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Abstract
Micro-gesture recognition and behavior-based emotion prediction are both highly challenging tasks that require
modeling subtle, fine-grained human behaviors, primarily leveraging video and skeletal pose data. In this work, we
present two multimodal frameworks designed to tackle both problems on the iMiGUE dataset. For micro-gesture
classification, we explore the complementary strengths of RGB and 3D pose-based representations to capture
nuanced spatio-temporal patterns. To comprehensively represent gestures, video, and skeletal embeddings are
extracted using MViTv2-S and 2s-AGCN, respectively. Then, they are integrated through a Cross-Modal Token
Fusion module to combine spatial and pose information. For emotion recognition, our framework extends to
behavior-based emotion prediction, a binary classification task identifying emotional states based on visual cues.
We leverage facial and contextual embeddings extracted using SwinFace and MViTv2-S models and fuse them
through an InterFusion module designed to capture emotional expressions and body gestures. Experiments
conducted on the iMiGUE dataset, within the scope of the MiGA 2025 Challenge, demonstrate the robust
performance and accuracy of our method in the behavior-based emotion prediction task, where our approach
secured 2nd place.
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1. Introduction

Micro-gesture recognition and behavior-based emotion prediction are both challenging and high-impact
tasks that aim to interpret fine-grained human behaviors from visual data. These tasks are foundational
for next-generation applications in human-computer interaction, affective computing, sign language
interpretation, and immersive virtual or augmented reality environments. Despite their shared reliance
on subtle behavioral cues, they differ in scope and modality requirements: micro-gesture recognition
emphasizes the detection of low-amplitude movements in fingers, hands, or facial muscles using both
RGB video and skeletal pose data, while behavior-based emotion prediction focuses solely on facial
and contextual cues from video to infer emotional states in real-world settings, such as post-match
interviews.
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Unlike coarse gestures or full-body actions, micro-gestures involve nuanced and often ambiguous
motions that demand high temporal and spatial resolution for reliable classification. Similarly, in
emotion prediction, the ability to infer affective states from visual cues without relying on speech or
textual data requires a fine-grained understanding of temporally distributed behaviors and subtle facial
dynamics. In both tasks, conventional single-modality approaches fall short due to the complexity and
ambiguity of the underlying signals.

Recent works[1, 2, 3] have demonstrated that combining multiple modalities, such as RGB video
and pose or skeleton-based representations, can improve robustness and discrimination in gesture
recognition. However, most existing fusion methods based on simple concatenation[4], late fusion[5],
or shallow attention[6] fail to fully exploit the fine-grained complementary information between
modalities, especially when the differences between gesture classes are subtle and context-dependent.

To address these challenges, we integrate a novel framework that combines multi-modal token-level
feature learning with context-aware class refinement for precise micro-gesture recognition. We leverage
MViTv2-S[7] and 2s-AGCN[8] encoders to extract temporally-aware visual tokens from RGB video
frames and 3D skeletal pose sequences, capturing modality-specific dynamics in high resolution. To
unify these heterogeneous modalities, we employ a Cross-Modal Token Fusion module that aligns and
merges cross-modal tokens using multiple fusion heads based on spatial, semantic, and contextual
relevance.

Furthermore, to refine class decision boundaries, we incorporate a Memory-Powered Refinement
Module that learns to refine gesture classification based on accumulated knowledge of gesture repre-
sentations.

We evaluate our approach on the iMiGUE[9] dataset and observe strong performance, demonstrating
its effectiveness for fine-grained micro-gesture classification.

In addition to micro-gesture recognition, behavior-based emotion classification represents a comple-
mentary and equally challenging task in affective computing. Unlike conventional emotion recognition
approaches that rely on facial expressions or vocal cues, behavior-based emotion prediction seeks
to infer an individual’s emotional state based on nonverbal visual signals such as body posture and
micro-gestures. Accurately modeling such subtle, temporally distributed behavioral patterns requires
not only robust feature extraction from multiple visual streams but also effective fusion strategies that
can capture inter-modal dependencies. In this work, we extend our framework to address this task
using a dual-stream architecture that combines facial and contextual embeddings through iterative
gated fusion.

To evaluate the effectiveness of our approach in this setting, we conducted extensive experiments on
the iMiGUE dataset, which provides a suitable benchmark for understanding behavior-driven emotions
in real-world scenarios.

2. Micro-gesture Classification

2.1. Task Definition

The Micro-Gesture Classification task is a 32-way classification problem defined on short video clips
containing fine-grained, subtle hand gestures. Given a video segment 𝑉 with 𝑇 frames, the goal is to
predict a gesture label 𝑦 ∈ {0, 1, . . . , 31}, where each class corresponds to a distinct micro-gesture, and
class 99 indicates a non-gesture (i.e., non-illustrative gesture).

