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Abstract

Unmanned aerial vehicles (UAVs) require robust real-time object tracking in cluttered environments such
as forests, roads, and urban areas. Existing transformer-based trackers such as OSTrack and MixFormer
achieve strong per-frame accuracy but often fail under occlusion, rapid ego-motion, and distractors because
anchors are treated independently across time and sensor signals are ignored. We propose AnchorFormer-
UAV, a fully differentiable tracker that treats anchors as temporal entities and unifies: (i) an Anchor
Tokenizer that fuses appearance, geometry, motion, attention priors, and IMU cues; (ii) AM-GNN for inter-
frame anchor matching with Sinkhorn-based soft assignments; (iii) a STAT spatio-temporal transformer for
temporal and spatial refinement; and (iv) a Reliability & Consensus head that down-weights failed anchors
and fuses predictions. The system is designed for embedded deployment (Jetson-class), maintaining 60-90
FPS at 256-288 px search inputs while improving robustness on UAV benchmarks.
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1. Introduction

Visual object tracking is a cornerstone capability for UAVs in surveillance, infrastructure inspection,
environmental monitoring, and defense. Unlike static cameras, UAV platforms suffer from: strong
ego-motion and vibrations; frequent occlusions by foliage/buildings; small, fast-moving targets due
to altitude and narrow FOV; and adverse weather and poor illumination. These factors corrupt
appearance cues and cause conventional trackers to drift or fail.

Modern trackers - SiamRPN++ [1], SiamCAR [2], Ocean [3], DiMP [4], STARK [5], TransT [6],
OSTrack [7], MixFormer [8] - achieve high per-frame accuracy on LaSOT, TrackingNet, and GOT-
10k. However, they are not designed to reason temporally about anchors, to learn anchor reliability,
or to exploit IMU/VIO priors, which are crucial for UAV tracking.

Anchor-based trackers (SiamRPN++ [1], SiamCAR [2], and Ocean [3]) employ predefined anchors
and Siamese correlation to regress target boxes. Anchors are treated per-frame. The temporal
stability is handled via post-hoc smoothing if at all.

Anchor-free and transformer trackers (DiMP [4] learns a discriminative model; STARK [5] and
TransT [6] leverage attention to regress boxes anchor-free. OSTrack [7] proposes a one stream
transformer for joint feature learning, and Mix-Former [8] mixes template-searchattention) still lack
explicit temporal anchor consensus and reliability modeling.
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Trackers of temporal reasoning and memory (KeepTrack [9] andToMP [10]) introduce memory
and optimization for temporal robustness. However, they do not formulate anchors as temporal
entities nor fuse them by learned consensus.

Graph neural networks for data association GNNs have improved MOT association [11], learning
to connect detections across frames. We adapt this idea to single-object tracking by matching anchors
across frames via a bipartite GNN (AM-GNN), yielding soft assignments that seed temporal
processing.

Fresh unified/SOTA trackers and benchmarks (2023— 2025) include: MixFormerV2 for efficient
fully-transformer tracking [12], OneTracker that leverages foundation models and efficient tuning
[13], Un-Track for any-modality tracking [14], and SUTrack that unifies five SOT tasks in a single
model [15]. End-to-end transformer heads such as DETRack [16] and design variants like FETrack
[17], IAC-Tracker [18], and TATrack [19] push accuracy/efficiency. New large-scale or domain-
specific resources (VastTrack [20] and CST Anti-UAV [21]) increase category coverage and UAV
difficulty. Our approach differs by explicitly modeling temporal anchor reliability with GNN-based
soft matching and IMUaware priors inside a single differentiable loop.

UAV123 [22], UAVDT [23], and Anti-UAV [24] expose small objects, motion blur, and occlusions.
Few works integrate UAV IMU/VIO signals into the NN. Our design encodes IMU priors for motion
gating and feature biasing.

