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Abstract 
A new mathematical model of risk-oriented security management in Internet of Things (IoT) networks is 
proposed. The model combines a graph-autoregressive approach to load forecasting with a decision-making 
mechanism based on the Conditional Value-at-Risk (CVaR) indicator. The study aims to improve the cyber 
resilience of IoT networks by integrating spatio-temporal traffic analysis, information security indicators, 
and economic risk assessment. It is proved that existing methods and models for predicting and detecting 
anomalies are focused mainly on time series. However, they do not take into account the topological 
structure of IoT networks and the relationships between nodes, which reduces their effectiveness. The 
developed graph-autoregressive model simultaneously takes into account the time dependence of traffic 
and the spatial correlation between network nodes through the Laplacian of the graph. Based on the forecast 
residuals, the level of anomaly and the probability of an attack are estimated, taking into account behavioral 
and network security indicators. A risk-oriented decision-making module is proposed that uses CVaR as a 
criterion for the optimal choice of protective actions. This allowed the defense system to focus on the worst-
case scenarios of high-cost attacks, minimizing potential losses. Experimental testing on the data of a smart 
home-type IoT network confirmed the effectiveness of the proposed model. A comparative analysis with 
classical approaches (ARIMA, LSTM, Isolation Forest) showed an increase in load prediction accuracy by 
15% and an improvement in attack detection quality (F1-score) by 7-10%. The scientific novelty of the work 
is the synthesis of a graph-autoregressive model with risk-oriented optimization, which takes into account 
both spatial and temporal changes in the network and economic aspects of security management. The 
practical significance lies in the possibility of using the model as an analytical module in IoT monitoring 
and cybersecurity systems for automated selection of countermeasures in real time. 
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1. Introduction 

Over the past decades, the Internet of Things (IoT) technology has become an integral part of many 
business processes in various fields - from household smart home systems to industrial complexes 
and critical infrastructure [1]. However, an increase in the number of devices and the complexity of 
the IoT network topology is accompanied by an increase in the risk of information security (IS) 
incidents [2]. According to analytical agencies [1], the number of active IoT devices will exceed 25 
billion by 2030. And the amount of data generated by IoT devices will grow to several zettabytes per 
year. That is, the exponential growth in the number of IoT devices is accompanied by a significant 
complication of the network topology and an increase in inter-node interactions. As a result, this 
will lead to an increased risk of information incidents. 
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Unlike classical IT systems, the IoT environment has a much higher degree of heterogeneity. This 
makes existing information security methods focused on centralized architectures ineffective. 
Moreover, the large number of connected IoT network sensors and actuators has created new attack 
vectors. These include remote control over nodes, data spoofing, distributed denial-of-service (DDoS) 
attacks, the use of IoT devices in botnets, and more. As a result, IoT networks have become one of 
the most vulnerable components of modern cyber-physical systems. 

It should be noted that most existing anomaly detection and monitoring systems for IoT networks 
operate in a reactive mode. They only detect deviations after an incident has actually occurred. Such 
solutions are based mainly on statistical indicators or fixed thresholds. That is, a priori, such solutions 
reduce their effectiveness in using statistical indicators in the case of targeted low-intensity attacks 
or changes in device behavior over time. At the same time, the development of machine learning 
(ML) and time series analysis methods has opened up opportunities for the synthesis of flexible 
hybrid models capable of predicting the future state of an IoT network and identifying potential 
threats at the stage of their formation. It should be noted that most of the research in the field of IoT 
device security is currently focused on time dependencies. These studies do not take into account 
the spatial structure of the IoT network. Meanwhile, the interconnections between nodes - 
topological, informational, and behavioral - have a significant impact on the parameters of attacks. 
For example, compromising a central router or a node with a high degree of centrality will lead to 
an avalanche of threats to neighboring devices. Therefore, an integrated approach that combines 
time series analysis, network graph structure, and information security indicators is a relevant topic 
[3, 4]. 

