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Abstract
Domains that rely heavily on robotics have shown increasing interest in collaborative, intelligent, and reasoning-
capable autonomous systems. In pursuit of these interests, a standard method for increasing autonomy among
robotic agents and enabling collaboration is the use of knowledge representation in the form of ontologies and
knowledge graphs. To further enhance these systems, we are creating a modular ontology for autonomous
robotic orchestration, using the Modular Ontology Modeling methodology, which focuses on developing ontology
patterns to facilitate reuse. This effort aims to achieve a greater goal, an artificially intelligent orchestrator
capable of commanding autonomous robots in unpredictable environments, titled Task Adaptation with Shared
Knowledge for Multi-Agent Teaming Systems (TASK-MATS). We introduce well-known robotic architectures that
incorporate specific ontologies into their frameworks and discuss how those foundational ontologies inspired an
expansion of their concepts to fit our use case. To conclude, we briefly discuss the next steps in our ontology
modeling efforts.
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1. Introduction

Domains that rely heavily on robotics have shown an increasing interest in autonomous systems that are
collaborative, intelligent, and capable of reasoning. In pursuit of these interests, a standard method for
increasing autonomy among robots and enabling collaboration is the use of knowledge representation
in the form of ontologies and knowledge graphs (KGs) [1, 2, 3, 4, 5]. Due to the relatively recent focus
on achieving these ambitious and complex autonomous systems, there are many competing approaches,
especially in the context of task planning [4, 1, 3, 6, 7, 8]. However, these approaches vary in terms of
ontological design or methodology, but do use the World Wide Web Consortium (W3C) consortium’s
Web Ontology Language (OWL)1 as the primary logic-based language for semantic representation.
Unfortunately, as highlighted in [1], many of these ontologies lack reusability and do not meet the need
for the confluence of existing ontologies.

Considering these aspects for the current ontological representations of complex autonomous systems,
we want to engineer an ontology that could enable these multi-agent systems (MAS) to be governed
and commanded by an AI Orchestrator (AIO) capable of the following: understanding its environment,
decomposing goals into atomic subtasks, agent assignment based on capabilities, and status verification.
This is part of a greater effort to create a KG-powered MAS, titled Task Adaptation with Shared
Knowledge for Multi-Agent Teaming Systems (TASK-MATS). More importantly, it would be designed
to support reusability and allow for adaptation to the domain of need. This ontology would be modeled
using state-of-the-art (SOTA) best practices to ensure modularity and reusability through the use of
ontological design patterns (ODPs) [9, 10, 11, 12]. This would fill two needs. The first would be to
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provide an ontology that allows for more complex autonomous MAS. The second is the demand for
reusable ODPs that facilitates the merging of existing ontologies across domains that utilize these MAS.

The rest of this paper is organized as follows. Section 2 showcases how ontologies and KGs are
being utilized to enable autonomous robots. Section 3 showcases the current results from the efforts
being made to actualize the proposed ontology. Finally, in section 4, we conclude and discuss the future
direction of our work.

2. Background

Bestowing robots with autonomous capabilities in dynamic unstructured environments has proven
to be a momentous challenge. However, significant headway has been made toward achieving this
through the utilization of robotic frameworks that employ ontologies to aid in building an autonomous
agent’s worldview.

2.1. Ontology for Collaborative Robotics and Adaptation (OCRA)

Olivares-Alarcos et al. [4] introduce a novel framework that focuses on task planning, adaptation,
and collaborative behavior between humans and robots in real time, in unstructured environments. A
primary motivation for this research was to ensure safe, dependable completion of tasks when human
and robotic agents work together in the same space. OCRA was designed with the Descriptive Ontology
for Linguistic and Cognitive Engineering (DOLCE) [13] + DnS Ultralite (DUL) [14] as its foundational
ontology. As noted in [4], this was due to the common usage of a similar framework, KnowRob [15, 16].
Their formalization approach initially used first-order logic (FOL) [17], followed by a formalization in
the OWL Description Logic (DL) [18] to enable a more efficient runtime computation at the expense of
knowledge representation. The most important takeaway from their research is that, through the use of
an ontology, the authors successfully enabled a robotic arm to safely perform the same task alongside a
human and adapt to the dynamic environment as needed.

