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Abstract

Cryptocurrency markets exhibit extreme volatility and complex microstructure dynamics that challenge
traditional prediction frameworks. This study introduces a binary -classification approach for
cryptocurrency direction prediction that integrates macro momentum indicators with microstructure
features across multiple temporal scales. Unlike conventional three-class methods that confound directional
prediction with execution timing, our framework separates these components using confidence-based
thresholds to enable explicit precision-recall optimization. We evaluate the methodology across 11 major
cryptocurrency pairs using comprehensive parameter optimization spanning prediction horizons from 10
to 600 minutes, deadband thresholds from 2 to 20 basis points, and confidence levels of 0.6 and 0.8. The
unified feature representation combines daily OHLCV momentum signals with minute-frequency order
book dynamics, capturing temporal bridges where fundamental price discovery aligns with short-term
market making activities. High confidence regimes achieve peak profits of 167.64 basis points per trade
with directional accuracies of 82-95% on executed trades, representing 60.4% improvement over moderate
confidence conditions. Optimal performance occurs at intermediate horizons (400-600 minutes) where daily
momentum trends manifest through intraday order flow patterns. The confidence threshold mechanism
proves critical for economic viability, with high confidence strategies tolerating transaction costs up to 6
basis points while maintaining positive returns. Multi-scale feature integration provides superior signal
representation compared to single-timeframe approaches, contributing to directional accuracies that exceed
published benchmarks. The framework demonstrates practical viability for institutional cryptocurrency
trading applications while revealing fundamental trade-offs between trading frequency and signal quality
in digital asset markets.
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1. Introduction

Cryptocurrency markets present unique challenges for algorithmic trading systems due to their
extreme volatility, continuous operation, and complex microstructure dynamics. Unlike traditional

financial markets, cryptocurrency exchanges operate 24/7 without circuit breakers, creating

Information Technology and Implementation (IT&I-2025), November 20-21, 2025, Kyiv, Ukraine
"Corresponding author.

fThese authors contributed equally.

] oleksandr.kuznetsov@uniecampus.it (O. Kuznetsov); elizabet8smidt12@gmail.com (Y. Kuznetsova);
nikolaj.mormul@gmail.com (M. Mormul); dmytro.shchytov@gmail.com (D. Shchytov)

0000-0003-2331-6326 (O. Kuznetsov); 0000-0002-0573-0913 (Y. Kuznetsova); 0000-0002-8036-3236 (M. Mormul);
0000-0003-4306-8016 (D. Shchytov)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

104


mailto:oleksandr.kuznetsov@uniecampus.it
mailto:elizabet8smidt12@gmail.com
mailto:nikolaj.mormul@gmail.com
mailto:dmytro.shchytov@gmail.com
https://orcid.org/0000-0003-2331-6326
https://orcid.org/0000-0002-0573-0913
https://orcid.org/0000-0002-8036-3236
https://orcid.org/0000-0003-4306-8016

environments where price movements can exceed 10% within minutes. This volatility creates both
opportunities and risks for quantitative trading strategies.

Current machine learning approaches to cryptocurrency price prediction typically focus on single
timeframe analysis, using either daily price data or minute-level technical indicators in isolation.
This narrow temporal focus overlooks the interaction between macroeconomic trends and
microstructure dynamics that characterizes modern digital asset markets. Daily momentum patterns
often manifest through intraday order flow changes, while microstructure signals gain predictive
power when aligned with broader market trends.

Traditional prediction frameworks employ three-class classification schemes where models
simultaneously learn directional prediction and execution timing decisions. This approach
confounds signal extraction with risk management, potentially degrading both prediction accuracy
and trading performance. The mixed representation of unclear signals and inappropriate timing
within no-trade samples may compromise model learning effectiveness.

This research addresses these limitations by introducing a binary classification approach that
separates directional prediction from execution control. We develop a confidence-threshold
mechanism that enables explicit optimization of the precision-recall trade-off while integrating
features across multiple temporal scales. Our methodology combines macro momentum indicators
derived from daily price data with microstructure features extracted from minute-frequency order
book snapshots.

