an ellipse, the radius is not constant, and the
curvature will be between 0 and 1/r.

The curvature of the conical surface in the direction of the axis is zero. In the radial direction,
perpendicular to the axis, it is maximum (Eq. 5), as the radius decreases towards the vertex.

K, (P) = 1/2r, (6)
5. Adaptation of partial derivatives of Gaussian Equation curvature

The Gaussian and mean curvatures, as mentioned earlier, arise respectively from the product and
average of the principal curvatures. In Manfredo Carmo's book [27], these curvatures are defined in
terms of the coefficients of the fundamental forms of a surface (Eq. 7).
_eg-f?
T EG-F2 (7)
The mean curvature (H) is another important measure related to the coefficients of the fundamental
forms (Eq. 8).
_ eG-2fF+gE
T 2(EG-F?) (8)
In equations 5.1 and 5.2, E, F, and G are the coefficients of the first fundamental form, which is an
intrinsic metric of the surface describing how distances and angles are measured on the surface. The
coefficients e, f, and g are the coefficients of the second fundamental form, which is related to the
curvature of the surface.
In general terms, the first fundamental form of a surface is related to the local metric of the surface,
describing how distances and angles are measured. It is fundamental for the study of the intrinsic
geometry of the surface. On the other hand, the second fundamental form is related to the curvature
of the surface, providing information about how the surface bends in relation to its normal. More
specifically, the second fundamental form is related to how the normal vector to the surface varies
along the surface [27].
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Fig. 5. Mesh points projected on the plane XOY.



The coefficients of the fundamental forms can be expressed in terms of partial derivatives. Since the
primary aim of their application is to automate the measurement process, it is crucial that the data
acquired about the surface is obtained quickly, for example, through 3D scanning or photography.
Thus, as this data corresponds to the three-dimensional coordinates of points, it takes the following
format (x_i, y_j, f(x_i, y_j)), withi=1,2,..,nand j = 1,2,...,p, where z_((i,j)) = f(x_i, y_j). Fig. 1 illustrates
a point mesh representing the variables involved in the process.

Subsequently, as there is no function characterizing the surface represented by the acquired data
points, the method of divided differences is employed to determine a numerical approximation for
the first and second-order partial derivatives at each point (Eq. 9). Thus, the first-order derivatives at
each point were obtained using (Eq. 9) and (Eq. 10).

9z oo . _ 2(i+1,))-z(i-1))
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2 (i,j) = S (10)

Where hx and hy represent the distance between two consecutive points along the x and y axes,
respectively. The numerical approximation for the second-order partial derivatives was obtained
using the same method. In this case, using (Eq. 11), (Eq. 12) and (Eq. 13).
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Therefore, for a point P(x, y, f(x, y)) on a surface, the Gaussian and mean curvatures are expressed,
respectively, by (Eq. 14) and (Eq. 15).
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Both curvatures are significant in the context of differential geometry, as they provide information
about the shape and curvature of the surface at a specific point.

H(,j) =

6. Decision Conditions for Different Geometries

The recognition of different geometric shapes was performed based on satisfying the decision
conditions presented in Table 1, where r is the radius of the considered shape.

Table 1. Decision conditions for different geometric shapes.
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Based on the defined decision criteria, the aim is to develop an algorithm in the near future for the
automatic recognition of elementary functional geometries. Subsequently, an-other concern will be
to analyze how to enable the successful implementation and integration of this algorithm in the
context of Industry 4.0, in order to facilitate the efficient and integrated identification and analysis of
elementary functional geometries.

Cone

7. Conclusions

The literature underscores that the implementation of automatic metrology can bring various
advantages to the manufacturing industry, including cost reduction, improved efficiency, enhanced
quality in production processes, and contribution to the digital transformation of the industry. Thus,
to address this purpose, the problem began by establishing differential geometry as mathematical
support in determining Gaussian and mean curvatures, which, in turn, define the decision conditions
for the geometric shapes used in this work. These conditions lay the groundwork for, in the near
future, establishing an algorithm for automatic recognition of elementary functional geometries
integrated into efficient and defect-free manufacturing. This step represents a promising
advancement in the continuous improvement of industrial manufacturing. This research not only
contributes to understand-ing the automatic recognition of elementary functional geometries but also
points to the feasibility and necessity of automated solutions, paving the way for an imminent future
of enhanced and reliable manufacturing.
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