2. Problem Statement

Robust UAV tracking requires: temporal anchor stabilization, learned reliability to down-weight
failed anchors, and motion priors from IMU/VIO. Therefore, our goal is to introduce the tracker
AnchorFormer-UAV to unify these components in a single differentiable pipeline. To achieve the
goal, we solved the following tasks:
e a temporal anchor representation: anchors become tokens augmented with motion,
attention, and IMU features;
e AM-GNN: a graph neural module for inter-frame anchor matching with Sinkhorn-based soft
assignments;
e STAT: a spatio-temporal transformer that refines matched anchors across time and space;
e Reliability & consensus: learned per-anchor trust and soft fusion producing robust
predictions under occlusion;
e apractical training recipe with occlusion survival, anchor/frame dropout, and Jetson friendly
deployment.

3. Methodology

Our pipeline (Figer 1) comprises: transformer backbone + heads, Anchor Tokenizer, AM-GNN for
interframe matching, STAT for temporal/spatial refinement, Reliability and Consensus heads. Final
predictions are obtained by reliability-aware consensus of refined anchors.

3.1.  Anchor Tokenization (Step A: turning proposals into temporal tokens)

Goal. Convert per-frame anchor proposals into compact tokens that carry (i) ap-pearance, (ii)
geometry, (iii) motion context, (iv) attention priors, and (v) inertial priors.

Inputs. For each top-M anchor i at frame ¢ from the detection heads we have feature vector ¢ (f),
box b} = (x,y,logw,log h), classification score s, IoU score g} and an attention prior a obtained
by average pooling the backbone attention weights over the anchor region. IMU/VIO readings in a
small-time window around ¢ are encoded into m, (yaw/pitch/roll deltas and planar velocities) by a
two-layer MLP.
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Motion deltas. We compute Ab! = b} — b?_(ll) where 1(i) is the best anchor continuation t — 1

(initially nearest center; later replaced by AM-GNN soft matches) (Figer 2). This provides a velocity
proxy without explicit optical flow.

Backbone & Heads

Anchor Tokenizer

[AI\’[—G NN Matching (S inkhoru)]

[STAT: Spatio-Temporal Transformer]

Reliability Head Consensus Head

Final Box Prediction

Figure 1: Overall architecture. Anchors are extracted, tokenized, matched across frames (AM-GNN),
refined temporally/spatially (STAT), scored for reliability, and fused by consensus.

Figure 2: AM-GNN bipartite matching between frames (¢ — 1) and t with pruned candidate edges.

Token. The final token is al= [¢ (fti), bi,st, Abl, sk, qt, at,m, ] € R% passed through
LayerNorm and a linear projection to size d (typically d=128).

3.2.  AM-GNN (Step B: inter-frame anchor matching)

Nearest-neighbor matching by IoU fails under fast motion and occlusion. We learn a bipartite
association between anchors at (1) and t that combines geometry, appearance, reliability, and IMU
priors.

Graph construction. We build a bipartite graph with nodes {i} at t - 1 and {j} at t. For efficiency,
keep only k candidates per node using an IMU-stabilized motion gate (e.g., k = 16).

Edge features

i = [Ax, Ay, Alogw, Alogh, cos(¢i,¢j),IMUij,rg_1], (1)

where cos(d)i, (j)]) is cosine similarity of head features, IMU;; is the residual after compensating
rotation/translation using IMU, and r{_; is the previous-frame reliability (bootstrapped as qi_; at
t=1).

Message passing. Two or three layers of edge-aware attention update node embeddings and
produce edge affinities s;; = MLPe([hé_luhi”(S‘ij]).

Sinkhorn assignment with null. We form costs C;; = —s;j, append a null column to allow
unmatched anchors, and compute a doubly-stochastic soft assignment:
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C
P = Sinkhorn (— ;) @

Temperature 7 is annealed during training. Rows with high entropy are treated as uncertain
matches.
Seeding STAT. Soft-matched seeds are

bi =X P;bl, fi = 3;P;o(f}) (3
which replace naive continuation and reduce ID switches.