The issue of decision-making in cyber defense systems also requires special attention. In most 
cases, the choice of countermeasures is made without taking into account the expected risks or 
possible consequences for the quality of service (QoS). This can potentially lead to excessive resource 
consumption, downtime, or even loss of communication between nodes. In this vein, it is advisable 
to apply risk-oriented methods. These methods are able to take into account both the probability of 
an attack and the potential damage in case of its realization. One of these criteria is Conditional 
Value-at-Risk (CVaR). This indicator will allow to focus the protection strategy on the worst-case 
scenarios with high losses, increasing the cyber resilience of the system. That is why it is relevant to 
develop adaptive risk-oriented models that combine predicting the behavior of the IoT system with 
threat detection and selecting optimal preventive actions to ensure network security. 

2. Problem statement 

Modern methods of load forecasting in IoT networks are mostly based on time series analysis, which 
allows to model traffic dynamics and identify periodic patterns in the functioning of individual 
devices. However, such approaches, despite their technical maturity, have a number of limitations 
that significantly reduce their effectiveness in cybersecurity tasks for distributed infrastructures. The 
main drawback is that most models focus exclusively on time dependencies and do not take into 
account the spatial structure of the IoT network - its topology, the nature of connections between 
nodes, the intensity of interaction, and the correlation of the behavior of individual devices. As a 
result, the models ignore the interaction of nodes, which can be crucial when failures or attacks 
spread across the network. 

Another significant limitation of classical approaches is the lack of mechanisms to take into 
account information security policies and device behavior. In most existing traffic forecasting 
systems, security factors are not integrated into the analytical core, but are treated as external 
conditions. This leads to the fact that the breach detection system cannot timely differentiate 
technical deviations from potentially malicious activity. In particular, even modern machine learning 
algorithms used in the field of IoT monitoring do not always take into account events detected by 
Intrusion Detection Systems (IDS) or Security Information and Event Management (SIEM) platforms. 
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As a result, the analytical system is unable to synthesize a holistic picture of network security and 
correctly assess the likelihood of cyberattacks. 

Another critical aspect is the limitations of existing anomaly detection methods, which mostly 
rely only on statistical analysis of deviations in traffic or device behavior from the average. While 
such approaches can identify individual atypical events, they do not provide sufficient contextual 
depth to detect complex, multi-stage attacks that propagate through interconnected network nodes. 
As a result, the system responds to incidents mostly after the fact, when the damage has already been 
done and the ability to prevent or localize threats is limited. 

The lack of integrated risk-oriented decision-making mechanisms is another significant problem 
with modern IoT cybersecurity systems. The vast majority of existing solutions focus on recording 
attacks or breaches, but do not include components capable of quantitatively assessing the risk of 
their occurrence or predicting potential losses. In such conditions, security administrators are unable 
to strategically plan actions to minimize losses or prioritize responses. In particular, the lack of 
formalized models based on criteria such as CVaR makes it impossible to assess worst-case scenarios, 
which is especially dangerous for systems with critical resources and limited computing power. 

Together, these factors form a scientific and practical problem, which is the lack of a 
comprehensive model capable of simultaneously predicting load, detecting anomalies, and assessing 
the risk of attacks, taking into account the topological and behavioral characteristics of IoT networks. 
Solving this problem requires the integration of machine learning, graph analysis, and risk theory 
methods into a single analytical system focused on adaptive cyber defense management in dynamic, 
distributed Internet of Things environments. 

3. Literature review 

Analyzing cyberattacks on IoT networks and developing effective methods for detecting them is one 
of the most relevant issues in the field of cybersecurity. Existing research is mostly focused on the 
use of machine learning (ML) methods to detect anomalies and cyber threats. In particular, the 
authors of [5, 6, 7] conducted a comparative analysis of various ML methods for detecting anomalies 
in cyberattacks on IoT networks. A broader overview of modern approaches based on ML, including 
their analysis and prospects, is presented in [8]. 

A number of studies focus on the development of specific models and approaches. For example, 
in [9], the authors proposed a hybrid deep neural network for detecting attacks in industrial IoT. In 
[10], the authors discussed the use of ML to identify attacks in smart IoT networks. At the same time, 
an important step in this process is feature engineering, which is studied in [11]. Ensemble learning-
based methods, such as the voting approach, have also been used to detect cyberattacks in industrial 
IoT [12]. 

