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Abstract
Autonomous mobile robots involved in traffic situations with other robots must be able to autonomously adapt
their control and perception behavior to the overall traffic situation in those shared environments. This adaptation
requires each robot to (1) be able to reconfigure its control and perception algorithms to the current situation
around the robot, and (2) have the knowledge about which control and perception algorithms it has available
at any instant and select the appropriate ones. This paper introduces the mereo-topology of a skill knowledge
graph as the formal representation of the knowledge needed for the above-mentioned online self-adaptation, in
addition to the knowledge about how to execute navigation maneuvers. It explains how and why a skill graph
must connect to four other knowledge graphs, about tasks, resources, environments and object affordances. The
approach is validated in a multi-robot navigation case with dynamic traffic layout inside an indoor corridor.
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1. Introduction

When involved in traffic situations with others, autonomous mobile robots (AMRs) must be able to
adapt their behavior to the overall traffic situation. Robots realize their behavior by executing skills:
compositions of software activities providing control, perception, world modeling and decision making
functionality that work together to perform a specific task [1]. For AMRs, these are navigation tasks
such as cruising, crossing a junction, overtaking, or parking. For robotic arms, these are manipulation
tasks such as inserting, aligning, or polishing. In addition to these task-realizing activities, skills also
run monitoring activities for, among other things, checking continuously if the robot’s hardware and
the activity software architecture are behaving correctly, or checking that the currently selected skill is
still appropriate.

The functionality of all activities inside the skill must be configured based on the task the skill must
perform, the environment in which the it executes, the objects it must deal with, and the resources it has
available. In addition, each robot that shares resources and space with other robots must coordinate its
own behavior with the other robots to make efficient and deterministic use of these resources and space.
That coordination typically has multiple configuration options as well. For example, a threshold on
what is a safe closest distance to other AMRs, or a level of assertiveness in navigation maneuvers that
involve priority. More often than not, such configuration is done manually at design, implementation or
deployment time. However, robots that autonomously adapt their behavior to their situation (that is,
robots that are situation aware), should be able to configure their skills themselves at runtime.
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This paper presents a methodology to allow robots to configure and coordinate their skills by reasoning
on knowledge graphs. Due to size constraints, only the mereo-topological levels [2] of the ontology are
discussed. A knowledge graph has entities with a set of properties, connected through edges with the
edge label indicating the meaning of the relation between the connected entities. The skill graph is key
in the presented approach, because it connects knowledge about the robot’s behavior to knowledge of
the task, environment, resources and object affordances.

Two software activities are proposed to support runtime skill (re)configuration: (1) a skill selection
activity which is responsible for querying the skill graph, at runtime, to find which skill configurations a
particular robot can use to perform a particular task in a particular environment, and (2) a skill execution
activity which is responsible for (re)configuring and coordinating the running activities inside the robot’s
software architecture, at runtime, based on the selected skill configuration.

The presented methodology is validated using a multi-robot navigation scenario where a corridor
area is shared between different AMR agents. The corridor always has an active traffic layout which is
mediated by a traffic layout mediator, that can suggest traffic layout changes based on the number of
robots that want to use the corridor. It is shown that by utilizing the proposed skill graph and activities,
a robot is able to autonomously adapt its control behavior to the active traffic layout.

2. Related work

Self-adaptation of robot software has been studied in a number of works in the literature [3]. A common
pattern is to divide the robot’s software into a managed and managing subsystem, where the managed
subsystem is responsible for the functional behavior of the robot, and the managing subsystem is
responsible for monitoring the execution of the managed subsystem and reconfiguring it when needed.

Managing subsystems are often, but not always, implement using a MAPE-K loop [4], which consists
of four different steps: (1) monitoring the data produced by the managing subsystem, (2) analyzing
the data to determine whether a reconfiguration is necessary, (3) planning the reconfiguration, and
(4) executing it. Each of these steps makes use of a central knowledge base, which contains models to
support the runtime reconfiguration. While the MAPE-K concept is not used in this work, the presented
methodology could be used as a way of structuring the knowledge base in a software system that does.

Previous work presenting models for runtime reconfiguration typically focuses on modeling the
components in the robot’s software architecture. TOMASys [5] is a metamodel to represent the software
components of a robot and their possible configurations. These models are used at runtime by a
managing subsystem, the metacontroller, to reconfigure a robot’s software architecture to recover from
faults such as sensor failure.

Likewise, MARTE::ARM-Variability is a UML-based metamodel for representing robot software
variability [6]. This model focuses on abstracting the reconfiguration mechanisms supported by the
robot software, thus creating a standard interface between the managing and managed subsystems.

The ROSA model presented in [7] represents the robots software components and a set of reconfigu-
ration plans, and is used to support task-and-architecture co-adaptation [8, 9]. This allows the robot to
adapt its task plan in case no valid software architecture reconfiguration can be found.

