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Abstract
In this paper, we present MM-Gesture, the solution developed by our team HFUT-VUT, which ranked 1st in the
micro-gesture classification track of the 3rd MiGA Challenge at IJCAI 2025, achieving superior performance
compared to previous state-of-the-art methods. MM-Gesture is a multimodal fusion framework designed specif-
ically for recognizing subtle and short-duration micro-gestures (MGs), integrating complementary cues from
joint, limb, RGB video, Taylor-series video, optical-flow video, and depth video modalities. Utilizing PoseConv3D
and Video Swin Transformer architectures with a novel modality-weighted ensemble strategy, our method
further enhances RGB modality performance through transfer learning pre-trained on the larger MA-52 dataset.
Extensive experiments on the iMiGUE benchmark, including ablation studies across different modalities, val-
idate the effectiveness of our proposed approach, achieving a top-1 accuracy of 73.213%. Code is available at:
https://github.com/momiji-bit/MM-Gesture.
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1. Introduction

Micro‑Gestures (MGs) [1, 2, 3, 4], defined as spontaneous and fine‑grained movements, such as nose
touching, hair scratching, or subtle finger rubs, encode rich affective and cognitive cues that rarely
surface in conventional action recognition benchmarks. Compared with conventional actions [5, 6, 7, 8],
MGs are unintentional, short‑duration, and confined to small body regions, which makes them extremely
difficult to capture and classify.
Due to the subtle changes and short duration of MGs, relying solely on a single modality (e.g.,

RGB [9, 10, 11], skeleton [12, 13]) often captures merely partial characteristics of MGs, thus failing to
fully and thoroughly exploit the comprehensive information latent in available data. Despite significant
advancements in previous studies on micro-gesture and micro-action recognition [11, 10, 14, 15, 16, 17,
18], most existing approaches remain confined to utilizing limited modalities, such as RGB combined
with skeleton data [19, 20, 21]. However, these methods have not sufficiently leveraged the abundant
and complementary information conveyed by multi-modal.
In this work, we propose a novel multi-modal fusion framework MM‑Gesture tailored explicitly

for the challenging task of MGs classification. Specifically, we construct baseline models leveraging
PoseConv3D [21] and Video Swin Transformer [9, 6], integrating information across six complementary
modalities: joint, limb, RGB video, Taylor video, optical flow video, and depth video. In addition,
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to enhance the performance of the RGB modality, we apply transfer learning by pre-training on the
Micro-Action 52 dataset [11] and fine-tuning on the iMiGUE dataset [2].
The key contributions of this paper can be summarized as follows:

• We present an integrated multi-modal MGs classification network that utilizes complementary
information from six diverse modalities: joint, limb, RGB video, Taylor video, optical flow video,
and depth video.

• We propose an effective ensemble fusion method capable of efficiently integrating six modalities,
enabling the joint exploitation of modality-specific strengths for improved MGs classification
accuracy.

• Extensive experiments on the iMiGUE dataset [2] demonstrate that the proposed MM‑Gesture
achieves state-of-the-art performance, reaching a Top-1 accuracy of 73.213%, which is the highest
reported accuracy in previous Micro-gesture Analysis (MiGA) challenges.

2. Related Work

Micro-Gestures (MGs) are becoming increasingly important in understanding human emotions, focusing
on subtle body movements in daily interactions. Advances in this field have been driven by the
development of large benchmark datasets and sophisticated model architectures [1, 2, 3, 11]. Key
datasets include the SMG dataset [3], which consists of recordings from 40 participants engaged in
storytelling, capturing upper limb micro-gestures and emotional states. The iMiGUE dataset [2] offers
identity-free videos of 72 athletes at press conferences, annotated with 32 micro-gesture categories
for analyzing both actions and emotions. The MA-52 dataset [11] expands the focus to full-body
micro-actions, with 22,000 samples covering 52 action-level and 7 body-level categories, sourced from
psychological interviews to recognize subtle visual cues.