As the analysis of previous publications has shown, most applied research focuses on the use of 
machine learning algorithms for classification and anomaly detection, including the following works: 
Inuwa M. M. and Das R. [5]; Alanazi M., Aljuhani A. [6]; Inayat U. and Zia M. et al. [8]; These authors 
investigated the advantages of individual methods, such as SVM, Isolation Forest, LSTM, 
autoencoders for detection tasks. However, these works did not investigate the spatial relationships 
between nodes. And the "node-by-node" approach does not take into account how the compromise 
of one element of the IoT network will affect the adjacent ones.  

On the other hand, publications in recent years have demonstrated a clear shift to graph-based 
methods. In several papers, such as [5, 6], the authors used Graph Neural Networks (GNNs) or graph 
regularizers in the task of attack detection and network traffic forecasting. Although this has 
improved the quality of modeling inter-node impacts, it is not possible to detect atypical behavior in 
an IoT network using GNNs alone.  

A separate area of research is publications containing models based on autoregression and their 
extension for graphs. Classical AR/ARIMA models work well for one-dimensional time series, but do 
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not take into account topology. Instead, recent methods and models to "graph-autoregressive" or AR 
for sequences of graphs allow to formalize both temporal and spatial dependencies [13-16].  

Another important component is risk-oriented decision-making. VaR and CVaR metrics have long 
been used in financial and operational risk management [14-16]. Such models have been actively 
used in cybersecurity to optimize security resources and focus on worst-case scenarios. Studies [15, 
16, 17] on the use of CVaR in cyber risks have shown that this approach allows formalizing the choice 
of countermeasures, taking into account the probability of large losses and uncertainty of the 
attacker's behavior. Integration of CVaR into decision-making modules makes the system more 
conservative with respect to catastrophic events and minimizes expected losses.  
Finally, it is important to consider data dynamics. It is the behavior of IoT devices and traffic profiles 
that change over time. In recent years, online algorithms and ensemble approaches have emerged 
that have adapted to drift and allowed to maintain the quality of detecting atypical behavior in 
streaming data. This is typical of recent work on online attack detection for IoT [17-22]. These studies 
apply weighted update mechanisms. The combination of graph representation, online learning, and 
a risk-oriented optimizer is an unexplored but, in our opinion, promising area. That is why the 
proposed work is focused on it. Thus, despite significant advances, most existing approaches do not 
fully take into account the spatial and temporal dependencies between network nodes and IoT, as 
well as rare but costly threats. That is why new research in this area is relevant. 

4. The purpose of the study 

The purpose of this study is to create and substantiate a mathematical model for load forecasting and 
incident detection in IoT networks with the subsequent formation of a system of optimal 
management actions based on a risk-oriented approach. The use of the CVaR criterion as a basis for 
decision-making allows not only to estimate expected losses but also to model the impact of extreme, 
rare, but potentially catastrophic events, which significantly increases the level of cyber resilience of 
IoT infrastructures. 

Thus, the study is aimed at developing a comprehensive analytical tool capable of integrating 
temporal, spatial, and behavioral aspects of IoT networks in order to timely predict traffic anomalies 
and prevent critical disruptions in their operation. To achieve this goal, it is necessary to solve a 
number of interrelated scientific and applied tasks: 

• improvement of the graph-autoregressive load forecasting model, which would take into 
account both the temporal patterns of traffic changes and the spatial relationships between 
individual IoT network nodes. This combination makes it possible to describe not only local 
dependencies, but also global correlations between devices operating within a single digital 
environment. 

• integration of behavioral and network indicators of information security into the model, 
which are necessary to quantify the probability of attacks on IoT network nodes. This 
involves building a weighted loss function that takes into account the criticality of nodes, 
their role in the overall system topology, and the statistical rarity of attacks. This approach 
is designed to strike a balance between the accuracy of load forecasting and the effectiveness 
of information security incident detection, which will simultaneously optimize both network 
resources and the process of responding to potential threats. 

• development of a decision-making module that will use Conditional Value-at-Risk as an 
optimization criterion in the process of assessing and minimizing loss risks. The use of CVaR 
in this context enables the system to respond adaptively to changing threat levels, paying 
particular attention to scenarios with high potential for harm but low probability of 
occurrence. Thus, the module will contribute to the implementation of the principles of 
adaptive security management and the formation of strategies aimed at minimizing both 
direct and indirect consequences of cyberattacks. 

