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Abstract

Robotic object assembly remains a core challenge in automated planning, demanding precise reasoning about
both object structure and task execution. Existing symbolic approaches (e.g., PDDL) and data-driven methods
(e.g., LLMs) each fall short: the former lack scalability, while the latter lack semantic grounding. Despite the
central role of parthood and connection, no formal mereological foundation currently unifies object structure and
assembly planning. This paper introduces a mereological framework for object assembly based on CISCO, a
non-classical mereology for connected induced substructures. We define parallel mereologies for object components
and assembly (sub)activities and prove them order-isomorphic. Within this framework, all possible assembly plans
can be embedded within a “master plan,” linking the semantics of physical composition with those of task execution
and enabling more principled reasoning over the space of possible assembly plans.
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1. Introduction

Object assembly is a deceptively simple task. Even something as trivial as joining Part A with Part B can
become impossible without an understanding of the parthood and connection relations at play. These
relations underpin not only the physical structure of objects but also the logic of the actions required to
assemble them. Consequently, a substantial body of research has focused on developing reliable robotic
assembly systems, which are central to applications ranging from high-mix manufacturing to consumer
service robotics.

Two dominant paradigms currently exist in robotic assembly planning: symbolic, rule-based approaches
(e.g., the Planning Domain Definition Language, PDDL) and data-driven machine learning methods
(e.g., large language models, neural nets)[1][2]. The former offers reliability and interpretability but
becomes brittle with scale. The latter exhibits impressive generalization ability but can be unreliable when
faced with statistical long-tail events. Both paradigms, however, encounter significant limitations when
addressing complex assemblies—those involving numerous subassemblies, intricate contact relations,
and combinatorially large task spaces. As a result, current research efforts often seek hybrid strategies,
combining symbolic representations with data-driven inference to balance generalization with rigor.

Despite these advances, several aspects of assembly planning remain surprisingly underexplored. For
one, despite the undeniable role of parthood and connection plays in robotic assembly, there are no
explicit axiomatizations of mereology in the literature. Without formal axioms as a backbone, data
structures can only capture the taxonomy of an assembly plan, not its semantics. Another overlooked area
is the characterization of the relationship between an object and its assembly plan, and by extension the
relationship among all possible assembly plans for a given object. Existing approaches typically focus
on generating a single feasible or optimal plan, but seldom on the structural space of possible plans as a
whole. By mathematically defining this space of of potential assembly plans, these insights can be used
to develop better algorithms to constrain the search space.

This paper addresses the above-listed gaps by introducing a formal mereological framework that
unifies the representation of objects, task plans, and their occurrences. We define a mereology of
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object components in parallel with a mereology of assembly (sub)activities with CISCO, a non-classical
mereology for connected induced substructures [3]. We prove that the object component mereology is
order isomorphic to the mereology of assembly activities. Within this framework, individual assembly plan
occurrences(i.e., specific sequences or realizations of assembly actions) are surjective to the mereology
of assembly activities. Put simply, all possible task plan sequences can be effectively “embedded” within
a master task plan. In doing so, we connect the semantics of physical composition with the semantics of
task execution, offering a unified foundation for reasoning about assembly at both the object and activity
levels.

2. Related Work

Regardless of whether the approach is symbolic or learning-based, representation lies at the core of
robotic assembly planning. Accordingly, we provide a brief overview of the current state of the art in
object and task plan representations within this domain.

2.1. Object Representation

Given the three-dimensional nature of most assembly objects, the most common representation is through
3D computer-aided design (CAD) files. Two predominant forms of 3D object representation within CAD
systems are constructive solid geometry (CSG) and boundary representation (B-rep)[4][5]. CSG models
objects as compositions of primitive solids (e.g., cubes, cylinders, spheres) combined through Boolean
operations such as union, difference, and intersection. In contrast, B-rep defines an object through its
boundary surfaces—uvertices, edges, and faces—enabling precise surface-level modeling suitable for
visualization, manufacturing, and simulation.

Due to its higher fidelity, B-rep is currently the dominant CAD form. One of the most notable 3D
model datasets that utilizes B-rep is the Autodesk Fusion360 Assembly Dataset, which provides a large
corpus of real-world CAD assemblies with rich parametric and hierarchical information [6]. Of the many
data formats available, or particular interest is the assembly graph model - where the vertices of the
graph are components and the graph edges denote parent-child relationships. This allows it to capture the
relationship between components and subcomponents through a parthood hierarchy [7].

Other datasets following similar paradigms include the NVIDIA Omniverse Automate Dataset, which
focuses on industrial assembly scenes with annotated kinematic and physical properties, and even the
Assembly101 Dataset, which provides RGB-D video sequences paired with 3D object models for studying
human-robot collaborative assembly [8] [9].

It is interesting to note that at its core, all of these different approaches seek to model parthood and
connection within objects, meaning these relationships and properties are most core to robot assembly
activity.

2.2. Task Plan Representation

A critical challenge in robotic assembly lies in representing task-level plans in a manner that enables
efficient search by automated planners while maintaining sufficient geometric and kinematic specificity to
support both generalization across tasks and formal verification. The representation must strike a delicate
balance: overly abstract formulations hinder grounding in the physical domain, whereas overly detailed
encodings rapidly become intractable for symbolic planners.