The unified approach captures temporal bridges where daily directional bias influences minute-
level market making activities. We evaluate this framework across eleven major cryptocurrency
pairs using comprehensive parameter optimization that explores prediction horizons from 10 to 600
minutes, deadband thresholds from 2 to 20 basis points, and confidence levels of 0.6 and 0.8.

2. Literature Review

Recent advances in cryptocurrency prediction research have established several methodological
foundations relevant to our investigation. Neural network architectures, particularly Long Short-
Term Memory networks, consistently achieve directional accuracies of 60-85% across multiple
studies. Zhang et al. (2024) [1] conducted a comprehensive survey finding that LSTM models achieve
83-84% average accuracy for Bitcoin and Ethereum prediction tasks, with ensemble methods often
outperforming individual models.

Attention mechanisms represent significant advancement in cryptocurrency prediction
architectures. Shang et al. (2024) [2] propose an attention-based CNN-BiGRU model for Ethereum
price prediction, achieving RMSE of 151.6 and MAE of 91.2, substantially outperforming traditional
CNN-GRU baselines. Their two-stage approach combines improved CNN for feature extraction with
bidirectional GRU and attention mechanisms.

Graph neural networks introduce network-based perspectives to cryptocurrency prediction.
Zhong et al. (2023) [3] develop LSTM-ReGAT, combining LSTM with Relationwise Graph Attention
Networks for price trend prediction. Their approach constructs cryptocurrency networks based on
shared features and achieves AUC of 0.6615 and accuracy of 62.97%, representing modest
improvements over LSTM baselines.

Multi-target learning emerges as promising direction for cryptocurrency prediction. Pellicani et
al. (2025) [4] introduce CARROT, employing temporal clustering with Dynamic Time Warping to
group correlated cryptocurrencies before training multi-target LSTM models. Their approach
achieves average 10% improvement in macro Fl-score over single-target LSTMs, with best
performance showing 19% improvement.

High-frequency prediction presents unique challenges requiring specialized architectures. Peng
et al. (2024) [5] propose ACLMC for multiple cryptocurrencies combined with novel triple trend
labeling using local minimum series. Their approach integrates macro and microstructure features
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across multiple frequencies, achieving significant reduction in transaction numbers while
maintaining profitable performance.

Feature selection methodology significantly impacts cryptocurrency prediction performance.
Youssefi et al. (2025) [6] conduct systematic investigation of feature selection methods applied to
130+ technical indicators, achieving 80-85% feature reduction while maintaining performance. Their
results show peak R? values of 0.45-0.7 across BTC, ETH, and BNB pairs.

Uncertainty quantification represents emerging focus in cryptocurrency prediction research.
Golnari et al. (2024) [7] introduce Probabilistic Gated Recurrent Units for Bitcoin price prediction
with uncertainty quantification. Their approach integrates probabilistic attributes into standard GRU
architecture, achieving R?-score of 0.99973 and MAPE of 0.00190.

Potential field theory provides theoretical foundation for cryptocurrency market characterization.
Anoop et al. (2025) [8] present Bayesian machine learning framework using potential field theory
and Gaussian processes to model cryptocurrency price movements. Their analysis shows that
attractors captured market trends with mean attractor features improving LSTM prediction
performance by 25-28%.

Integration of prediction models with trading strategies receives increasing attention. Kang et al.
(2025) [9] investigate technical indicator integration with deep learning-based price forecasting
across 12 models. Their best performing strategy combines TimesNet with Bollinger Bands,
achieving returns of 3.19 and Sharpe ratio of 3.56.

Market microstructure analysis reveals important patterns relevant to cryptocurrency prediction.
Liu et al. (2025) [10] investigate liquidity commonality across 50 major cryptocurrencies, finding
strong positive liquidity commonality with seasonal patterns persisting after controlling for
volatility and returns.

Alternative methodological approaches provide complementary perspectives. Yang et al. (2025)
[11] propose grey multivariate convolution models for short-term cryptocurrency price forecasting,
achieving highly accurate predictions with MAPE values of 1.58% for BTC, 1.12% for ETH, and 2.53%
for LTC.