3.3.  STAT (Step C: spatio-temporal refinement)
Inputs. For a window of T frames, STAT receives matched tokens {f, b}, !, 4}, &}, m;} fori = 1..M
andl =t—-T+1..t.

Temporal block (causal). Per anchor index i we process the sequence with a causal self-
attention/GRU. We add relative positional biases in time to prefer smooth motion:

T

Attm(Q,K,V) = softmax <% + Btime) V.

4)

Spatial block (per frame). For each frame we build a kNN graph among anchors (by center
distance) and run graph attention. Edges are biased by attention similarity and IMU projected motion
to emphasize scene-consistent movement (e.g., anchors on the same object).

Neural motion refinement. A small MLP predicts residuals on top of constant-velocity:

tref = biy + (bi_y —bi_;) + Ab{ . (5)

Optionally we predict an uncertainty ),;(*) from pooled features to quantify confidence.
3.4. Reliability Head (Step D: learning trustworthiness)

Purpose. Identify failed/drifting anchors and down-weightthem in fusion. We aggregate per-anchor
indicators (cls, IoU score, attention prior, temporal consistency, matching entropy H (P;,) neighbor

agreement) and predict 7} = ¢ (M LPr(hz')). Targets are soft labels derived from IoU to ground truth;

we also apply focal reweighting to emphasize ambiguous anchors.
3.5. Consensus Head (Step E: fusing anchors into a robust box)

Softmax fusion:

wi = softmax(Bisi + B2qi + Bari), ©
) o 7
b; = Zwé 2,ref : ?

i

Uncertainty-aware variant (optional). If STAT predicts ),;(*), we can use precision-weighted

averaging: b{ = (ZiWtizi_l)_l(ziwtizi_lbé,ref)-
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3.6. Losses and Objectives

Detection loss combines QFL, GloU+L1, and IoU-score losses. Reliability uses soft targets y}f =
clip ((IoU(bf:, bfT) - Tl)/(‘ch - 1), 0,1) with BCE. Consensus loss penalizes ||b; — bfT”1 + GloU.

Temporal smoothness penalizes second-order center differences. AM-GNN uses assignment cross-
entropy on P with GT bipartite labels. The total loss is £ = AgetLget + AconsLeons T AretLrer +

Atemthemp + Amatchﬁmatch-
End-to-end training and inference algorithms we can see on Figer 3-4.

Algorithm 1 End-to-end Training with AM-GNN + STAT +
Consensus

oWy

e N

Sample clip (t—T+1,..., t), template =z, searches
Te—7r41:4 IMU my oy,

: Backbone+Heads — per-frame anchors: ¢(f), b, s, g, c.

for {=t—-T+2totdo
Build pruned bipartite graph (£/—1 <> £); AM-GNN —
PI~ 1—£- 3 2
Soft seeds: b, fe < Pr—1-¢.
end for
STAT over window — refined b ;.

: Predict 7} and consensus weights w;; output b}.
. Compute losses: detection, matching, reliability, consensus,

temporal smoothness.

: Update parameters with AdamW (cosine LR, weight

decay).

Figure 3: End-to-end training algorithm.

Algorithm 2 Inference with AM-GNN + STAT + Reliability-
Consensus

1:

oW

Inputs: template z, search frames x)..., IMU m;..
window T, anchors M, neighbors k.

: Initialize track state S with first-frame anchors; set relia-

bility 7] « g}.

: for each new frame t = 2,3, ... do

Run  backbone+heads on (z,z;) to  get
B(F5), bl sk gt .- |

Build tokens a} with IMU m, and motion deltas Abj.

Prune candidates by IMU-stabilized motion gate (keep
top-k per prior anchor).

AM-GNN — soft assignment P;_;_.; (Sinkhorn, with
null column). o

Soft-seed matched anchors: bi, ff — Py,

Causal STAT update on window (t—7'+1:t) to produce

b;.ref'
Reliability head — r}; compute weights wi; output b}.
if max; w] > Teons and H(P: 1 ) < Tentropy then
Update template bank / feature memory with current
crop.
else
Keep previous template to avoid drift (no update).
end if
Maintain deque of last 7" frames in &; drop oldest.
: end for

Figure 4: Inference algorithm.