Together, these tasks form a comprehensive research concept that combines elements of 
mathematical modeling, risk theory, and cybernetic control within a single analytical architecture. 
Implementation of the proposed methodology makes it possible to increase the efficiency of IoT 
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network monitoring systems, reduce the likelihood of failures, and ensure the stable functioning of 
critical components in the dynamic and unpredictable conditions of the information environment. 

5. Model for predicting and detecting incidents in an IoT network 

Let the topology of the IoT network at time t be described by a graph 
( ), ,t t tG V W= ,                                                                    (1) 

where  1,...,V N= is the set of nodes in the IoT network; t  is the set of edges at time t; N N
tW R 

+  
is the matrix of link weights (for an IoT network, these are bandwidth, delay, reliability, etc.). 

For the node v V  at time t, we enter the following parameters: 

load vector ( ) ( ) ( )( )1 ,1 ,,..., ,y
y

dv v v
t t dy y y R



=    where yd  is the number of IoT network load metrics; 

vector of exogenous security indicators of the IoT network ( ) ( ) ( )( )1 ,1 ,,..., ,x
y

v v v d
t t dx x x R



=  where xd  

is the number of IS indicators (atypical IPs, port entropy, authentication errors, etc.); 

attack label 
( )   ( )

10,1 , 1 IoT network node compromised.v v
ta a =   

Then we use a graph-autoregressive model to predict the load: 

1 1 1
1 0

ˆ ,
p q

t l t l t t t t
l l

y A y B x L y+ − −

= =

=  +  −                                             (2) 

where ty  is IoT network load; tx    IS indicators; t t tL D W= −  is Laplacian of the graph (1); ,l lA B  
 coefficient matrices; p   memory depth of load time series (AR part); q   memory depth of 

exogenous features; t   regularization matrix. 
Then the level of anomalies in the node v  is given as follows: 

( ) ( )( ) ( ) ( )1
1 1 1 1 1ˆ, ,v v v v

t t t t t t ts r r r r y


−

+ + + + +=  = − ,                                         (3) 

where ( )v
tr  is the threshold obtained from the theory of extreme values [5]; ( )v

t is the covariance 
matrix of residuals estimated on a sliding window of time until the moment t for node v . 

We assume that the feature vector ( )
1
v
t +  includes anomalies, IoT network security indicators, and 

aggregated neighborhood metrics. Then we estimate the probability of an attack by logistic 
regression (4): 

( ) ( )( ) ( )1 1
1,

1
v v
t t zw z

e
   

+ + −
= =

+
,                                         (4) 

where ( )  1 0,1v
t +   is the probability of an attack on node v  at time t+1; ( )

1
v
t +  is the feature vector of 

node v  at time t+1; ( )z  is a sigmoid activation function that converts a linear combination of 

features ( )
1
v
tw  +   into a probability in the range [0,1]. 

Thus, equation (4) reflects a fundamentally important approach to assessing the risk of an attack 
on an IoT network node. The probability of compromising a particular node is determined not only 
by the level of anomalies in its own behavior, i.e., deviations from typical activity patterns, but also 
by the broader context of network interaction. This means that the modeling process includes 
additional information security (IS) indicators, such as query frequency, data exchange intensity, 
delay indicators, communication channel stability, and information about the behavior of the nearest 
neighbors in the network topological graph. This approach provides a more complete reflection of 
the interdependencies between nodes, which allows for the effects of "chain reactions" or "cascading 
failures" that are typical in many IoT environments. 
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Using logistic regression as a basic method to estimate the probability of an attack has the added 
benefit of making the results interpretable. The model coefficients can be viewed as weights that 
characterize the contribution of each indicator to the overall risk. This makes it possible not only to 
predict the probability of an incident, but also to explain analytically which parameters (for example, 
increased latency, increased traffic, or decreased regularity of interaction) are critical to the current 
state of security. In this way, the model becomes not just an assessment tool, but a means of 
intelligent decision support in IoT cybersecurity systems. 

It should be emphasized that the above submodels - load forecasting (2), anomaly detection (3), 
and attack probability assessment (4) - are not isolated components but rather an interconnected 
three-tiered system in which each level enhances the accuracy and reliability of the other. However, 
for their effective integration, it is necessary to agree on optimization criteria that will ensure the 
unity of functioning of the entire model architecture. This problem is solved by formalizing a single 
loss function. 