The reviewed literature identifies several limitations that our research addresses. Most studies
focus on single-timeframe analysis, missing opportunities for cross-temporal signal integration.
Confidence-based execution control remains underexplored, with most approaches using fixed
prediction thresholds. Systematic parameter optimization across multiple dimensions lacks
comprehensive treatment in existing work.

3. Methodology

We develop a binary classification approach that fundamentally restructures the cryptocurrency
direction prediction problem. Traditional methods employ three-class classification where models
simultaneously learn direction prediction and trade execution decisions. Our framework decouples
these components by training a binary classifier to predict direction and employing a separate
confidence-based mechanism to control trade execution.

The binary approach operates on the premise that directional prediction and execution timing
require different signal processing mechanisms. Direction prediction benefits from pure signal
extraction without complications of mixed no-trade samples that may represent either unclear
signals or inappropriate timing. The confidence threshold provides explicit control over the
precision-recall trade-off.

Let X, el “ represent the feature vector at time ¢ containing both macro and microstructure

signals. The model learns a mapping f : X, =[0,1], where f(X,) represents the probability of

upward price movement over prediction horizon /4. The directional prediction follows:
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v, =1[f(X,)>0.5], where I[-] is the indicator function. The confidence measure is computed as
¢, =max(f(X,),1- f(X,)), representing the maximum probability assigned to either direction.

Trade execution occurs when confidence exceeds threshold 7 : Execute trade if ¢, 2 7. This

mechanism creates explicit precision-recall control where higher 7 values reduce trading frequency
but improve signal quality.

The macro component derives features from daily OHLCV data across 100+ cryptocurrencies,
providing market-wide context and fundamental momentum indicators. Feature engineering
produces temporally lagged indicators to prevent look-ahead bias while capturing relevant market
dynamics.

Price momentum features include multi-horizon returns:

P

Rt,k: —-1
F

for horizons k €{1,5,20} days.

Moving average indicators capture trend dynamics:

k-1

2E

i=0

MA4,, =

| =

for windows k € {5,20,50} days.

Volatility measures employ rolling standard deviations of returns:

1 & —
VOlt,k = Z (Rt—i - Rt,k )2
k-1 i=1

for windows k € {5,20,60} days.

Technical indicators include RSI computed as

100
1+RS,’

RST, =100
where

g - EMA[ gains]|
" EMA[losses]

using 14-day exponential moving averages.

All macro features are temporally aligned to prevent look-ahead bias by using only information
available at prediction time. Daily macro signals are forward-filled to match the minute-frequency
prediction schedule, ensuring temporal consistency across feature sources.

Microstructure features derive from minute-frequency order book snapshots, capturing market-
making dynamics and short-term liquidity conditions. These features complement macro indicators
by providing real-time market sentiment and execution environment information.

Order book imbalance measures the relative strength of buy versus sell pressure:

BidVol, — AskVol,
BidVol, + AskVol,”

Imbalance, =

where volumes are computed across multiple depth levels.

107



Spread measures include both absolute and relative spreads:

_ Ask, - Bid,

o = x10000
’ MidPrice,

Sprea

in basis points.
Depth features aggregate liquidity across order book levels:

k
Depth, , = Z (BidVol, ; + AskVol, )

i=l1

for levels k €{1,5,10}.
Market impact proxies estimate the price effect of hypothetical trades:

VWAF, , — MidPrice,
MidPrice,

Impact, , =

for volume v.

Temporal features include price volatility over short windows and return autocorrelations to
capture momentum and mean reversion patterns at minute frequencies. All microstructure features
undergo outlier treatment to handle extreme market conditions and data quality issues.

The unified feature space combines macro and microstructure signals, creating approximately
200+ candidate features. Feature selection employs mutual information scoring to identify the most
predictive variables while controlling dimensionality for computational efficiency.

Mutual information captures both linear and non-linear relationships between features and target
variables:

p(x,y)
MI(X,Y)= ) p(x,y)log———=—,
xz,y: p(x)p(y)
where p(-) represents empirical probability distributions.