The lingua franca of symbolic task planning has long been declarative languages such as the Planning
Domain Definition Language (PDDL) and its predecessor, the Stanford Research Institute Problem
Solver (STRIPS)[10][11]. In these frameworks, a planning problem is defined in terms of objects, initial
states, and goal states, while the domain specifies the available actions and predicates. Despite their
expressiveness and clarity, such definitions are often ad hoc and fail to scale gracefully as the complexity
of the solution space increases. The brittleness of purely symbolic formulations has therefore motivated
extensive research into more robust or hybrid representations.



One notable direction, particularly relevant to robotic assembly, is Assembly Sequence Planning (ASP).
ASP addresses the problem of determining a feasible and efficient order for assembling multiple compo-
nents, often represented as a directed graph of assembly operations. Precedence constraints—derived
from geometric, physical, or functional dependencies between parts—govern the generation of these
sequences. Classical ASP approaches leverage heuristic search and constraint reasoning, while more
recent work integrates geometric reasoning and physical feasibility analysis to ensure executable plans.

An alternative paradigm, assembly-by-disassembly, adopts a physics-based simulation perspective
[2]. Instead of symbolically defining assembly rules, it simulates disassembly actions to infer feasible
assembly orders. With the availability of large-scale datasets capturing realistic assembly and disassembly
trajectories, machine learning models—including deep neural networks—can generalize across a wide
range of geometries and joint types. While this approach offers flexibility and data-driven adaptabil-
ity, it continues to face limitations in modeling complex assemblies involving multiple contact types,
hierarchical structures, and intricate connection relations.

More recently, neurosymbolic approaches have emerged as a promising middle ground. These methods
aim to combine the interpretability and reliability of symbolic task planning with the adaptability and
perception robustness of learning-based systems . By embedding symbolic constraints within learned
representations (like ontologies!)—or conversely, grounding symbolic plans in continuous perception
and action spaces—neurosymbolic frameworks strive to achieve both formal structure and empirical
flexibility [12] [13][1]. In the context of robotic assembly, such approaches hold potential for unifying
geometric reasoning, task-level planning, and sensory feedback within a coherent and semantically
grounded framework.

2.3. Object-Task Plan Representation

Looking at the literature, we can conclude that accurately representing parthood, connection and hierarchy
are tantamount to robotic task assembly. This rings true across all these diverse methods. Yet, none
of these approaches explicitly utilize mereology - variables are captured through data structures, but
semantics remain unclear. Relations suggestive of parthood or connectivity (e.g., part-of, attached-to,
contained-in) are often included, yet lack correspondence to a formal axiomatization. Formal specification
allows for models to be characterized, increasing reliability and explainability. The goal of this paper is
to address that gap.

3. Object2Plan

The key contribution of this paper is the formalization of the relationship between the parts of an object
and the parts(subactivities) of a task plan. Our approach is best illustrated by the diagram in Figure 1. The
primary idea is that the mereology of connected components of the object is isomorphic to the mereology
of activities that assemble the object. Moreover, the mereology of assembly activities describes the set of
all possible occurrences of an assembly plan for the object.

3.1. Mereologies for Objects and Assembly Activities

Classical mereology is based on the assumption that any two underlapping elements have a sum, yet
when we consider the problem of object assembly, this assumption is not valid. Instead, we find that
mereological sums must always be connected objects.

We also observe that existing approaches to assembly planning represent an object as a simple graph;
in this case, the components of the object should correspond to connected induced subgraphs of that
graph. The work in [3] introduced the parthood and connection structure on the set of connected induced
subgraphs of a graph and used this as the basis of the representation theorem for a new mereotopology,
Tisco_mt» in which the sum of two elements exists iff they are connected.
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Figure 1: Object2Plan Relationship Diagram

We therefore propose two distinct mereologies that are each logically synonymous to T¢isco_me, but with
different signatures. The mereology on physical objects, Ty ject_component» has the signature {object(x),
componentOf(x,y), comp_sum(x,y,z), comp_overlaps(x,y), comp_covers(x,y) }:

Definition 1. T0,,jcc_component 1S the following sentences:

Vx,y componentOf (x,y) D object(x) N object(y) (1

Vxobject(x) D componentOf (x,x) )

Vx,y componentOf (x,y) A componentOf (y,x) D (x =) 3)
Vx,y,zcomponentOf (x,y) A componentOf(y,z) D component O f(x,z) 4

Vx,y comp_covers(x,y) D 3zatom(z) A comp_sum(z,y,x) N ~componentOf(z,y) (5)
Vx,y comp_overlaps(x,y) D 3zcomp_sum(x,y,z) (6)

Vx,y ~componentOf(x,y) D IzcomponentOf (z,x) A ~comp_overlaps(z,y) (7

Tuctivity_mereologys Which is the mereology on assembly activities, has the signature {as-
sembly_activity(x), subassembly(x,y), assembly_covers(x,y), assembly_overlaps(x,y), assem-
bly_sum(x,y)}:

Definition 2. Tjgscmpiy_activiey 15 the following set of sentences:

Vx,y subassembly(x,y) D assembly_activity(x) A\ assembly_activity(y) 8)
Vxassembly_activity(x) D subassembly(x,x) )

Vx,y subassembly(x,y) A subassembly(y,x) D (x =) (10)

Vx,y, z subassembly(x,y) A subassembly(y,z) D subassembly(x,z) (11)
Vx,yassembly_covers(x,y) D Jzatom(z) A\ assembly_sum(z,y,x) \ —subassembly(z,y)  (12)
Vx,yassembly_overlaps(x,y) D Izassembly_sum(x,y,z) (13)

Vx,y subassembly(x,y) D Iz subassembly(z,x) A —assembly_overlaps(z,y) (14)

3.2. Multigeometry

To formally represent the isomorphism between the mereology of object components O and the mere-
ology of assembly subactivities A and their occurrences O, we consider a class of structures known as
multigeometries, which represent homomorphisms between mereologies.



Definition 3. Q ®1® Ais an assembly multigeometry iff

1. Q = (P, <) such that Q € 9Mcs;
2. A = (L,<) such that A € N5

3. 1= (P,L,I) such that I € Onbijection_bipartite
4. NH(UQ(x)) C UA(NH(x))

We denote the class of assembly multigeometries by Sessembly_plan,

By conditions 1 and 2, there exists two partial orderings Q and A. Condition 3 guarantees that the
incidence relation I represents a mapping u : Q — IP. Condition 4 guarantees that this mapping is an
order isomorphism.

Theorem 1. Let Iso(Q,A) denote the set of all poset order isomorphisms between the partial orderings

QA If
P ={u:puclso(Q,A) € QA € M}

then there is a bijection ¢ : P — ONWsemb_rlan gych that

p(n)=QalIeA

iff u:Q— Aand
w(x) =N(x)NL

This guarantees the property that each assembly multigeometry Q & 16 A corresponds to an order

isomorphism that maps the object component mereology Q to the assembly activity mereology A. The

incidence structure I represents this order isomorphism in the sense that the subordering induced by the

non-atoms of the object component mereology are isomorphic to the atoms of the subactivity mereology.
Combining all of the axioms together gives us the complete ontology for Object2Plan:

Definition 4. Ti,g50mp1y_pian is the extension of Typject_component U Tassembly_activiey With the following set of
sentences:

(Vx,a) assemble(x,a) D object(x) N assembly_activity(a) (15)
(Vp) object(p) D —assembly_activity(p). (16)

(Vi1,Lp, p) assembly_activity(ly) A assembly_activity(ly) N\ ob ject(p)
Nassemble(p,ly) ANassemble(p,r)) D (I} = 1)). (17)

(Vp1,pa,l) assembly_activity(l) Nobject(p1) Aobject(p2)
Nassemble(py,l) Aassemble(pa,l) D (p1 = p2). (18)

(Vx,y,11,12) componentOf (x,y) A assembly_activity(l) A assembly_activity(l>)
Nassemble(x,l;) N assemble(y,lp) O subassembly(ly,1>). (19)

(Vx) (object(x) D (Jy)(assembly_activity(y) A assemble(x,y))). (20)

(Vx,y,11,1») assemble(x,l1) N assemble(y,l2) A ob ject(x) N\ object(y)
Nsubassembly(l1,l) D componentOf (x,y). (21)

(V1) (assembly_activity(l) D (3p)(object(p) Nassemble(p,l))). (22)

These axioms specify the mereologies on both the objects being assembled and also the activities
that assemble the objects. The guarantee that these two mereologies are isomorphic provides a way of
evaluating the correctness of assembly plans with respect to the mereological structure of the object.



3.3. Ontological Consequences

Identity criteria for objects cannot be reduced merely to their primitive components, since two distinct
objects may be composed of the same basic elements yet remain different due to the ways those
elements are connected. What distinguishes them is not the underlying parts, but the structure of their
composition—the mereological relations that hold among those parts. In this sense, even if a mapping
or even an isomorphism exists between their components, the objects remain distinct because their
identities are determined by their composition. This distinction becomes especially important when
contrasting well-defined classes of activity with non-deterministic activities, since the criteria for identity
must account not only for the presence of components but also for the specific structural and relational
configurations that constitute the object.

4. Discussion & Future Work

This paper provides a formal mereological framework that unifies the representation of objects, task plans,
and their occurrences. Specifically, a mereology for object components and a mereology for assembly
activities are defined utilizing CISCO, a non-classical mereology for connected induced substructures.
We proved that the object mereology is order isomorphic to the assembly activity mereology, where
the subordering induced by the non-atoms of the object component mereology are isomorphic to the
atoms of the subactivity mereology. For future work, we intend to extend this work to cover a wider
range of parthood and connection relation types, and further utilize our insights to guide development of
robotic assembly algorithms. In particular, we intend to define the relationship between assembly plan
occurrences and the assembly plan mereology, with the requirement that there be a 1-1 correspondence
between occurrences of the plan and maximal chains in the mereology of assembly activities.
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