2.2. KnowRob Ontologies

KnowRob 2.02 is arguably one of the more successful implementations of a framework for enhancing
robotic agent capabilities in unstructured environments3 [16]. It is a modified version of the initial
framework showcased in 2013 [15]. In this newer version, their ontology is the focal point around which
the framework is built. In the original version, the authors expanded on the OpenCyc [19] ontology, and
they formalized their knowledge using OWL DL. In contrast, the KnowRob 2.0 ontology uses DOLCE +
DUL (specified in FOL) as its foundational ontology instead. In addition to this, the authors use patterns
from the Socio-physical Model of Activities (SOMA) for Autonomous Robotic Agents4 [20]. A primary
reason for this extreme shift in ontology choice between versions was due to the fact that ODPs have
been proven more effective for ontology modeling5 [13], as highlighted in [9] and [10].

KnowRob 2.0 is significantly more complex than other existing frameworks, as it includes several
unique architectural components, such as virtual simulations, episodic memory, and the ability to learn
from their outputs. However, to enable any of these to work, an ontology is required to represent the
semantic meaning of the data in the knowledge base. Without their ontology, the robots that employ
their software would be unable to infer or reason about their environment [16]. Further justifying the
significance of semantic knowledge representation in the form of ontologies, in the context of enabling
autonomy in robots.

2https://www.knowrob.org/
3https://github.com/knowrob/knowrob
4https://ease-crc.github.io/soma/
5https://knowrob.org/ontologies
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2.3. MOMo - Modular Ontology Modeling

The Modular Ontology Modeling (MOMo) methodology is described in detail in [11], but is briefly
summarized in Figure 1.6 MOMo provides a systematic approach for developing robust and reusable
ontologies designed to function as a schema for a KG. This approach is designed to address limitations in
utilizing monolithic ontologies, as they are often difficult to reuse due to either strong ontological com-
mitments that result in overspecification or weak commitments that cause ambiguity. We have chosen to
use MOMo for these benefits, as well as due to our own significant experience with this particular method.

1. Define the use case
2. Make competency questions
3. Identify key notions
4. Match patterns to key notions
5. Instantiate the patterns
6. Systematic axiomatization
7. Assemble the modules
8. Review final product
9. Produce artifacts

Figure 1: The steps taken in the Modular
Ontology Modeling methodol-
ogy (briefly).

Before we discuss the paper’s position, we summarize our
implementation of [11]. We cover the initial conceptual
phases and the creation of the core visual architecture.
Specifically, we followed steps 1-5 in Figure 1 by first
defining a clear set of competency questions for the mod-
ular ontology of robotic orchestration, which guided the
identification of key notions such as Agent, Task, Envi-
ronment, Goal, and more. Each notion was mapped to
either an existing ODP template when adaptable, or was
modeled as a new pattern, to follow established model-
ing principles and best practices. The resulting modular
structure is expressed through schema diagrams repre-
senting inter-module relationships.

Positionally, MOMo builds upon the same design phi-
losophy that underlies traditional ontology engineering
frameworks such as DOLCE + DUL, and SOMA, i.e., em-

phasizing modularization and compositional reuse and enabling a systematic alignment of multiple
ODPs across heterogeneous domains. However, while other frameworks achieve this through curated
ontological imports or handcrafted integrations, MOMo distinguishes itself by providing an explicit,
prescriptive workflow for implementing these principles that formalizes these best practices into a
repeatable and transparent methodology. It also serves as a methodological scaffold for applying SOTA
modular engineering practices while ensuring each modeling decision is explicit and traceable. This
makes it particularly well-suited for the orchestration of complex, cross-domain and ontology-guided
MAS that require explicit interoperability between modules. Hence, we contribute and position a
growing shift towards pattern-driven ontology engineering that prioritizes reusability, traceability and
empirical grounding. The immediate future work will focus on executing steps 6-9 of Figure 1, which
involves formalizing axioms, assembling and validating modules and publishing the final artifacts for
broader community reuse.