Current models primarily focus on limited modalities. RGB-based methods leverage spatial-temporal
modeling strategies, such as a pure Transformer backbone with shifted 3D local attention windows [9].
MANet [11] integrates SE and TSM modules with semantic embedding loss for fine-grained micro-
action recognition. Skeleton-based approaches include a 3D-CNN model with joint and semantic
embedding losses [12], and an EHCT framework [13] employs hypergraph-based attention and ensemble
Transformers [22, 23] to capture high-order joint relations and address class imbalance. In contrast,
skeleton sequences can be encoded as 3D heatmaps and fused with RGB inputs through a dual-branch
multimodal network [21]. Inspired by this network, Chen et al . [19] adopt channel-wise cross-attention
and prototype refinement to enhance feature fusion and category discrimination, while Huang et al . [24]
design a multi-scale heterogeneous fusion network. Recently, Li et al. [10] propose a hierarchical
prototype-based calibration method to resolve ambiguity in fine-grained actions. Overall, current
methods only focus on the RGB or skeleton data.
To exploit the complementarity between different multimodal data, we propose the MM-Gesture

model, adopting a comprehensive multimodal approach that integrates six modalities: joint, limb, RGB
video, Taylor video, optical flow video, and depth video. This approach enables a deeper understanding
and representation of micro-gestures, capturing their nuances and dynamics. Additionally, we leverage
transfer learning from the MA-52 dataset to infuse valuable prior knowledge into the RGB modality,
further enhancing its recognition accuracy. Consequently, our model improves performance on existing
benchmarks and paves the way for advanced applications in human emotion understanding through
micro-gesture analysis.

3. Methodology

3.1. Data Pre-processing

We adopted the RGB videos (R ∈ ℝ𝑇×𝐻×𝑊×3) provided by the official dataset, along with a subset of 36
skeleton keypoints (𝑉) selected from the original 137 points, to form the input joint data (J ∈ ℝ𝑇×𝑉×2).



Figure 1: Pipeline of the proposed multimodal micro-gesture recognition framework (MM-Gesture), which
consists of three key components: (a) Cross-Modal Fusion Module, (b) Uni-modal Embedding Module, and (c)
Ensemble Module.

These cleaned keypoints focus specifically on the upper body, hands, and facial joints. Additionally, we
constructed input limb data (L ∈ ℝ𝑇×𝐸×2) by computing spatial differences between adjacent joint pairs
defined by the skeletal edges (𝐸) connecting the selected keypoints.

To effectively capture multi-modal gesture information, we employ advanced, off-the-shelf modality
extraction methods to generate complementary auxiliary modalities. Specifically, we utilize Taylor-
series temporal expansion videos, optical-flow videos, and depth-estimation videos, each modality
providing distinct yet complementary gesture-related information. By leveraging the ensemble among
these diverse modalities, our proposed MM-Gesture model effectively exploits multi-modal feature
complementarity.

T ∈ ℝ(𝑇−𝜏)×𝐻×𝑊×3, F ∈ ℝ(𝑇−1)×𝐻×𝑊×3, D ∈ ℝ𝑇×𝐻×𝑊×3,
T𝑡 = ℱtaylor(R𝑡∶𝑡+𝜏), F𝑡 = ℱflow(R𝑡∶𝑡+1), D𝑡 = ℱdepth(R𝑡),

(1)

where each symbol is defined as follows:

• 𝑇: Temporal length of the input RGB video.
• 𝐻,𝑊: Height and Width of the input RGB video frames.
• 𝜏: Temporal window length for computing the truncated Taylor-series expansion.
• R𝑡: The RGB frame at time step 𝑡.
• ℱ𝑡𝑎𝑦 𝑙𝑜𝑟: The Taylor-series-based video calculated according to the approach [25], where 𝐾 denotes
the maximum order of the truncated Taylor-series expansion and 𝜏 represents the temporal
window length used for aggregating local temporal context.

• ℱ𝑓 𝑙𝑜𝑤: The optical-flow-based modality computed using the MemFlow network [26], which
estimates optical flow representations F𝑡 from consecutive frames R𝑡 and R𝑡+1.

• ℱ𝑑𝑒𝑝𝑡ℎ: The depth-estimation-based modality generated using the monocular depth estimation
algorithm [27], resulting in depth representations D𝑡.