The loss function (5) is a generalized optimization criterion that simultaneously takes into account 
three key security aspects: load forecasting accuracy, attack classification quality, and coherence 
(consistency) of forecasts between adjacent nodes in the graph. This approach minimizes not only 
local errors in the behavior of individual nodes, but also global inconsistencies in the structure of 
network interaction, which is especially important for distributed IoT systems with a large number 
of loosely connected components.  

Additionally, a regularization term was introduced into the loss function to control the model 
complexity. This solution ensures resistance to overfitting, avoids overfitting to the specifics of 
individual nodes, and guarantees the generalizability of the model on new data samples. 
Regularization also serves as a stabilizer of the learning process, which is especially important when 
working with large, heterogeneous IoT data sets with high noise and lack of complete labeling. 

Thus, the integration of the three submodels within a joint optimization approach forms a 
coherent analytical framework in which forecasting, detection, and risk assessment function as a 
single system. As a result, the general problem statement takes on a form that allows describing the 
entire process of managing the security of an IoT network in terms of a single risk function optimized 
in accordance with the CVaR principles. This opens up opportunities for further automation of 
monitoring processes, adaptive learning, and strategic decision-making in the field of cybersecurity 
of distributed infrastructures. 

( )
2

det det 2
min pred graph graph regL L  

  +  +  +  ,                               (5) 

where predL  is the Huber loss; detL  is the cross-entropy; 
graph  is graph regularisation; 2

2
  is the 

L2- norm of the model parameter vector  ; det 0   is the balance between the task of predicting 
and detecting attacks;  

0graph   is the influence coefficient of graph regularisation; 0reg   is the regularisation 
parameter for checking the model complexity. 

Note that even accurate load forecasting and correct assessment of the probability of an attack on 
an IoT network is not the ultimate goal of the model. Therefore, let's move on to the procedure of 
forming management decisions that minimise expected losses. Such decisions depend not only on 
the estimated probability of an attack. They also depend on the potential losses in the event of an IS 
incident, the costs of preventive actions, and penalties for degradation of quality of service (QoS). In 
other words, it allows us to choose a protection strategy. We consider this an optimization task, 
taking into account economic and service factors. The corresponding cost function for the node  is 
as follows. For the selected action ( )

1
v
tu + : 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1Cos v v v v v
t t inc act QoS penaltyt u c c u SLA u += + +  ,                      (6) 

where ( )v
incc  is the potential damage of an IS incident at node v ; ( )

1
v
t +  is the predicted probability of 
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an attack (see formula (4)); ( )v
actc  is the cost of performing action u ; QoS  is the weighting factor of 

the penalty for QoS; ( )v
penaltySLA  is the QoS penalty for node v . 

The value function formulated in (6) allowed us to estimate the expected costs for different 
options for the IoT network protection system. However, it should be no ted that rare but 
catastrophic incidents should also be taken into account. In this case, the average costs do not reflect 
the real risk. To this end, we use Conditional Value-at-Risk (CVaR) as a criterion for the optimal 
solution. This allows us to focus the model on the worst-case scenarios with high IoT network 
restoration costs. Thus, the choice of action for the node  at time  is formalised as follows: 

( ) ( ) ( )( )1 argmin Cosv v
t tu U
u CVaR t u+


= ,                                              (7) 

where ( )0,1   is the level of trust; CVaR  ⋅100% attack 
scenarios. 

Network behavior and the nature of attacks change over time. Therefore, the model requires 
regular updating of  parameters   based on new data, with the gradual "forgetting" of outdated 
information. To do this, we use a stochastic gradient descent with a forgetting factor. This allows us 
to strike a balance between stability and speed of adjustment: 

( )1 1 ,online
t t t forget t tL +  − = −  +  −                                  (8) 

where t  is the vector of model parameters (autoregression coefficients, logistic regression weights, 

regularisation parameters, etc.) at time t ; 0   is the learning rate; online
tL  is the loss function 

calculated on the last mini-batch of data at time t; online
tL   is the gradient of the loss function 

relative to the parameters t ; ( )0,1forget   is the coefficient of reducing the influence of old 
observations. 

That is, expression (8) describes the real-time update of the model. New data affect the parameters 
through the gradient online

tL . And the coefficient forget  gradually reduces the weight of old 
observations so that the model remains relevant when the IoT network changes. 