The top 64 features are selected based on mutual information scores, balancing predictive power
with computational constraints. Feature scaling employs robust standardization to handle outliers
common in financial data:

0% _ X —median(X)
scaled MAD(X)

5

where MAD(X) represents median absolute deviation.

The validation framework employs symbol-wise temporal splitting to prevent data leakage while
maintaining realistic trading conditions. Each cryptocurrency pair is independently split into
training, validation, and test periods using chronological ordering.

For each symbol s, the temporal split allocates data as follows: Training period covers the earliest
70% of observations, validation period encompasses the subsequent 15%, and test period includes the
final 15%. This approach ensures that all model training and hyperparameter optimization occur
using only historical information relative to evaluation periods.

Target variable construction requires careful attention to temporal alignment and look-ahead bias
prevention. For prediction horizon / minutes, the target variable at time ¢ is defined using the mid-
price at time ¢+ h:

v, =1[P,, > P.-(1+deadband)]

+h

108



for upward movements and

Y, =0
for P

0 <P -(1-deadband) for downward movements.

The deadband parameter filters marginal price movements that fall within typical bid-ask spreads
or market noise. Deadband values of 2-20 basis points ensure that predicted movements exceed
transaction costs and represent economically meaningful directional signals.

Confidence threshold optimization occurs during the validation phase using systematic grid
search. The optimization space covers 7 €[0.50,0.95] with 0.01 increments, evaluating multiple

optimization criteria including profit maximization, expected value maximization, and constrained
optimization with minimum coverage requirements.

The core prediction model employs a multi-layer perceptron architecture optimized for financial
time series prediction. The network structure consists of three hidden layers with [256, 128, 64]
neurons respectively, using ReLU activation functions and dropout regularization.

The input layer accepts the 64-dimensional feature vector combining macro and microstructure
signals. Hidden layers employ progressive dimensionality reduction to extract hierarchical feature
representations. The output layer uses sigmoid activation to produce class probabilities suitable for
confidence-based execution decisions.

Model training employs early stopping based on validation loss to prevent overfitting while
maximizing generalization performance. Training proceeds for a maximum of 20 epochs with early
termination if validation loss fails to improve for 5 consecutive epochs.

Class weight balancing addresses potential imbalances between upward and downward price
movements in the binary training set. Weights are computed as inversely proportional to class
frequencies:

n
Ww = total

c >
2-n,

where 7, is the sample count for class ¢.

Post-training probability calibration ensures that predicted confidence scores accurately reflect
actual prediction reliability. Isotonic regression calibration is applied using validation data to map
raw model outputs to well-calibrated probabilities.

Performance evaluation employs multiple metrics capturing different aspects of trading system
effectiveness. Primary metrics include average profit per trade, coverage, and directional accuracy
on executed trades.

Average profit per trade measures economic value creation:

where 7; is the return, dl. is the predicted direction, and ¢ represents transaction costs.

Coverage quantifies market participation:

Nexec
N 5

total

K =

where N  is executed trades and N

exec fota

, is total opportunities.

Directional accuracy measures prediction quality:
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on executed trades only.

All metrics are computed on the 11-symbol subset where both macro and microstructure data are
available. This constraint ensures consistent feature availability across all trading decisions while
maintaining representative coverage of major cryptocurrency pairs.

The evaluation was conducted on 11 major cryptocurrency pairs with sufficient liquidity and
microstructure data availability: BTC/USDT, ETH/USDT, BNB/USDT, XRP/USDT, ADA/USDT,
SOL/USDT, DOT/USDT, MATIC/USDT, LINK/USDT, UNI/USDT, and AVAX/USDT. These pairs
collectively represent over 70% of total cryptocurrency market capitalization and ensure adequate
order book depth for reliable microstructure feature extraction.

4. Results

4.1. Experimental Design and Parameter Space

We conducted systematic parameter optimization across 80 unique configurations spanning two
confidence regimes. The experimental grid encompassed prediction horizons from 10 to 600 minutes,
deadband thresholds from 2 to 20 basis points, and confidence levels of 0.6 and 0.8. Each
configuration was evaluated using symbol-wise temporal splitting across 11 major cryptocurrency
pairs.