3.2. Network Architecture

As shown in Figure 1, the proposed multi-modal micro-gesture recognition framework (MM-Gesture)
consists of three main modules:
Cross-Modal Fusion Module: In this module, skeletal coordinates are initially transformed into

Gaussian heatmap-based 3D volumes (H) for Joint and Limb modalities individually. RGB, Joint, and



Limbmodalities are all separately trained through PoseConv3D [21], capturing spatial-temporal skeleton
dynamics and RGB spatial context, respectively. Subsequently, the extracted RGB and skeleton features
are combined via a cross-modal fusion training stage to exploit complementary information between
these modalities comprehensively.

Uni-Modal Encoding Module: We leverage the VideoSwinT network [9] to independently encode
four distinct modalities: RGB frames, Taylor-based temporal encoding, optical flow (computed via
MemFlow), and depth estimates. Specifically, for the RGB modality, we first employ transfer learning by
pretraining VideoSwinT on the MA-52 dataset and subsequently fine-tune the pretrained model on the
iMiGUE dataset. For the remaining modalities (Taylor, optical flow, and depth), VideoSwinT is directly
trained from scratch on the iMiGUE dataset. VideoSwinT uses a 3D shifted-window self-attention
mechanism that effectively captures fine-grained spatial-temporal details within each modality.

EnsembleModule: Probabilities from the PoseConv3DCross-Modal FusionModule and VideoSwinT
Uni-Modal Encoding Module are combined via weighted ensemble, with weights set empirically accord-
ing to validation performance. This integration approach effectively exploits modality complementarity,
improving robustness and accuracy in micro-gesture recognition.

3.3. PoseConv3D Cross-Modal Fusion Module

To effectively align skeleton-based information (consisting of joints and limbs) with RGB video repre-
sentations and facilitate fine-grained complementary interactions across these modalities, we adopt
PoseConv3D [21] for cross-modal integration.

Specifically, we first transform the 2D coordinates of skeletal keypoints into heatmap-based representa-
tions. By applying Gaussian distributions and calculating the heatmap values using the point-to-segment
distance formula, we compute and stack the heatmaps of each keypoint across all frames to generate
3D heatmap volumes. The resulting heatmaps are as follows:

H𝐽 ∈ ℝ𝑇×𝐻×𝑊×𝑉, H𝐿 ∈ ℝ𝑇×𝐻×𝑊×𝐸, (2)

where H𝐽 denotes the joint-position heatmaps, and H𝐿 denotes the limb-connection heatmaps. Here, 𝑇
is the total number of frames, 𝑉 is the number of skeletal joints, and 𝐸 is the number of skeletal limbs
(connections between joints). 𝐻, and 𝑊 represent the spatial resolution (height and width) of each
heatmap. Subsequently, the RGB frames R ∈ ℝ𝑇×𝐻×𝑊×3 and skeleton heatmaps H𝐽,H𝐿 are taken as
input data.
Prior to network training, data augmentation processes (e.g., scaling, cropping) are consistently

applied to both RGB video frames and skeleton heatmapmodalities to enhance data diversity and improve
model robustness. Subsequently, the augmented data from each modality is separately forwarded into
the PoseConv3D module, which extracts deep spatiotemporal feature representations. The PoseConv3D
network generates modality-specific predictions denoted formally as ŷ𝑚, where 𝑚 ∈ {𝑅, 𝐽 , 𝐿} indicates
RGB, joint heatmap, and limb heatmap modalities, respectively. Each modality-specific network is
initially pretrained independently by minimizing the cross-entropy (CE) classification loss:

ℒ𝑚 = CE (ŷ𝑚, 𝑦) , 𝑚 ∈ {R, J, L}, (3)

where 𝑦 denotes the ground-truth action labels.
Next, we conduct a joint fine-tuning procedure by simultaneously optimizing combined RGB and

skeleton-based modalities using the following paired-training losses:

ℒR+J = ℒR +ℒJ, ℒR+L = ℒR +ℒL. (4)

During model inference, the predictions yielded by distinct modalities are integrated at the probability
level via a late fusion strategy. Formally, let 𝑃⋆ = SoftMax(ŷ⋆), ⋆ ∈ {𝑅, 𝐽 , 𝐿}, represent modality-specific
probability distributions. We then fuse predictions through average fusion to achieve final predictive
distributions:

PR+J =
1
2
(PR + PJ), PR+L = 1

2
(PR + PL). (5)



3.4. VideoSwinT Uni-Modal Encoding Module

Unlike existing skeleton-video modality fusion methods, we propose a multimodal framework based on
the VideoSwinT [9], which encodes RGB video, optical flow video, Taylor-expanded video, and depth
video. This encoding strategy effectively integrates color, texture, dynamic motion, and geometric
structural information to better capture multidimensional micro-action features, thus enabling more
fine-grained action recognition.
Specifically, we independently optimize each modality-specific backbone by minimizing the cross-

entropy (CE) classification loss. Prior to training on the target iMiGUE dataset, the RGB modality
network is initially pretrained on the MA-52 dataset (R⋆ ∈ ℝ𝑇×𝐻×𝑊×3) [11], which provides extensive
coverage of 52 types of micro-actions. After pretraining, the RGB modality network is fine-tuned on
the iMiGUE dataset along with other modalities. The loss functions for pretraining and fine-tuning,
along with the probability computation, are formulated as follows:

ℒ𝑚 = CE(ŷ𝑚, 𝑦), 𝑚 ∈ {R⋆,R,T, F,D},
P𝑚 = SoftMax(ŷ𝑚), 𝑚 ∈ {R,T, F,D}.

(6)

3.5. Ensemble Module

In the final ensemble stage, we introduce a probability-based weighted fusion strategy to effectively
aggregate predictions derived from multiple modality-specific networks. Specifically, class probability
vectors independently output by the PoseConv3D (RGB + J, RGB+L) and VideoSwin Transformer
(RGB∗, Taylor, Flow, Depth) models are integrated using empirically determined weights obtained
via validation-set performance.

The ensemble prediction (Pfinal ∈ ℝ𝑐𝑙𝑠) is computed by summing the weighted contributions of
individual modality-specific probabilities, as follows:

Pfinal = ∑𝑤𝑖P𝑖, 𝑖 ∈ {R+J,R+L,R,T, F,D} (7)

where each weight 𝑤𝑖 is selected based on the classification performance observed on validation samples.
This proposed ensemble-based fusion mechanism enables comprehensive exploitation of the comple-

mentary strengths inherent in multiple modality-specific models, thereby significantly improving the
robustness and overall effectiveness of our multi-modal micro-gesture recognition framework.

4. Experiments

4.1. Experimental Setup

Dataset. iMiGUE (identity-free video dataset for Micro-Gesture Understanding and Emotion analysis)
dataset [2] consists of micro-gestures (MGs) primarily involving upper limbs, collected from post-match
press conference videos of professional tennis players. It includes 31 MG categories and an additional
non-MG class, comprising a total of 18,499 labeled MG samples annotated from 359 long video sequences
(ranging from 0.5 to 26 minutes), totaling approximately 3.77 million frames. The dataset provides two
modalities: RGB videos and corresponding 2D skeletal joint data extracted via OpenPose. iMiGUE
adopts a cross-subject evaluation protocol, splitting 72 subjects into 37 for training and 35 for testing,
with 12,893 samples in the training set, 777 in validation, and 4,562 in testing. In addition, we pretrain
the proposed method on theMicro-Action 52 [11] dataset and then fine-tune it on the iMiGUE dataset.
Micro-Action 52 is a large-scale, whole-body micro-action dataset collected by a professional interviewer
to capture unconscious human micro-action behaviors. The dataset contains 22,422 (22.4K) samples
interviewed from 205 participants, where the annotations are categorized into two levels: 7 body-level
and 52 action-level micro-action categories. There are 11,250, 5,586, and 5,586 instances in the training,
validation, and test sets, respectively.



Table 1
Top-3 micro-gesture classification results from MiGA Challenges (2023–2025). Results are sourced from official
competition leaderboards1 2 3. J denotes the Joint modality; L denotes the Limb modality; R denotes the RGB
video modality; T denotes the Taylor video modality; F denotes the Optical Flow video modality; D denotes the
Depth video modality.