3. Position & Preliminary Results

Our approach toward creating a modular ontology for robotic orchestration followed the methodology
presented and outlined in MOMo. This requires that we begin by identifying a use case, determining
useful datasets, and developing competency questions that would allow for future verification of the
ontology. We reiterate our use case: to construct an SOTA reusable ontology that allows for complex
MAS that incorporates an AIO for task assignment and verification in dynamic and unstructured
environments. From this, we identified many applicable datasets that encompass data on objects, robotic
manipulation, environments, tasking, and more. We then began identifying key notions, or rather,
concepts that overlap within the competency questions and data [11, 21].

The key notions act as the basis for modeling the ontology. First, we examined patterns that already
exist within MODL [10], where we found well developed ODPs, such as those involving State, Event,

6Further resources can be found in https://github.com/kastle-lab/cs7810-intro-to-ke and https://github.com/kastle-lab/
kastle-drawbridge.
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and SpatioTemporalExtent. We also identified a pattern from another modular ontology (i.e., OntoPret
[22]): the pattern structure for Behavior. For brevity, many other patterns were also identified; they
are included in our repository. Unfortunately, many of our key notions still lacked suitable ODPs, and
they will require further effort through bespoke modeling. Some notable key notions without suitable
patterns that we have begun developing for our use case are described in the following subsections of
Section 3.

The deliverables for this ontology and the current collection of identified datasets are available in
our GitHub repository7.

3.1. Goal & Task

Task decomposition is and remains a central theme across many prior works. Several frameworks, such
as KnowRob 2.0 [16], ORPP [7] and RTPO [6], have each modeled aspects of task planning, execution, or
process sequencing, yet they differ significantly in modularity and reusability. For example, KnowRob
2.0 embedded decomposition semantics into its activity model via SOMA’s hierarchy, making the
relationships tightly coupled to its cognitive architecture. In the same vein, ORPP introduced a skill-
based process planning ontology but centered its design around agile manufacturing workflows rather
than generalized orchestration. Similarly, RTPO focused on explicit domain knowledge bases for robot
task planning but employed monolithic class structures, thereby restricting extensibility.

Building on these past limitations and lessons observed, we developed a Goal-Task module to formalize
how high-level objectives can be decomposed into actionable units of work within our orchestration
ontology. Following the principles of MOMo, we treat Goal as the abstract representation of the desired
outcome while keeping Task as the minimal operational unit required to achieve that outcome, keeping
it atomic and hence not further decomposable.

As portrayed in Figure 2, a Goal instantiated relationships to Task through hasTask property for
explicit decomposition of work from strategic intent to an actionable executable item. This modeling
approach explores a different angle of decomposition and helps preserve the work decomposition
hierarchy from a ‘what needs to be achieved and done’, rather than generic breakdowns, which focus
on the ‘how it should be done’, to capture the broader semantics of intention behind work planning and
completion. This also captures the Spatial and Temporal constraints (hasDeadline, isWithinBounds and
hasOperationalExtent), which contextualize the broader tasks and goals of a system within real-world
limits, also bounding it to their respective Environment extents. Each Goal is further linked to a success
condition via hasSuccessState, allowing the AIO to evaluate completion criteria, especially in dynamic
environments.

Figure 2: The schema diagram for Goal and Task. The yellow boxes
indicate the classes, the blue dashed boxes refer to external
schema entities and the yellow ellipses indicate the datatypes
tied to those classes. Open arrows indicate SubclassOf rela-
tions.

Similarly, individual
Tasks were modeled for
sequencing for partial
order execution and de-
pendency management
(dependsOnTask and
hasNextTask), as well as
references to required
objects (requiresObject)
and necessary Archetype
(requiresArchetype).