Figure 1 shows a conceptual diagram of the model for detecting and predicting attacks in IoT 
networks. 

Below is also a pseudo-code structure to illustrate the model. This pseudo-code details the main 
stages and logic of the proposed model. According to the model, it contains several interconnected 
stages. These are load forecasting, attack probability assessment, and decision making. 

// Input: 
//   G = (V, E, W): IoT network graph, where V are nodes, E are edges, W is adjacency matrix. 
//   Y_hist: Historical load vectors for each node. 
//   X_hist: Historical exogenous security indicator vectors for each node. 
//   U: Set of possible protective actions. 
//   alpha: Confidence level for CVaR. 
// Hyperparameters for loss function and forgetting. 
// Output: 
//   u_t+1: Optimal protective action for each node at time t+1. 
// Stage 1: Load Forecasting and Anomaly Detection 
function ForecastAndDetect(G_t, Y_t, X_t): 
    // 1.1 Calculate Graph Laplacian 
    L_t = D_t - W_t  // D_t is the degree matrix 
    // 1.2 Forecast next-step load using the graph-autoregressive model 
    // Equation (2) 
    y_hat_t+1 = sum(A_l * y_t-l) for l=1 to p + sum(B_l * x_t-l) for l=0 to q - Gamma_t * L_t * y_t 
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    // 1.3 Calculate the anomaly score 
    // Equation (3) 
    for each node v in V: 
        r_t+1_v = y_t+1_v - y_hat_t+1_v 
        S_t+1_v = (r_t+1_v)^T * (Sigma_t_v)^-1 * r_t+1_v 
    return y_hat_t+1, S_t+1 
// Stage 2: Attack Probability Assessment 
function AssessAttackProbability(y_hat_t+1, S_t+1, X_t, neighbors_data): 
    // 2.1 Construct feature vector phi_t+1 
    // Feature vector includes anomaly scores, security indicators, and aggregated neighbor 

metrics. 
    for each node v in V: 
        phi_t+1_v = concat(S_t+1_v, X_t_v, aggregate(neighbors_data)) 
    // 2.2 Estimate attack probability using logistic regression 
    // Equation (4) 
    for each node v in V: 
        pi_t+1_v = sigma(w^T * phi_t+1_v) 
    return pi_t+1 
// Stage 3: Model Optimization 
function OptimizeModel(Y_hist, X_hist, pi_t+1): 
    // 3.1 Define the weighted loss function 
    // Combines prediction accuracy, classification quality, and graph consistency 
    // Equation (5) 
    L_pred = HuberLoss(y_t+1, y_hat_t+1) 
    L_det = CrossEntropy(a_t+1, pi_t+1) 
    R_graph = GraphRegularization(...) 
    Regularizer = ||Theta||_2^2 
    L_total = L_pred + lambda_det * L_det + lambda_graph * R_graph + lambda_reg * Regularizer 
    // 3.2 Update model parameters using online learning with a forgetting factor 
    // Equation (8) 
    Theta_t+1 = Theta_t - Theta * gradient(L_online_t, Theta_t) + lambda_forget * (Theta_t - Theta_t-

1) 
    return Theta_t+1 
// Stage 4: Risk-Oriented Decision Making 
function MakeDecision(pi_t+1, U, Cost_Inc, Cost_Act, Penalty_QoS): 
    // 4.1 Define the cost function for each action 
    // Equation (6) 
    for each node v in V: 
        for each action u in U: 
            Cost_v(u) = pi_t+1_v * Cost_Inc_v + Cost_Act_v(u) + lambda_QoS * Penalty_QoS_v(u) 
    // 4.2 Select the optimal action minimizing Conditional Value-at-Risk (CVaR) 
    // Equation (7) 
    for each node v in V: 
        u_t+1_v = arg min_u in U (CVaR_alpha(Cost_v(u))) 
    return u_t+1   
The results of computational experiments are shown in Fig. 2. 
To verify the model's performance, we conducted a computational experiment using data 

reflecting the operation of a typical IoT network of a smart home. The study considered a network 
consisting of 10-15 nodes with different functional roles. These are typical sensors of a smart home 
IoT network - motion, smoke, temperature, household devices (refrigerator, washing machine, 
lighting), multimedia (TV, laptop, smartphone, tablet). As well as the main nodes of the network 
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infrastructure - a router, a video surveillance camera, a door lock, a garage door. 
For each node, a dataset was taken containing load time series with a duration of 50 steps. These 