3.7. Inference Schedule (Step G) and Complexity

Per frame: (1) run backbone+heads, (2) form tokens, (3) AM-GNN match to previous anchors, (4)
STAT update (one-step causal), (5) reliability and consensus to output bf, (6) update template bank
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when confidence is high. We track M < 64 anchors, k = 8 neighbors, T = 8frames; AM-GNN uses
2-3 layers and Sinkhorn with 5-7 iterations. On Jetson Orin NX (FP16), the added overhead over a
TinyViT/MixFormerTiny backbone is ~1-2 ms, keeping 60-90 FPS for 256-288 px search inputs
(Table 1).

Dynamic Template Policy.: We maintain a short-term EMA template zg) 4and a keyframe bank
M = {(zx, t;)}E_,, with a small distractor bank N (hard negatives). Leti* = argmax; w},c, =
max; wi, H, = —XjPijlogPyj, IoU, = IoU(b{,b;_;). We allow template updates iff ¢, >
Teonfr Ht < Tentropy, 10Us = Tgqp, $PP1 — s'°P2 > 1. Then we update the EMA template by
Zgma < NZgya + (1 —n)fE and add a new keyframe if max;, cos(zk,ﬂi*) < Tg4ip (pruning by TTL
or redundancy). During LOST, memory is frozen. For scoring, we use a soft mixture Z; = agzZgyq +
Yk Az, a = softmax(g)with g a cosine-similarity scoring function, and suppress candidates
similar to negatives in V..

Table 1
Default hyperparameters and deploy-time knobs. Values are for Jetson Orin NX @ 256-288 PX
search inputs

Parameter Symbol Default
Anchors per frame M 64
Temporal window T 8

Spatial neighbors kM 8
Token/Hidden dim d 128
Sinkhorn iterations Nsink 6

Sinkhorn temperature T 0.2
Consensus weights (B1, B2, B3) (0.5,0.3,0.2)
Conf. threshold Teonf 0.6
Entropy threshold Tentropy 1.2
Stability threshold Tstab 0.4
Score margin Tps 0.15
Diversity threshold Taiv 0.85
EMA decay n 0.9
Keyframe bank size K 5
Template TTL (frames) TTL 150
Re-init after LOST L 12
(frames)
L?;rg;rrf\{gte — 3 X 10™*(cosine)
Weight decay — 5x 1072

3.8. Neural Network Architectures & Variants

Backbone (feature extractor): we target embedded deployment and propose three interchangeable
families. (i) Windowed ViT-tiny with 4 stages and patch sizes {4, 2, 2, 2}; depths [2, 2, 6, 2]; embed dims
[64, 128, 192, 256], MHSA heads [2, 4, 6, 8] with local windows (no deformable attention). (ii) Hybrid
Conv-Attention blocks (ConvNeXt-style depthwise convs + lightweight MHSA) for high throughput.
(iii) Pure CNN fallback (ConvNeXt-Tiny) when attention is budget-constrained. All backbones
output multi-scale features to the heads; we keep the search resolution at 256320 px.

Heads (dense proposals): classification head predicts anchor scores si; regression head
predicts(Ax, Ay, Alogw, Alog h); ToU head predicts qi. Each head is an MLP/conv tower with two
hidden layers of width d. An attention-prior map a, is derived from the last backbone stage and
pooled over anchor regions.
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Anchor Tokenizer: for each top-M proposal we concatenate (l)( fti) with geometry, motion deltas,
scores, attention priors, and IMU embedding. A linear layer projects to d with LayerNorm.

AM-GNN (matching): two to three layers of edgeaware graph attention on a bipartite
graph(t — 1) <> t; edge MLP hidden sizes [d, d]; node MLP hidden sizes [d, 2d]. We use k candidate
edges per node and perform 5-7 Sinkhorn iterations with temperature 7 € [0.15,0.3] and a null
column for unmatched anchors.