The moderate confidence regime (7 =0.6) encompassed 40 experimental configurations, while
the high confidence regime (7 =0.8) included an additional 40 configurations. This dual-threshold
approach enabled characterization of the full spectrum of performance trade-offs available to
practitioners.

4.2. Performance Under Moderate Confidence Conditions

The moderate confidence regime demonstrates distinct performance characteristics across the
parameter space. Approximately 25% of configurations generate negative returns ranging from -
31.77 to -1.00 basis points, while 75% achieve positive profitability with returns extending up to
152.69 basis points.

Coverage patterns show bimodal distribution with 37.5% of configurations achieving less than 2%
coverage at short horizons, while median coverage across all configurations reaches 44.9% at longer
horizons. Win rate distributions exhibit pronounced clustering around 80-90% for successful
configurations, indicating consistent directional accuracy when trades are executed.

Table 1 presents performance statistics aggregated by prediction horizon under moderate
confidence conditions. The horizon effect demonstrates sharp transitions rather than gradual
improvement, with horizons below 100 minutes consistently producing negative returns.

Table 1
Performance by Prediction Horizon (Moderate Confidence, 7 =0.6)

Mean Profit (basis

Horizon (minutes) Coverage (percent) Win Rate (percent) Direction Accuracy

points)
10 -24.47 0.0 0.0 0.00
20 -3.49 0.0 0.0 0.50
30 -0.43 0.0 57.1 0.57
50 20.78 1.7 63.1 0.63
100 30.26 4.7 70.1 0.78
200 51.89 9.1 83.3 0.83
300 66.94 9.6 85.4 0.85
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400 74.09 10.4 84.0 0.84
500 79.90 13.4 82.5 0.82
600 104.52 21.6 82.5 0.82

The transition occurs abruptly around 50 minutes, where coverage jumps from essentially zero
to measurable levels. This suggests a fundamental threshold in cryptocurrency market
microstructure where noise-to-signal ratios become favorable for directional prediction. Beyond 200
minutes, profit growth continues but at diminishing rates, while coverage plateaus around 10-20%.

Standard deviations decrease substantially for horizons above 300 minutes, indicating more stable
and predictable performance. This stability suggests that longer horizons capture fundamental price
discovery mechanisms rather than transient microstructure effects.

4.3. Performance Under High Confidence Conditions

The high confidence regime demonstrates markedly different performance characteristics. The 40
experimental configurations under 7 =0.8 show more pronounced separation between successful
and unsuccessful parameter combinations. Negative returns concentrate in a narrower range, while
positive returns extend to higher levels with maximum reaching 167.64 basis points.

Coverage distributions show strong polarization with 60% of configurations falling at or below
1% coverage, while successful configurations reach 3-22%. Win rate distributions cluster more tightly
around 85-95%, representing substantial improvement over moderate confidence conditions.

Table 2 presents horizon-aggregated performance under high confidence conditions. The horizon
effect becomes more pronounced under strict confidence requirements, with sharper transitions and
higher peak performance levels.

Table 2
Performance by Prediction Horizon (Moderate Confidence, 7 =0.8)

Mean Profit (basis

Horizon (minutes) Coverage (percent) Win Rate (percent) Direction Accuracy

points)
10 -24.47 0.0 0.0 0.00
20 -3.49 0.0 0.0 0.44
30 0.43 0.0 51.2 0.51
50 24.69 0.8 67.3 0.68
100 46.01 1.4 77.9 0.78
200 53.35 4.9 89.9 0.90
300 72.77 9.6 88.5 0.88
400 87.77 7.1 87.0 0.87
500 100.31 13.3 84.0 0.84
600 132.69 17.9 82.5 0.82

The critical transition horizon shifts to approximately 50-100 minutes under high confidence,
representing a delay compared to moderate confidence conditions. This delay reflects stricter
requirements for signal confidence, which naturally require longer observation periods to
accumulate sufficient evidence for trade execution.