Rank Team Backbone Modality Top-1 Acc (%)
MiGA’25 1st gkdx2 (Ours) PoseConv3D+VideoSwinT J + L + R + T + F + D 73.213
MiGA’25 2nd awuniverse - - 68.697
MiGA’25 3rd Lonelysheep PoseConv3D J + L 67.010
MiGA’24 1st HFUT-VUT [19] PoseConv3D J + L + R 70.254
MiGA’24 2nd NPU-MUCIS [20] Res2Net3D+GCN J + R 70.188
MiGA’24 3rd ywww11 PoseConv3D+CLIP J + R 68.917
MiGA’23 1st HFUT-VUT [12] PoseConv3D J + L 64.12
MiGA’23 2nd NPU-Stanford [13] Hyperformer J 63.02
MiGA’23 3rd ChenxiCui [28] - - 62.63

Evaluation Metrics. For the micro-gesture classification challenge, we employ top-1 accuracy as the
evaluation metric to quantitatively assess classification performance.
Implementation Details. The provided dataset includes original RGB videos and skeletal data ex-
tracted using OpenPose, featuring 137 full-body keypoints. To optimize data, we select 36 keypoints
for the upper-body, facial landmarks, and hands. We also enhance data representation by generating
additional modalities: depth using the method by Chen et al. [27], Taylor video modality viaWang et
al.’s [25] approximation, and optical flow through Dong et al.’s [26] MemFlow approach. For modeling,
PoseConv3D [21] is used to capture spatial-temporal dynamics in skeletal information (J), limb con-
nections (L), and combined RGB with skeletal data (RGB+J and RGB+L). VideoSwin Transformer [9] is
applied to RGB, depth, Taylor, and optical flow modalities for spatial-temporal processing. To enhance
robustness, we perform transfer learning with VideoSwinT: initially pretraining on RGB data from
Micro-Action 52 (MA-52) [11], followed by fine-tuning on the iMiGUE dataset [2]. Finally, we employ an
ensemble fusion strategy, assigning weights to each modality based on contribution and correlation. We
integrate RGB*, Taylor, Flow, and Depth from VideoSwin, along with RGB+Joint and RGB+Limb
from PoseConv3D.

4.2. Experimental Results

We evaluated the proposed method on the iMiGUE dataset and compared its performance against
state-of-the-art methods reported in the MiGA Challenges from 2023 to 2025. As presented in Table 1,
we provide the classification results of the top three competitors from these three consecutive editions,
clearly demonstrating the consistent superiority of our proposed method over previous best-performing
approaches across all years. Specifically, our approach achieved a Top-1 accuracy of 73.213%, ranking first
in the 2025 competition, significantly outperforming the second-place accuracy of 68.697%. Compared
with the best performance in the 2024 MiGA Challenge, our method realized an improvement of
approximately 3%, thus substantially exceeding the results from the 2023 edition as well.
Here, we conduct comprehensive experimental settings to evaluate multiple modalities, including

skeleton data (joints and limbs), RGB frames, Taylor series approximation videos (Taylor), optical flow,
and depth information. As shown in Table 2, two backbone frameworks, namely PoseConv3D [21]
and VideoSwin [9], were employed to thoroughly explore performance across various modality com-
binations. Experimental outcomes demonstrate that while single-modality inputs generally show

1The 1st MiGA-IJCAI Challenge (2023) Track 1 Leaderboard: https://codalab.lisn.upsaclay.fr/competitions/11758#results
2The 2nd MiGA-IJCAI Challenge (2024) Track 1 Leaderboard: https://www.kaggle.com/competitions/2nd-miga-ijcai-challenge-
track1/leaderboard

3The 3rd MiGA-IJCAI Challenge (2025) Track 1 Leaderboard: https://www.kaggle.com/competitions/the-3rd-mi-ga-ijcai-
challenge-track-1/leaderboard

https://codalab.lisn.upsaclay.fr/competitions/11758#results
https://www.kaggle.com/competitions/2nd-miga-ijcai-challenge-track1/leaderboard
https://www.kaggle.com/competitions/2nd-miga-ijcai-challenge-track1/leaderboard
https://www.kaggle.com/competitions/the-3rd-mi-ga-ijcai-challenge-track-1/leaderboard
https://www.kaggle.com/competitions/the-3rd-mi-ga-ijcai-challenge-track-1/leaderboard