cycles reflected the periodic operation of the devices, as well as occasional anomalies. The anomalies 
were garage door opening, smoke detector triggering, etc. Key network nodes, such as the router 
and the video surveillance camera, are described in the initial dataset as having a stable background 
load with a few random fluctuations. The experimental setup included three stages: 1. Prediction of 
the load using a graphical autoregressive model that takes into account spatial and temporal 
dependencies. 2. Detection of anomalies based on the forecast residuals, followed by estimation of 
the Mahalanobis distance and application of adaptive thresholds. 3. Assessment of the probability of 
an attack and decision-making using the integration of IS indicators and a management module based 
on the Conditional Value-at-Risk (CVaR) criteria, see expression (7). 

 
Figure 1: Conceptual diagram of the model for detecting and predicting attacks in IoT networks 

 
Figure 2: Results of computational experiments for detecting and predicting attacks in IoT networks 

To quantitatively confirm the effectiveness of the proposed model, a comparison with classical 
methods was made, in particular: ARIMA model of load forecasting, Isolation Forest - an isolated tree 
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of anomalies, deep LSTM method for time series. 
MAE (mean absolute error of the forecast) and F1-score (quality of attack detection) were used as 

metrics for comparison. The comparison results are presented in Table 1. 

Table 1 
Comparison of the proposed model with other models 

Model MAE F1-score 

ARIMA 0.168 0.74 

LSTM 0.142 0.81 

Isolation - 0.77 

A model has been 
requested (Graph-AR 
+ CVaR) 

0.119 0.88 

 

According to the comparative analysis, the proposed method showed an improvement in the 
quality of load forecasting by about 15%. The accuracy of attack detection increased by 7-10% 
compared to existing methods. Thus, the comparison of the model with others confirmed the 
feasibility of simultaneously taking into account spatial and temporal dependencies and risk-oriented 
optimization based on CVaR. 

6. Discussion of research results 

The results of the computational experiment (Fig. 2) convincingly prove the effectiveness and 
functional viability of the proposed model. During the analysis of time series, it was found that the 
model correctly describes both stable background processes characteristic of constantly active 
devices (in particular, a network router or video surveillance system) and periodic, cyclical patterns 
of behavior of household devices, such as a thermostat or refrigerator. The high accuracy of modeling 
these patterns confirmed that the developed approach is capable of reproducing the real dynamic 
processes inherent in heterogeneous IoT networks. 

The use of a risk-oriented concept based on the Conditional Value-at-Risk (CVaR) indicator has 
made it possible to expand the classical risk assessment paradigm. This approach takes into account 
not only the average expected losses, but also the probability of the most critical attack scenarios on 
the network infrastructure. This provides a more realistic modeling of the potential consequences 
of cyberattacks and forms the basis for making informed decisions in security systems aimed at 
minimizing losses in the worst possible conditions. 

Despite the overall effectiveness of the model, the experiment revealed a number of 
methodological limitations. First, the use of a linear graph autoregressive structure limits the model's 
ability to represent complex nonlinear relationships between network nodes. This reduces the 
accuracy of predictions in situations where traffic is chaotic or stochastic in nature. Second, the 
current stage of the study did not take into account the real attributes of network traffic, such as 
packet types, protocol features, and delay metrics. Including such characteristics in future work 
could significantly increase the model's informativeness. Third, to increase the model's applied 
reliability, it needs to be tested on large open or corporate datasets containing real attack labels, 
including DDoS, port scanning, or malware injection scenarios. 

The scientific novelty of the study lies in several key aspects. First, the graph autoregressive 
model for forecasting load in IoT networks has been improved, allowing simultaneous consideration 
of traffic time dependencies and spatial correlations between nodes through the graph Laplacian. 



41 
 

This integration has made it possible to adequately describe the interdependent behavior of network 
elements, identify cross-correlation effects, and improve the accuracy of short-term forecasts. 

Second, a method has been developed for integrating behavioral and network indicators of 
information security into the process of assessing the probability of an attack. Unlike classical 
models, a weighted loss function is proposed that takes into account the criticality of nodes and the 
frequency of abnormal events. This approach provides a flexible balance between load prediction 
accuracy and cyber incident detection quality, which is especially important for resource-
constrained IoT systems. 