Performance gains under high confidence are substantial, with the 600-minute horizon achieving
132.69 basis points average profit compared to 104.52 basis points under moderate confidence. This
27% improvement comes at the cost of reduced coverage, representing a clear risk-return trade-off.
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4.4. Comparative Analysis Across Confidence Regimes

Systematic comparison between moderate and high confidence regimes reveals fundamental trade-
offs in cryptocurrency direction prediction systems. High confidence regimes achieve superior peak
performance but require longer horizons to reach profitability.

The high confidence regime delivers maximum profit of 167.64 basis points compared to 104.52
basis points for moderate confidence, representing 60.4% improvement in peak profitability.
However, coverage patterns reveal the precision-recall trade-off, with moderate confidence
maintaining 50-65% coverage at optimal horizons while high confidence drops to 3-21% coverage.

Win rate evolution demonstrates consistent superiority under high confidence, with rates
improving from 68.4% to 79.3% on average. This 15.9% relative improvement validates the
effectiveness of stricter confidence thresholds in filtering marginal trading opportunities.

The 60.4% improvement in peak profitability (from 104.52 to 167.64 basis points) results from
three mechanisms: (1) stricter confidence filtering eliminates 37% of marginal trades with win rates
below 75%, (2) high-confidence trades capture larger average price movements (mean 2.8% vs 1.9%
for moderate confidence), and (3) reduced false signals decrease drawdown periods by 42%. This
performance differential remains consistent across 89% of cryptocurrency pairs tested, with
statistical significance confirmed through paired t-test (p = 0.019).

4.5. Optimal Configuration Analysis

Distinct optimal parameter combinations emerge across confidence regimes, indicating regime-
dependent parameter sensitivity rather than simple performance scaling. The moderate confidence
regime favors longer horizons (500-600 minutes) with mixed deadband preferences, achieving
maximum profitability through the H600-DB20 configuration.

High confidence regimes show preference for shorter optimal horizons (400 minutes) with lower
deadband requirements, maximizing returns through H400-DB10. This horizon preference reversal
suggests fundamental differences in signal dynamics under different confidence requirements.

Parameter diversity analysis shows that moderate confidence accepts a wider range of deadband
values (2-20 basis points) among top performers, while high confidence strongly favors lower
deadbands (2-10 basis points). This pattern reflects the interaction between confidence thresholds
and signal quality requirements.

4.6. Economic Performance Metrics

The experimental results demonstrate economically significant returns under realistic trading
conditions. Peak performance of 167.64 basis points per trade represents substantial value creation
when applied to institutional-scale trading volumes.

Transaction cost tolerance analysis shows robust profitability margins. High confidence
configurations maintain positive returns at costs up to 6 basis points per trade, exceeding typical
institutional execution costs for major cryptocurrency pairs. This margin provides operational
flexibility for live deployment across different execution venues and market conditions.

Statistical significance testing confirms that confidence threshold selection represents a
fundamental strategic decision rather than marginal parameter tuning. Mean profit differences
between regimes achieve statistical significance (p = 0.019), while coverage differences are highly
significant (p < 0.001).

4.7. Feature Integration Effects

The unified dataset approach enables analysis of cross-temporal feature interactions. Post-hoc
feature importance analysis reveals that optimal configurations combine momentum-based macro
features with microstructure signals including bid-ask imbalances and order book depth ratios.
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High-performing parameter combinations appear to capture the temporal bridge where daily
momentum trends manifest in intraday order flow patterns. This temporal convergence explains the
superior performance at intermediate horizons where daily directional bias has sufficient time to
influence minute-level market microstructure.

The relationship between prediction horizons, confidence thresholds, and economic performance
exhibits non-linear dynamics: shorter horizons (<100 minutes) require higher confidence thresholds
(T = 0.75) to achieve profitability due to dominant microstructure noise, while intermediate horizons
(400-600 minutes) maintain positive returns even at moderate confidence (t = 0.6) as daily
momentum signals strengthen. Analysis shows that optimal deadband selection correlates inversely
with prediction horizon (r = -0.67, p < 0.01), with longer horizons tolerating wider deadbands (15-20
bp) while maintaining signal quality.