Extending several pat-
terns from MODL, these
design primitives, unlike
several prior frameworks
that embed semantics with

7The current work for this ontology https://github.com/kastle-lab/Autonomous-Robotic-Orchestration-Modular-Ontology.
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(a) The schema diagram for Capability. (b) The schema diagram for Archetype.
Figure 3: This figure shows the schema diagrams for both Capability (Figure 3a) and Archetype (Figure 3b), as
modeled using the standards outlined in MOMo.8

static rule sets, ensure
compatibility with other modules for ontological consistency across the framework. Modeling was
strongly influenced and grounded in task dependencies, temporal ordering and goal hierarchies by
datasets such as ALFRED [23] and RH20T-P [24], designed specifically for robot-robot and human-robot
collaboration scenarios. In short, this module helps fill the conceptual bridge between intention and
execution by connecting goals and tasks, embedding environmental and dependency semantics for
AIO to reason over MAS plans, verify desired outcomes and adaptively recompose tasks to maintain
executive and structural continuity.

3.2. Archetype & Capability

Both the OCRA and KnowRob frameworks import a Capabilities class as defined by SOMA. However,
neither of these ontologies extends or makes use of the class in a meaningful way. Notwithstanding, a
well-developed Capability class is required for our use case. In SOMA, the Capability class is entirely
abstract, but further extending it would be more appropriate for a MAS with an AIO for tracking the
set of capabilities of each robotic agent under its influence. The purpose is to provide the AIO with
the capacity to reason about the available agents and their capabilities under its authority. To then
appropriate the necessary agents to achieve an overall goal and complete atomic-level tasks, based on
the required skills. The current schema for the capability pattern is shown in Figure 3a.

Furthermore, the modeling of the capability pattern was heavily influenced by existing available
data. One useful dataset of note is RH20T-P, provided by an internationally collaborative research
team from China and Australia. In their dataset, they model what they define as Primitive Skills under
two categories: Gripper-Based and Motion-Based [24]. These are useful distinctions to make in the
Capabilities class, as the capacity of robotic agents is typically constrained by their hardware and
software. The composition of such capabilities results in the next class of discussion, Archetype.

Analysis of Figure 3a reveals a connected class, Archetype, through the relationship requiresCapabil-
ity, as exhibited in Figure 3b. The Archetype class is a thematic representation of an agent’s capability.
For example, a robotic Agent of the Explorer Archetype would have specific sensor and motion-based
capabilities. We chose to model an Archetype class rather than use the nomenclature Role, because
there are important distinctions between the two. While Role is typically used to classify an agent’s
immediate characteristics, the Archetype class is instead more representative of the culmination of all
the characteristics an agent has based on their capabilities (i.e., a set of skills). The specific set of those
capabilities gives an agent an archetype, allowing it to fill many roles until it is assigned to an immediate

8Figure 2 contains the legend for MOMo schema diagrams.



task, where it will fulfill a specific role. As these patterns become more concrete, the archetypes would
be enforced through the constraints imposed by axioms.

4. Conclusions

We are engineering a modular ontology, using SOTA best practices, to enable complex autonomous
MAS to include an AIO capable of managing other robotic agents. Currently, there are two well-known
exemplary frameworks, OCRA and KnowRob, that showcase the significant role that ontologies play
in the pursuit of such complex systems. These frameworks use the same foundational ontologies —
DOLCE+DUL and SOMA — and extend them as needed. In our examination of these, we found it
necessary to extend and add to some of the concepts presented in the aforementioned ontologies,
not necessarily an extension of the ontologies themselves, by creating the ODPs we identified as a
requirement for our use case. This is part of a greater effort to create a KG-powered MAS, which we are
coining as TASK-MATS.

Future Work We have identified several directions for future work. Of course, we must finalize
our own ontology efforts. As a part of this, however, an exhaustive collection of specification data,
especially related to capability, must be executed. This ensures that not just an ontological notion is
well-modeled, but also that it is empirically validated using real-world scenarios. The TASK-MATS
project supports this initiative, but annexing or otherwise integrating into the wider community is a
must. Finally, we must look forward into how this ontology can be used in broader neurosymbolic
frameworks, incorporating planning and multi-modality. Though the work is mostly preliminary and
much future work remains, we conclude that, at the very least, the current state of this work is a proper
step in the direction toward achieving our endeavors.
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