2.2. Model Architecture

We propose a novel multimodal framework (Figure 1a) for fine-grained micro-gesture classification,
which leverages both RGB and 3D skeletal pose representations. Our method builds upon recent advances
in token-level fusion and multimodal refinement, integrating ideas from Multi-Criteria Token Fusion
(MCTF)[10] and Context-Aware Prompt Learning (CAPL) [11] to improve alignment and discriminability
of cross-modal features.



2.3. Modality Encoding

We extract modality-specific features using MViTv2-S and 2s-AGCN backbones. The RGB stream
processes spatio-temporal clips of raw gesture videos, capturing fine-grained motion and appearance
cues. The skeleton stream operates directly on 3D joint coordinates, using features extracted from a
pretrained 2s-AGCN model.

2.4. Cross-Modal Token Fusion

To effectively align and integrate the RGB and skeleton features, we apply the Cross-Modal Token
Fusion module (CMTF) inspired by [10]. The module performs token-level cross-modal attention by
considering multiple semantic and spatial criteria, dynamically attending to the most relevant tokens
from the complementary modality.

Given token sequences TRGB and TPose extracted from the RGB and skeleton MViTv2 branches
respectively, the Cross-Modal Token Fusion (CMTF) module produces a fused representation Tfused
through dynamic token alignment:

Tfused = CMTF(TRGB,TPose)

which is passed through a linear projection and temporal pooling to yield a compact feature vector for
each gesture clip.

2.5. Memory-Powered Refinement Module

To further improve class separability, especially in fine-grained microgesture scenarios, we incorporate a
Memory-Powered Refinement Module. This module maintains an external memory bank of prototypical
embeddings per class. Inspired by prototype refinement approaches, it uses memory to refine predictions
by comparing incoming features against stored high-confidence class exemplars.

During the initial training epochs, the memory is populated with confident feature embeddings.
In later epochs, for each input, we compare its features with the top-𝑘 similar memory vectors (per
predicted class) using cosine similarity. The comparisons are processed via multi-head self-attention to
refine the features before classification. A refinement loss (𝐿𝑝) is then computed, encouraging alignment
with the most representative class features, and is combined with the standard classification loss (𝐿𝑐):

ℒtotal = ℒc + 𝛼ℒp (1)

Here, ℒc supervises classification based on averaged modality logits, while ℒp encourages tighter
intra-class clustering and increased inter-class margins in the feature space through both parametric
(prototypes) and non-parametric (external memory) constraints.

To balance modality contributions in the final decision, we adopt a weighted late fusion strategy.
While both RGB and pose classifiers output independent logits, we place higher emphasis on the pose
branch due to its robustness in capturing subtle skeletal dynamics in microgestures. The final class
prediction is computed as:

C𝑖 = 𝑤pose · ypose + 𝑤RGB · yRGB, where 𝑤pose > 𝑤RGB (2)

These weights are adjusted dynamically during training.

3. Behavior-based Emotion Prediction

3.1. Task Definition

The Behavior-Based Emotion Recognition task1 is a binary classification problem defined on video
sequences of post-match interviews. Given an interview video clip 𝑉 containing 𝑇 frames, the goal is to
1https://www.kaggle.com/competitions/the-3rd-mi-ga-ijcai-challenge-track-3



(a) Overall architecture diagram.
(b) Cross-Modal token fusion

module.

Figure 1: Detailed architecture diagrams for microgesture classification model.

Figure 2: (a) Architecture of the proposed multimodal architecture for emotion recognition from video and facial
features. (b) The structure of the InterFusion module. (c) The 𝛼-Gate mechanism for information aggregation
from two modalities.

predict the match outcome label 𝑦 ∈ {0, 1}, where 𝑦 = 1 indicates a win and 𝑦 = 0 - a loss. Each video
contains visible body and facial behaviors that may implicitly express the emotional state of the athlete.
The data is drawn from the iMiGUE dataset (details in Section), which captures fine-grained behavioral
cues in press conferences of tennis players. The task is to develop a model that infers emotional signals
relevant to the final outcome using only visual information, without access to audio or transcripts.

3.2. Model Architecture

We propose a dual-stream transformer-based architecture for behavior-based emotion recognition that
integrates contextual and facial information in parallel and integrates them through interfusion blocks.
The model is designed to capture both intra-modal dynamics and inter-modal interactions through
fusion mechanisms. The architecture is shown in Figure 2(a).