Third, a decision-making module based on the Conditional Value-at-Risk risk criterion has been 
implemented. This component allows for the consideration of not only average scenarios, but also 
extreme scenarios. The use of CVaR makes it possible to adapt the threat response process to real 
conditions of high uncertainty, providing an additional level of resilience for IoT networks against 
rare but potentially catastrophic attacks. 

The practical value of this research lies in the creation of a prototype analytical tool that can be 
integrated into IoT network monitoring systems for early detection of information security incidents 
and prediction of peak loads during attacks. The proposed implementation allows automating the 
threat detection process, increasing the efficiency of computing resources, and reducing the system's 
response time to potential incidents. 

The CVaR-based decision-making software module deserves special attention. It can be 
integrated into IoT cyber defense systems for automated selection of the optimal threat response 
strategy. This minimizes financial losses, reduces service downtime, and increases network 
continuity even in the event of complex attacks. 

In the future, the model is expected to be integrated into automated IoT cybersecurity 
management systems. The research results can be used to enhance the functionality of modern 
Security Information and Event Management (SIEM) systems that process telemetry data streams in 
real time. Integrating the proposed solutions into such platforms will improve the accuracy of event 
classification, reduce the number of false alerts, and improve the overall analytical transparency of 
monitoring processes. 

7. Conclusions 

In the course of the study, a model for load forecasting and incident detection in IoT networks based 
on the integration of temporal and spatial traffic characteristics was developed and tested. The 
proposed approach provides a new level of analytical depth, as it allows simultaneously taking into 
account the behavioral patterns of nodes, their interconnections in the graph structure of the 
network, and the temporal dynamics of events. The results of the experimental modeling showed 
the system's ability to correctly reproduce both background stable processes and cyclic patterns of 
household IoT devices, as well as to effectively record deviations that may indicate potential 
cyberattacks. 

The use of the Conditional Value-at-Risk (CVaR) criterion in the decision-making module made 
it possible to shift the focus from average risk assessments to the analysis of unlikely but critically 
dangerous scenarios. This approach enhances the system's ability to respond in advance to events 
that could lead to significant financial or operational losses, thereby strengthening the resilience of 
the network infrastructure to extreme impacts. 

It has been confirmed that the integration of graph and autoregressive model components 
improves the accuracy of forecasting in environments with a high level of traffic heterogeneity, 
which is inherent in most IoT systems. This combination allows modeling not only direct but also 
indirect connections between nodes, reflecting complex topological and behavioral patterns of the 
network. 

An additional scientific result is the development of a weighted loss function that takes into 
account the importance of each node and the frequency of certain types of attacks. This strikes a 
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balance between the priority of threat detection and the need to maintain network efficiency in 
normal operation. Thus, the model can be adapted to various use cases, from home smart networks 
to industrial IoT segments. The practical significance of the results is manifested in the possibility 
of implementing the prototype analytical module in existing IoT network monitoring systems. This 
will not only increase the level of situational awareness but also ensure automated decision-making 
in real time. The introduction of the CVaR module into cybersecurity systems opens up prospects 
for building adaptive response strategies that can minimize the consequences of attacks even in the 
event of unpredictability. 

Prospects for further research are to extend the model by taking into account the full attributes 
of traffic, including protocol characteristics, packet size, and time delays. In addition, an important 
area of future work is the use of deep learning methods to model nonlinear dependencies between 
node behavior and incident development. Significant attention will be paid to scalability issues, i.e., 
testing the model's performance on large industrial datasets and in real environments where data 
volumes are growing exponentially. 

Equally relevant is the issue of integrating the developed model into SIEM ecosystems. This 
approach will combine the model's analytical capabilities with existing mechanisms for collecting 
and correlating security events. This will create the basis for the formation of new generations of 
intelligent risk management systems that will provide not only reactive but also proactive 
management of cyber threats in IoT environments. Thus, the results obtained form a scientific and 
practical basis for the further development of adaptive decision support systems in the field of cyber 
defense. The proposed model can become the basis for creating a universal analytical core that will 
provide high accuracy of anomaly detection, the ability to predict their development and make 
effective decisions in complex dynamic IoT environments. 
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