This work departs from a similar model of the skill’s software architecture and connects them to the
knowledge of particular situations which the robot can handle, and shows how the robot’s software
can be reconfigured when the robot’s situation changes.

3. Methodology

Robot skills are compositions of concurrently running software activities for perception, motion control,
monitoring and decision making that work together to realize a specific task. For robots to (re)configure
their skill activities at runtime themselves, they must know how different skill configurations are related
to different tasks, resources, environments and objects. This section introduces (1) the knowledge graphs
needed to formalize this knowledge, and (2) a skill selection activity to query skill configurations based



on a given situation, and a skill execution activity to configure and coordinate the skill’s activities at
runtime.

3.1. Skill graph: from knowledge relations to model instances

The skill software architecture model is shown in Fig. 1a, which defines the software relations between
skills, their activities and the activity’s parameters. We define three possible relations between activities
and parameters: input parameter, output parameter, and configuration parameter. Input and output
parameters represent the input and output data streams that are consumed and produced by an activity,
respectively.

Configuration parameters influence the algorithms inside an activity that compute the input-output
relations and must be configured before the skill can be executed. The value of configuration parameters
depends on the robot’s situation. Therefore, when the robot’s situation changes, through a change
in task, environment or resources, then the value of the configuration parameters should be changed
accordingly. In contrast, the value of input parameters can change every time the activity is run.

Changing a configuration parameter’s value often requires a coordination to be executed to not
disturb the determinism of the input-output relations of the running activities. Input, output, and
configuration parameters are modeled as relations, as a parameter can be an input parameter in one
activity while it is an output parameter in another.

The skill behavior model, shown in Figure 1b, links a skill to the agents that execute skills, the tasks
they perform, the resources they use, the environments they can be used in and the object affordances
they act on. The behavior model is formed as a composition of sub-graphs, represented by the nodes in
Figure 1b. The agent graph represents agents, which are software entities that autonomously perform
assigned tasks by executing skills. Each agent controls a set of software resources (activities), and
hardware resources that are either atomic (sensors and actuators) or composed (robot body composed of
sensors and actuators). For example, a robot is considered an agent because it autonomously performs
tasks by controlling its hardware resources to interact with the environment.

Environments are represented using semantic maps [10], which add semantic labels on top of a
geometric map. These labels add additional meaning on top of the base map such as: areas, traffic
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uses activities that contain input, output and
configuration parameters. The configuration
parameters must be configured before the skill
can be executed.

agent

skill

has

task

assigned

resource

controls

performs uses

environment

useableIn

definedIn

object affordance

requiresActionOn

existsIn

canActOn

contains

(b) Behavior model of a skill. The nodes represent
sub-graphs of agents, skills, resources, tasks, en-
vironments, and object affordances.

Figure 1: Top-level skill knowledge graphs for software (a) and behavior (b).



layouts and objects. Each object in the semantic map has object affordances, which define the actions
that can be taken on them by resources. Semantic maps can be dynamic [11], meaning that the map
can be updated at runtime based on changes in the environment. During the validation case in Section
4, the semantic map is updated to change the active traffic layout in the corridor.

A task is specified as a set of actions that must be taken on specific objects to reach a goal. The object
affordances therefore link the environment, task and resources together.

The behavior skill model is a metamodel in the sense that each of the sub-graphs in the behavior skill
model can have different instances. Each instance of the sub-graphs represents a model of a particular
type of agent, skill, environment, etc. For example, two different instances of the environment graph
could be a corridor graph and a junction graph, representing the two types of areas.

A concrete instance of the behavior skill model, called a situation graph, defines how a particular
software skill model is linked to particular task, resource, environment, agent and object affordance
models. A situation graph for the corridor navigation situation for the validation case in Section 4 is
shown in Figure 2.

A navigation skill is modeled as in Figure 2a, which defines that this particular skill uses three
activities: a lane control, a lidar localization, and a position monitoring activity. Each activity has its
own set of input, output and configuration parameters. The skill is usable in corridors and can perform
navigation tasks, which define what areas to navigate in order to reach a goal area as represented in
Figure 2e. The skill can be used by a robot whose agent graph is shown in Figure 2d.

Beside the navigation skill, the robot controls hardware resources whose model is shown in Figure 2c.
These contain a lidar sensor, which can observe wall surfaces and produces point clouds, and a wheel
drive, which can navigate lanes and consumes velocity setpoints. The corridor itself is modeled as in
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Figure 2: The sub-graphs of the corridor navigation situation graph model, representing: (a) the navigation skill,
(b) the corridor, (c) the robot resources, (d) the robot agent, (e) the navigation task, and (f) the object affordances.
Nodes with the same label in different sub-graphs connect the sub-graphs in the situation graph.