The model takes as input two sequences:

• Contextual embeddings: The video is processed using a pretrained MViTv2-S backbone, which
operates on non-overlapping chunks of 16 frames and produces one embedding per chunk. This
results in a sequence of frame-group representations XCTX ∈ R𝑇×768, where 𝑇 denotes the
number of 16-frame segments extracted from the video.

• Facial embeddings : Faces are detected in each frame using a pretrained YOLO-face model2,
2https://github.com/akanametov/yolo-face



and cropped face regions are encoded using SwinFace[12], a hierarchical vision transformer
tailored for facial representation learning. While SwinFace produces one embedding per frame,
we aggregate the features by averaging every 16 consecutive frame-level embeddings, resulting in
a sequence XFACE ∈ R𝑇×512 that is temporally aligned with XCTX. This ensures one embedding
per 16-frame window for both modalities, enabling consistent cross-modal fusion.

Each stream begins with a linear projection followed by dropout for regularization. The projected
embeddings are then passed through a modality-specific Transformer Encoder to get intra-modal
temporal dependencies.

To facilitate interaction between modalities, we employ the InterFusion module Figure 2(b), a
lightweight gated fusion block that enables bidirectional information exchange between the con-
textual and facial streams. Rather than using attention, InterFusion computes a shared element-wise
gate from the concatenated inputs and performs a residual gated-sum fusion in both directions (shown
in Figure 2(c)). This allows each stream to selectively incorporate features from the other while preserv-
ing its own representation. This fusion step is followed by residual addition to preserve the original
intra-modal information. The fused features are processed by an additional Transformer Encoder layer
per stream, followed by a second InterFusion module and another residual connection. This iterative
process allows deeper and progressively refined integration between the two modalities.

After temporal modeling, a masked mean pooling operation is applied across time for both streams,
producing fixed-size representations. These are concatenated and passed through a classification head
to predict the class.

This design enables the model to effectively capture subtle, temporally distributed cues from both
body posture and facial expressions, which are critical in emotion-based outcome prediction.

4. Experiments

5. Dataset: iMiGUE

To evaluate our proposed methods, we utilized the iMiGUE (Identity-free Micro-Gesture Understanding
and Emotion) dataset, introduced by Liu et al.[9]. iMiGUE is a large-scale, identity-free video dataset
specifically designed to facilitate research in micro-gesture recognition and emotion analysis.

The dataset comprises 359 post-match press conference videos, featuring 72 athletes. Each clip
captures spontaneous upper-body micro-gestures, such as "covering the face," "folding arms," or "crossing
fingers," which are indicative of the athlete’s emotional state following a win or loss.

Annotations in iMiGUE encompass 32 behavioral classes, including 31 distinct micro-gesture cate-
gories and one non-micro-gesture category. In addition to gesture labeling, each sample is also annotated
with a binary emotion label (positive or negative) based on contextual interpretation (e.g., winning or
losing a match) and observable behavior. Each video frame is processed using the OpenPose toolkit to
extract skeletal data. This skeletal representation includes two-dimensional spatial coordinates and
confidence scores for each joint, facilitating detailed analysis of body movements.

The dataset is split into predefined training, validation, and test sets to ensure consistent evaluation.
Importantly, the test set is identity-independent and includes subjects that are not present in the training
and validation sets. This split emphasizes generalization and mitigates overfitting to specific individuals,
thus supporting the development of identity-agnostic models for micro-gesture and emotion recognition.
For the emotion classification task, the test set comprises 100 videos, divided between 50 positive and
50 negative emotional states.

To address the challenge of imbalanced class distributions inherent in spontaneous behavior datasets,
the authors propose an unsupervised learning method that aims to capture latent representations from
the micro-gesture sequences themselves. This approach enhances the model’s ability to generalize
across diverse gesture categories and improves emotion recognition performance.

In the context of the MiGA 2025 Challenge, the organizers released an enhanced version of the
iMiGUE dataset that includes unblurred facial regions. This version aims to facilitate comprehensive



multimodal analysis by allowing researchers to incorporate facial expressions alongside body gestures in
emotion recognition tasks. The availability of unblurred faces enables the development and evaluation
of models that leverage both facial and gestural cues, potentially leading to more accurate and robust
emotion understanding systems.

5.1. Microgesture Classification Experiments

Our experiments were conducted using a custom transformer-based classifier that integrates a Cross-
Modal Token Fusion module and a refinement module with external memory. The model takes RGB and
skeleton features from pre-trained MViTv2 and 2s-AGCN encoders and fuses them using multi-head
self-attention to capture token-level cross-modal interactions. The fused representations are passed
through adaptive pooling and modality-specific classifiers, with logits combined using a weighted sum
for the final prediction.