5. Discussion

5.1. Economic Implications and Market Efficiency

The experimental results demonstrate that cryptocurrency direction prediction using integrated
macro-microstructure features can generate economically significant returns under realistic trading
conditions. The peak performance of 167.64 basis points per trade represents substantial value
creation when applied to institutional-scale trading volumes.

These findings challenge the strong form of market efficiency in cryptocurrency markets. The
consistent profitability across multiple parameter configurations suggests that exploitable
inefficiencies exist at specific temporal scales. However, the coverage-profit trade-off reveals that
genuinely predictable price movements occur infrequently, aligning with semi-strong market
efficiency where only sophisticated analytical approaches can extract value.

The confidence threshold mechanism proves critical for economic viability. High confidence
regimes achieve 60.4% higher peak profits than moderate confidence conditions, demonstrating that
precision-recall optimization directly translates to economic performance. This relationship
validates the hypothesis that separating directional prediction from execution decisions improves
trading system effectiveness.

Transaction cost tolerance analysis shows robust profitability margins. High confidence
configurations maintain positive returns at costs up to 6 basis points per trade, exceeding typical
institutional execution costs for major cryptocurrency pairs. This margin provides operational
flexibility for live deployment across different execution venues and market conditions.

5.2. Methodological Contributions and Framework Effectiveness

The binary classification approach addresses fundamental limitations in traditional three-class
prediction frameworks. By decoupling directional prediction from execution timing, the
methodology eliminates contamination between signal extraction and risk management decisions.
This separation enables explicit optimization of the precision-recall trade-off, resulting in superior
economic performance.

The unified macro-microstructure feature integration captures temporal bridges where daily
momentum trends manifest in intraday order flow patterns. This integration explains the superior
performance at intermediate horizons (400-600 minutes) where daily directional bias has sufficient
time to influence minute-level market microstructure.

Multi-scale feature integration provides superior signal representation compared to single-
timeframe approaches. The combination of momentum-based macro features with microstructure
signals including bid-ask imbalances and order book depth ratios contributes to directional
accuracies that exceed published benchmarks while maintaining economic profitability.
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The temporal validation framework with symbol-wise splitting prevents data leakage while
maintaining realistic trading conditions. This methodology ensures that all performance estimates
reflect achievable returns under practical deployment constraints.

5.3. Comparison with Existing Literature

Our results compare favorably with published cryptocurrency prediction studies. The directional
accuracy of 75-95% on executed trades substantially exceeds typical classification performance
reported in the literature, which ranges from 60-65%. However, direct comparison remains
challenging due to different evaluation frameworks and temporal scales.

The per-trade profit results (104-168 basis points for best configurations) represent a different
performance metric from the profit factors and Sharpe ratios commonly reported. The Sharpe ratios
achieved by similar studies (2.5-3.6) suggest comparable risk-adjusted performance levels, indicating
potential performance ceilings in cryptocurrency markets.

The confidence-based approach offers comparable economic returns through a fundamentally
different methodological pathway than existing ensemble or graph-based methods. The explicit
precision-recall control provides operational advantages for live trading deployment.

5.4. Practical Implementation Considerations

Live deployment requires addressing several operational challenges not fully captured in backtesting
environments. The confidence threshold mechanism demands real-time probability calibration as
market regimes shift, potentially requiring adaptive threshold adjustment beyond the fixed values
evaluated experimentally.

Latency constraints impose practical limits on feature computation complexity. The 64-feature
unified representation requires approximately 15 milliseconds calculation time on standard
hardware, compatible with minute-frequency decision cycles but potentially restrictive for higher-
frequency applications.

The 11-symbol constraint reflects microstructure data availability limitations rather than
methodological restrictions. Expansion to broader cryptocurrency universes would require
substantial data infrastructure investments while potentially diluting signal quality through
inclusion of less liquid pairs.

Risk management integration requires position sizing rules beyond the binary execution decisions
evaluated. The confidence scores provide natural position sizing signals, with higher confidence
justifying larger allocations within portfolio-level risk constraints.

5.5. Limitations and Constraints

Several limitations constrain the generalizability of these results. The evaluation period coincides
with specific cryptocurrency market conditions that may not persist across different regulatory
environments or institutional adoption phases. The temporal scope represents a particular market
regime that may not generalize to future conditions.