Figure 2b, which defines that the corridor has a length, and contains wall features and traffic layouts
which define lanes. The fact that lanes are navigable and wall surfaces are perceivable is defined in the
object affordance graph in Figure 2f.

The sub-graphs in the situation graph can again be instantiated to define a situation graph instance.
In the validation case, the corridor navigation situation graph is instantiated, as shown in Figure 4 in
Section 4, which defines instances of the sub-graphs in Figure 2. For example, the corridor graph is
instantiated by assigning a numeric value to the corridor length, and defining concrete traffic layouts in
the corridor based on the physical corridor the robots have to navigate, as shown in Figure 4b.

To summarize, there are three layers of abstraction. The behavior skill model defines the metamodel,
as shown in Figure 1b. The situation graph defines the model, as shown in Figure 2, which conforms
to the metamodel in the behavior skill model. The situation graph instances define instances which
conform to the model in the situation graph, as shown in Figure 4 in Section 4.

3.2. Online skill (re)configuration: from model instances to executable software

To (re)configure a skill at runtime, two activities are proposed: (1) a skill selection activity and (2) a skill
execution activity. When an agent is given a new task, the skill selection activity uses a skill selection
query on the knowledge graph to find what skills the agent has to perform its new task in its current
environment. The query starts from the relevant agent, task and environment graphs and traverses
the edges defined in the skill behavior model in Figure 1b to check if a skill can be found that uses the
agent’s resources to perform the given task in the given environment. If such a skill can be found, the
activity performs a skill configuration query.

The skill configuration query traverses the graph to find values for the different parameters defined
in the given skill. The query traverses the edges defined in the situation graph which links the agent’s
current situation to the given skill. For example, for the navigation skill in Figure 2a, to find a value for
the lane parameter in the lane control activity, the query would traverse from the corridor node to the
traffic layout node to the lane node. Once an executable skill configuration is found, it is send to the
skill execution activity.

The skill execution activity (re)configures and coordinates the running activities in an agent’s software
architecture to execute a desired skill. There are two reconfigurations which the software architecture
should support: (1) enabling and disabling activities, and (2) changing the values of activity parameters
at runtime. The software activities used during the validation in Section 4 were designed according to the
“5C” paradigm [1, 12], and support both types of reconfiguration. During the validation, reconfigurations
of type 2 are performed, but not of type 1.

Skill execution is preempted whenever there is a change in the task, the resources, or the environment.
When this occurs, the skill selection activity first performs a skill configuration query to determine
whether the currently executing skill can be reconfigured according to the new situation. If this is the
case, the skill execution activity can reconfigure the software architecture. Otherwise, a skill selection
query is performed to search for a new skill to execute. If no such skill can be found, task execution
should be aborted.

The two presented activities show a form of separation of concerns in the proposed methodology. The
skill selection activity only needs to know what skill configuration are valid for a particular agent and
situation, without needing to know how those skills are executed in a particular software architecture.
The skill execution activity does need to know how a skill should be executed so it can (re)configure and
coordinate the activities of a particular software architecture. Therefore the proposed activities consist
of a software architecture independent skill selection activity, and a software architecture dependent
skill execution activity.

4. Validation

The validation of the proposed methodology is done using the following use case. Two mobile robots
must each complete a navigation task which requires them to drive through the same corridor. The
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Figure 3: (a) One robot navigates alone in a corridor with a one-lane layout. (b) The corridor’s layout has
changed to a two-lane version, to accommodate a second robot to enter the same corridor. The top figures are
snapshots from the demonstration; the bottom ones represent the corresponding status of the semantic map of
the T-junction situation used in the demonstration.

corridor is divided into lanes by a traffic layout, which is mediated by an external traffic layout mediator,
that can change the active traffic layout based on the number of robots that want to use the corridor.

Initially only a single robot (robot 1) is using the corridor, as shown in Figure 3a. The active traffic
layout defines a single lane, allowing robot 1 to use all available space in the corridor. After a period of
time, a second robot (robot 2) approaches the corridor, but cannot enter because of the active traffic
layout. Therefore, it contacts the traffic layout mediator to request a layout change. The mediator
then contacts robot 1, proposing to change to a two lane layout. Robot 1 must then decide whether it
can reconfigure its executing skill to the proposed traffic layout. If this is the case, the traffic layout is
changed and robot 1 reconfigures its skill, such that robot 2 can enter, as shown in Figure 3b.