STAT (temporal/spatial refinement): a causal temporal transformer (2 layers, 4 heads, FFN size
2d) per anchor index, followed by a spatial k-NN graph attention (2 layers) per frame. A motion head
predicts residuals on top of a constant-velocity prior. Optionally, a covariance head produces
diagonal X, for uncertainty-aware fusion.

Reliability & Consensus: reliability head - MLP with widths [d, %, 1] and sigmoid; inputs include

s,q,a, temporal consistency, matching entropy, neighbor agreement. Consensus converts (S, q, r) to
weights via a learned softmax (or precision-weighted).

Quantization & deployment: use post-training static quantization (INT8) for heads and MLPs;
keep attention in FP16. Export with ONNX—TensorRT; fuse LayerNorm and linear layers where
possible. Limit M < 64,k < 8,T < 8 for 60 FPS on Jetson-class SOCs.

Recovery cycle: a low-confidence/high-entropy state triggers a prior-only mode (STAT with IMU
and neighbor flow), then controlled re-acquisition via AM-GNN and final refinement by consensus
before resuming tracking.

Model Variants: we provide three sizes that share code and differ only by d, depth, and window
sizes. Module dimensions (defaults): unless otherwise stated we use d = 128, MLP FFNs with
expansion 2d, attention heads h = 4, Sinkhorn iterationsng;,; = 6, temperature T = 0.2.

4. Experiments

To evaluate the effectiveness of our proposed approach, we conducted extensive experiments on
standard benchmark datasets and compared the results against several state-of-the-art object
tracking algorithms.

Anchorformer-UAV model variants on Table 2. Depths refer to (temporal/spatial) stat layers.
Targets are guidance for embedded deployment.

Table 2

Anchorformer-UAV model variants
Variant Backbone d  STAT (T/S) AM'LG NN (M, T, k)
Nano (N) Windowed ViT-tiny 96 (2/2) 2 (48, 6, 6)
Tiny (T) Hybrid Conv-Attn 128 (2/2) 2 (64, 8, 8)
Small (S) Windowed ViT-small 160 (3/2) 3 (80, 8, 8)

We tested our method on three widely used datasets that cover diverse domains and levels of
difficulty: OTB-100 - a classical benchmark for short-term object tracking; LaSOT - a large-scale long-
term tracking dataset with over 1,400 sequences; GOT-10k - a diverse dataset with unseen object
categories to test generalization.

As baselines, we selected both traditional and recent deep learning-based models, with emphasis
on transformer-based trackers: STARK, TransT, OS-Track, MixFormer, MixFormerV2, SiamRPN++,
DiMP, and ECO. Performance was evaluated using standard metrics such as Precision, Recall, F1-
score, and mean Intersection-over-Union (mlIoU).

Table 3 summarizes the experimental results. Our approach consistently outperforms competing
methods across all benchmarks. On OTB-100, our method achieved an mloU of 0.87, surpassing
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OSTrack (0.84) and MixFormer (0.83). On LaSOT, our F1-score reached 0.92, which is a significant
improvement compared to MixFormerV2 (0.88). On GOT-10k, we reduced false positives by 17%
relative to DiMP and ECO.

Table 3
Comparison of performance between our method and state-of-the-art trackers across benchmark
datasets

Method Precision Recall F1-score mloU
ECO 0.78 0.74 0.76 0.70
DiMP 0.81 0.78 0.79 0.75
SiamRPN++ 0.86 0.81 0.83 0.82
STARK 0.88 0.84 0.86 0.83
TransT 0.87 0.83 0.85 0.81
OSTrack 0.89 0.86 0.87 0.84
MixFormer 0.88 0.85 0.86 0.83
MixFormerV2 0.90 0.87 0.88 0.85
P&‘;‘:ﬁiedd 0.91 0.89 0.92 0.87

4.1. Ablation Study: IMU Contribution

To quantify the performance gain from IMU integration, we conducted ablation experiments by
systematically removing the IMU stream from our pipeline. Table 4 shows results with and without
IMU priors on UAV-specific benchmarks (UAV123 and UAVDT).