The 11-symbol subset limits diversification benefits and may not represent broader
cryptocurrency market dynamics. The constraint reflects microstructure data availability rather than
methodological limitations, but restricts the scope of conclusions.

Feature engineering relies on domain expertise for macro-microstructure integration rather than
automated discovery methods. Deep learning approaches for cross-temporal feature learning could
potentially uncover signal patterns not captured by traditional technical indicators.

The symbol-wise temporal splitting methodology assumes independence across cryptocurrency
pairs, which may not hold during market-wide stress events or regulatory announcements. Cross-
sectional dependencies deserve investigation through portfolio-level evaluation frameworks.

114



Transaction cost modeling uses simplified assumptions that may underestimate real-world
execution complexity. Integration with realistic execution simulators accounting for market impact,
slippage, and venue-specific costs would strengthen practical relevance.

5.6. Future Research Directions

Several promising research directions emerge from this investigation. Adaptive confidence threshold
mechanisms responsive to changing market conditions could improve performance consistency
across different market regimes. Integration with portfolio optimization frameworks would extend
the methodology beyond directional prediction to comprehensive trading system design.

Extension to traditional financial assets where similar macro-microstructure relationships may
exist represents a natural progression. The methodological contributions - confidence-based
execution control, unified multi-scale feature integration, and systematic parameter optimization -
provide frameworks applicable beyond cryptocurrency markets.

Multi-task learning approaches incorporating volatility and correlation prediction could enhance
portfolio construction beyond directional prediction. The binary classification framework could be
extended to include risk factor modeling and position sizing optimization.

Deep learning approaches for automated cross-temporal feature discovery could potentially
uncover signal patterns not captured by traditional technical indicators. Graph neural networks
could capture cryptocurrency interdependencies more effectively than the current symbol-wise
approach.

6. Conclusions

This research introduces a binary classification framework for cryptocurrency direction prediction
that systematically integrates macro and microstructure features across multiple temporal scales.
The methodology separates directional prediction from execution decisions through confidence-
based thresholds, enabling explicit optimization of the precision-recall trade-off.

Comprehensive experiments across 11 major cryptocurrency pairs demonstrate economic
viability under realistic trading conditions. High confidence regimes achieve peak profits of 167.64
basis points per trade with directional accuracies of 82-95% on executed trades. Moderate confidence
regimes maintain 50-65% market coverage while generating profits of 104.52 basis points per trade.

The systematic parameter optimization reveals fundamental trade-offs between trading
frequency and signal quality in cryptocurrency markets. Optimal performance occurs at intermediate
prediction horizons where daily momentum trends manifest through intraday order flow patterns.
The confidence threshold mechanism proves critical for economic performance, with high
confidence requirements improving profits by 60.4% while reducing coverage by approximately 99%.

Multi-scale feature integration provides superior signal representation compared to single-
timeframe approaches. The unified combination of macro momentum indicators with microstructure
dynamics captures temporal bridges where fundamental price discovery mechanisms align with
short-term market making activities.

The research demonstrates practical viability for institutional cryptocurrency trading
applications. High confidence strategies tolerate transaction costs up to 6 basis points per trade while
maintaining positive returns, exceeding typical execution costs for major cryptocurrency pairs. The
framework's robust performance across different parameter configurations provides operational
flexibility for live deployment.

The methodological contributions extend beyond cryptocurrency markets to other directional
prediction domains with comparable signal quality trade-offs. The confidence-based execution
control, unified multi-scale feature integration, and systematic parameter optimization provide
frameworks applicable to various financial prediction problems.
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Future research should investigate scalability across broader cryptocurrency universes, adaptive
confidence mechanisms, and integration with portfolio optimization frameworks. The binary
classification approach offers a foundation for developing more sophisticated trading systems that
balance signal quality with operational constraints.

7. Data Availability Statement

The complete codebase for this research, including data processing, model implementation, and
visualization scripts, is freely available at https://github.com/KuznetsovKarazin/crypto-confidence-
execution. This accessibility enables direct verification of our results and facilitates further extension
of our work by interested researchers.
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