A knowledge graph was developed containing an instance of the corridor navigation situation graph,
whose sub-graphs were shown in Figure 2. The instance of the agent model of robot 1 is shown in
Figure 4c. The agent now has an assigned navigation task, whose graph instance is shown in Figure 4e.
The task defines only a single corridor that must be navigated to reach a junction. The instance of the
corridor model is shown in Figure 4b. The corridor length has been instantiated with a value, and two
traffic layouts are defined in the corridor.

Traffic layout 1 corresponds to the traffic layout in Figure 3a, and defines one lane. Traffic layout 2
corresponds to the traffic layout in Figure 3b, and defines two lanes. Traffic layout 1 is defined as active,
corresponding to the situation at the beginning of the demonstration.

The instance of the navigation skill graph is shown in Figure 4a. The configuration parameters in
the skill’s activities are now connected to values that come from the other sub-graphs. For example,
lane 0, lane 1 and lane 2 in the navigation skill are the ones defined in the corridor instance in Figure
4b. Likewise, the resource graph instance in Figure 4d is now connected to the lanes from the corridor
graph.

An implementation of the skill selection, and skill execution activities was made to support the
runtime reconfiguration of robot 1’s navigation skill. At the start of the demonstration, robot 1 receives
its navigation task and the skill selection activity performs a skill selection query to find what skill it
can use to navigate the corridor.

The query returns the navigation skill of Figure 4a. The skill selection activity then performs a skill



configuration query to find an executable instance of the navigation skill. At the start of the experiment
traffic layout 1 is active, that knowledge is used to query for the lane reference. The resulting query
configuration is send to the skill execution activity which configures the robot’s software architecture.
This results in the behavior shown in the top panel of Figure 3a.

When robot 1 receives a message from the traffic layout mediator to update to the two lane layout,
the skill selection activity is triggered to determine whether a skill configuration can be found for that
layout. A skill configuration query is used again, this time looking for a valid configuration for traffic
layout 2. The query returns a valid configuration, and robot 1 accepts the traffic layout change proposal.

When the traffic layout is changed, the skill selection activity sends the new configuration to the
skill execution activity. This activity reconfigures robot 1’s software architecture. This results in the
behavior shown in the top panel of Figure 3b.
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Figure 4: The sub-graphs of the situation graph instance, representing: (a) the navigation skill instance where
value relations point to nodes in different sub-graphs, (b) the corridor instance with concrete traffic layouts
and a value for the corridor length assigned, (c) the agent instance, (d) the resource instance with the wheel
drive and lidar linked to the lane and wall features in the corridor graph, (e) the task instance defining that robot
1 needs to navigate the corridor to reach the junction.

5. Conclusion

This paper proposed to use skill knowledge graphs to support runtime (re)configuration of robot skills,
where a skill is the composition of concurrently running software activities that perform a specific task.



The major contribution is the mereo-topology [2] of the knowledge representation: the mereology of
the relevant terms, and the topology of the structural relations between these terms. The full semantics
of all terms and relations is beyond the scope of this paper, and the subject of ongoing work.

The skill software architecture and skill behavior graphs are at the core of the mentioned separation.
The skill software architecture graph defines what software activities must run to execute a specific
skill, and what parameters must be configured. The skill behavior graph is a metamodel that links the
skill representation to sub-graphs of agents, tasks, resources, environments and object affordances.

Instances of the behavior skill graph, called situation graphs, define how a particular skill is linked to
models of particular task, agent, environment, resource and object affordance types. Situation graph
instances are defined by instantiating the sub-graphs in the situation graph for a concrete application.
These sets of graphs contain the relevant knowledge to find configurations of the robot’s activities,
which was demonstrated in the validation case.

Two activities, the skill selection activity and skill execution activity, where proposed that query the
knowledge base at runtime to find executable skill configurations, and reconfigure a robot’s software
architecture based on the selected skill.

A validation case was presented where the traffic layout inside a corridor was changed from a
one-lane layout to a two-lane layout based on the number of robots that needed access to the corridor.
In the validation case, the presented graphs allowed the skill selection activity to select the right control
activity configuration when the traffic layout was changed from a one-lane to a two-lane layout. The
skill execution activity was able to reconfigure the robot’s control activity according to the selected
configuration.

The advantage of the presented topology is a pragmatically scalable separation of concerns: (1)
specialists in the different sub-knowledge domains can independently develop and extend the sub-
graphs relevant to their domain, and (2) the evolving sub-knowledge domains remain composable by
the topology provided in this paper.

A limitation of the current approach is that the robot can only configure skills in known situations,
since it can only query the situation models in its knowledge base. If a situation were to occur for which
there is no situation model available, then no skill configuration can be found. However, chances are
low that the available knowledge and software activities would suffice to deal with those situations.

Future work will focus on formalizing an ontology based on the presented approach, and on exploring
how the methodology and software activities can be extended to support multi-agent skill execution,
where different agents must coordinate their skill execution for a particular task.
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