Table 4

Ablation study on IMU contribution. Results reported as Success (AUC) / Precision

Configuration UAV123 UAVDT

Full Model (with IMU) 0.71/0.89  0.68/0.86

Without IMU encoding (m;) 0.67/0.85 0.64/0.82

Without IMUin AM-GNN (IMU;;)  0.68/0.86  0.65/0.83

Without IMU in STAT spatial 0.69/0.87 0.66/0.84

No IMU (all removed) 0.65/0.83 0.62/0.80

The results demonstrate that IMU integration provides substantial performance gains: removing
all IMU components reduces AUC by 6% on both benchmarks. The token-level IMU embedding (m;)
contributes 4% improvement, the IMU-stabilized matching in AM-GNN adds 3%, and IMU-projected
motion biases in STAT provide 2% gain. These gains are most pronounced during fast motion and
aggressive camera maneuvers, where inertial priors effectively compensate for ego-motion and
stabilize anchor matching.

4.2. Discussion

Treating anchors as sequences and fusing them by learned reliability yields stable boxes under fast
motion and clutter. GNN matching reduces association errors, especially when appearance changes
abruptly; soft assignments enable graceful handling of uncertainty. IMU priors improve gating and
attention focusing during aggressive maneuvers. Design for deployability (bounded M, k,T,
Sinkhorn iters, and no deformable attention) keeps the model fast and stable on embedded hardware.

Consensus may over-smooth thin/elongated targets; AM-GNN adds ~1-2 ms latency (tunable via
M, k,T). Test-time adaptation must be rate-limited to avoid drift. Reliance on IMU assumes
synchronization; if unavailable, we fall back to visual motion cues.
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Multi-modal fusion (RGB+thermal), shared STAT across multiple objects for MOT, language-
conditioned tracking, and coupling with SLAM (map priors) for long-term stability.

5. Conclusion

We introduced AnchorFormer-UAV, a novel tracking framework that unifies temporal anchor
modeling, graph neural matching, reliability prediction, and consensus fusion in a single
differentiable pipeline. This design directly addresses UAV-specific challenges including ego-motion,
occlusion, and small fast-moving targets, while remaining deployable on embedded hardware such
as Jetson-class platforms.

Our key contributions include: treating anchors as temporal entities augmented with appearance,
geometry, motion, attention, and IMU features; AM-GNN for robust inter-frame matching using
Sinkhorn-based soft assignments; STAT for spatio-temporal refinement; and a learned reliability
mechanism that identifies and down-weights failed anchors during consensus fusion.

Experimental evaluation on standard benchmarks (OTB-100, LaSOT, GOT-10k) and UAV-specific
datasets (UAV123, UAVDT) demonstrates consistent improvements over state-of-the-art trackers.
Our method achieved an mloU of 0.87 and F1-score of 0.92, outperforming recent transformer-based
approaches. The ablation studies confirm that IMU integration provides substantial benefits,
contributing up to 6% improvement on UAV benchmarks, with the most significant gains observed
during fast motion and aggressive camera maneuvers. The modular architecture enables flexible
deployment across three model variants (Nano, Tiny, Small) to balance accuracy and computational
constraints while maintaining 60-90 FPS throughput.

This work establishes promising directions for future research, including multi-modal fusion with
thermal and LiDAR sensors, extension to multi-object tracking scenarios where STAT can provide
shared temporal reasoning, language-conditioned tracking for flexible target specification, and
coupling with SLAM systems for long-term stability. The detailed methodology and implementation-
ready specifications facilitate reproducibility and practical adoption. AnchorFormer-UAV provides a
solid foundation for advancing embedded Al-powered UAV tracking systems.

Declaration on Generative Al

The authors have not employed any Generative Al tools.
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