To refine class boundaries, we introduce a prototypical memory module trained with a two-stage loss.
During early epochs, the prototypical loss is disabled (𝛼=0.0) to allow memory buildup. Its influence is
then gradually activated (𝛼=1.0) to enhance class separation via learned prototypes.

The final model configuration hyperparameters include: a hidden size of 512, 8 transformer heads, a
memory size of 50 entries per class with top-5 nearest prototypes used for refinement, and a momentum
of 0.9 for memory updates. Training was performed using the AdamW optimizer with a learning rate
of 1e-4, weight decay of 1e-4, and ReduceLROnPlateau scheduler.

To ensure stable training and better generalization, variable-length sequences were padded dynami-
cally per batch; bucketing and balanced sampling were used to mitigate class imbalance.

Table 1
Micro-gesture classification results on the iMiGUE.
Method Modality Top-1 Accuracy (%)
TSM [13] RGB 58.77
VSwim-T [14] RGB 59.97
VSwim-S [14] RGB 57.83
VSwim-B [14] RGB 61.73
ST-GCN [15] Skeleton 46.38
ST-GCN++ [16] Skeleton 49.56
StrongAug [16] Skeleton 53.13
AAGCN [17] Skeleton 54.73
CTR-GCN [18] Skeleton 53.02
DG-STGCN [19] Skeleton 49.56
PoseConv3D [20] Skeleton 61.11
DSCNet [21] RGB & Skeleton 62.53
Ours RGB & Skeleton 62.87

Table 2
Fusion method and MR* impact on accuracy.

Fusion Method Top-1 Accuracy (%)
Late Fusion 58.81
CMTF* (w/o MR*) 62.23
CMTF* (w/ MR*) 62.87

CMTF*: Cross-Modal Token Fusion;
MR*: Memory Refinement Block.

5.2. Emotion Prediction Experiments

For the Track 3 task of the MiGA 2025 Challenge, the proposed multimodal fusion model was evaluated
on the enhanced iMiGUE dataset, which includes unblurred facial regions.

To enhance model performance, a comprehensive hyperparameter optimization was performed over
the following search space: learning rate (1e-5 to 5e-4), transformer encoder depth (1 to 8), number of
attention heads (2 to 8), dropout rate (0.1 to 0.5), and Focal Loss 𝛾 parameter (0.5 to 1.5). To address a
severe class imbalance in the validation set, which initially contained only positive emotion samples,
five negative samples were manually transferred from the training set to the validation set and excluded
from training. This adjustment ensured more reliable validation performance across both classes. Class
weights were calculated inversely proportional to the class frequencies in the adjusted training set.

Both Binary Cross-Entropy (BCE) and Focal Loss were evaluated, with Focal Loss demonstrating
superior performance under the imbalanced setting.

The final model configuration used for comparison included a hidden size of 512, transformer encoder
depth of 8, 4 attention heads, and a dropout rate of 0.5. The Focal Loss 𝛾 parameter was set to 0.5.



Training was conducted for up to 20 epochs with a batch size of 8, a learning rate of 1e-7, and early
stopping with a patience of 7 epochs.

All experiments were conducted on a single NVIDIA A100 GPU with 80GB VRAM. Table 3 summarizes
the comparison between our method, baseline approaches, and other submissions.

Table 3
Leaderboard results from MiGA Challenge Track 3.

Rank Team Score
1 backpacker 0.69230
2 ISPCAST (ours) 0.63461
3 haozhe bu 0.63461
4 gkdx2 0.62500
5 KeXu2233 0.60576
6 Baseline 0.39423

6. Conclusion

In this work, we presented two multimodal learning frameworks for addressing micro-gesture classifi-
cation and behavior-based emotion recognition on the iMiGUE dataset. For the micro-gesture task, we
proposed a novel architecture that fuses RGB and skeleton modalities via Cross-Modal Token Fusion
and refines predictions through a memory-powered module leveraging class prototypes. Our method
demonstrated strong performance, outperforming several prior RGB and skeleton-based baselines.

In the behavior-based emotion recognition task, we presented a dual-stream transformer-based
model that jointly leverages facial and contextual visual information. The architecture incorporates
iterative gated fusion via InterFusion modules to enable deep cross-modal interaction while preserving
intra-modal information. The proposed model demonstrated competitive results in the MiGA 2025
Challenge Track, securing second place on the official leaderboard.

These results highlight the importance of fine-grained spatio-temporal modeling and multimodal
interaction for subtle behavior understanding.
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