Table 2
Comparison of classification performance using different combinations of modalities and backbone architectures
on the iMiGUE test set. The evaluated backbone models include PoseConv3D [21] and VideoSwinT [9]. We
evaluate six modalities: Joint, Limb, RGB, Taylor, Optical Flow, and Depth. Particularly, RGB* denotes that
transfer learning was adopted by first pre-training on the Micro-Action 52 dataset [11] and subsequently fine-
tuning on the iMiGUE dataset [2].

Backbone Joint Limb RGB RGB* Taylor Flow Depth Top-1 Acc (%)
PoseConv3D 3 65.256
PoseConv3D 3 64.686
PoseConv3D 3 64.511
PoseConv3D 3 3 67.229
PoseConv3D 3 3 68.917
PoseConv3D 3 3 68.917
VideoSwinT 3 65.629
VideoSwinT 3 66.615
VideoSwinT 3 62.845
VideoSwinT 3 61.617
VideoSwinT 3 65.212

PoseConv3D+VideoSwinT 3 3 70.955
PoseConv3D+VideoSwinT 3 3 70.802
PoseConv3D+VideoSwinT 3 3 3 71.416
PoseConv3D+VideoSwinT 3 3 3 3 72.095
PoseConv3D+VideoSwinT 3 3 3 3 3 72.227
PoseConv3D+VideoSwinT 3 3 3 3 3 3 72.644

MM-Gesture (Ours) 3 3 3 3 3 3 3 73.213

moderate competitiveness, they nevertheless yield relatively lower accuracies, highlighting the inherent
challenges of relying on a single modality in micro-gesture classification tasks. However, the incorpo-
ration of multiple modalities consistently results in enhanced performance, clearly emphasizing the
complementary and distinctive nature of the various modalities in improving classification accuracy.
Our subsequent multimodal fusion experiments verify the complementary nature of diverse data

streams. Specifically, integrating skeleton (joint and limb) data with RGB frames results in an accuracy
improvement to 71.416%, clearly demonstrating the strength of combining structural and appearance-
based representations. Incorporating the Taylor modality further boosts accuracy to 72.096%, reflecting
benefits from pixel-level temporal-spatial approximations that effectively capture subtle dynamic
gestures. Additional integration of optical flow and depth modalities improves performance even
further, reaching an accuracy of 72.644%, confirming their roles as valuable supplementary information
sources. Ultimately, through an optimized multimodal fusion weighting strategy, our method achieves a
Top-1 accuracy of 73.213%. These results strongly affirm the advantages of properly designedmultimodal
fusion techniques and emphasize the efficacy and robustness of the presented approach over previously
published state-of-the-art methods in micro-gesture recognition tasks.

5. Conclusion

In this paper, we proposedMM-Gesture, a novel multimodal ensemble framework for micro-gesture
recognition. Our method integrates complementary features from six modalities—skeleton, limb,
RGB, Taylor series approximation, optical flow, and depth—to leverage their distinct fine-grained
characteristics. Additionally, we employed transfer learning by pretraining the RGB-based model on
the Micro-Action 52 dataset before fine-tuning on the target iMiGUE dataset. Experiments demonstrate
that our multimodal fusion significantly outperforms single or fewer modality baselines. Our model
achieved a top-1 accuracy of 73.213% on the challenging iMiGUE dataset, ranking first in the 3rd MiGA
Competition at IJCAI 2025.



For future work, we aim to explore the integration of Multimodal large language models (MLLMs) [29,
30] and skeleton-based micro-gesture encoders. We plan to utilize MLLMs’ rich semantic understanding
and extensive prior knowledge to enhance micro-gesture recognition through interactive prompts and
contextual reasoning, further advancing multimodal and affective human behavior understanding. Addi-
tionally, we will incorporate modalities such as gaze [31], audio [32], and remote photoplethysmography
(rPPG) [33] to enable comprehensive multimodal emotion analysis.
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