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Abstract 
Cryptocurrency markets exhibit extreme volatility and complex microstructure dynamics that challenge 
traditional prediction frameworks. This study introduces a binary classification approach for 
cryptocurrency direction prediction that integrates macro momentum indicators with microstructure 
features across multiple temporal scales. Unlike conventional three-class methods that confound directional 
prediction with execution timing, our framework separates these components using confidence-based 
thresholds to enable explicit precision-recall optimization. We evaluate the methodology across 11 major 
cryptocurrency pairs using comprehensive parameter optimization spanning prediction horizons from 10 
to 600 minutes, deadband thresholds from 2 to 20 basis points, and confidence levels of 0.6 and 0.8. The 
unified feature representation combines daily OHLCV momentum signals with minute-frequency order 
book dynamics, capturing temporal bridges where fundamental price discovery aligns with short-term 
market making activities. High confidence regimes achieve peak profits of 167.64 basis points per trade 
with directional accuracies of 82-95% on executed trades, representing 60.4% improvement over moderate 
confidence conditions. Optimal performance occurs at intermediate horizons (400-600 minutes) where daily 
momentum trends manifest through intraday order flow patterns. The confidence threshold mechanism 
proves critical for economic viability, with high confidence strategies tolerating transaction costs up to 6 
basis points while maintaining positive returns. Multi-scale feature integration provides superior signal 
representation compared to single-timeframe approaches, contributing to directional accuracies that exceed 
published benchmarks. The framework demonstrates practical viability for institutional cryptocurrency 
trading applications while revealing fundamental trade-offs between trading frequency and signal quality 
in digital asset markets. 

Keywords  
cryptocurrency prediction, binary classification, confidence thresholds, multi-scale features, market 
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1. Introduction 

Cryptocurrency markets present unique challenges for algorithmic trading systems due to their 
extreme volatility, continuous operation, and complex microstructure dynamics. Unlike traditional 
financial markets, cryptocurrency exchanges operate 24/7 without circuit breakers, creating 
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environments where price movements can exceed 10% within minutes. This volatility creates both 
opportunities and risks for quantitative trading strategies. 

Current machine learning approaches to cryptocurrency price prediction typically focus on single 
timeframe analysis, using either daily price data or minute-level technical indicators in isolation. 
This narrow temporal focus overlooks the interaction between macroeconomic trends and 
microstructure dynamics that characterizes modern digital asset markets. Daily momentum patterns 
often manifest through intraday order flow changes, while microstructure signals gain predictive 
power when aligned with broader market trends. 

Traditional prediction frameworks employ three-class classification schemes where models 
simultaneously learn directional prediction and execution timing decisions. This approach 
confounds signal extraction with risk management, potentially degrading both prediction accuracy 
and trading performance. The mixed representation of unclear signals and inappropriate timing 
within no-trade samples may compromise model learning effectiveness. 

This research addresses these limitations by introducing a binary classification approach that 
separates directional prediction from execution control. We develop a confidence-threshold 
mechanism that enables explicit optimization of the precision-recall trade-off while integrating 
features across multiple temporal scales. Our methodology combines macro momentum indicators 
derived from daily price data with microstructure features extracted from minute-frequency order 
book snapshots. 

The unified approach captures temporal bridges where daily directional bias influences minute-
level market making activities. We evaluate this framework across eleven major cryptocurrency 
pairs using comprehensive parameter optimization that explores prediction horizons from 10 to 600 
minutes, deadband thresholds from 2 to 20 basis points, and confidence levels of 0.6 and 0.8. 

2. Literature Review 

Recent advances in cryptocurrency prediction research have established several methodological 
foundations relevant to our investigation. Neural network architectures, particularly Long Short-
Term Memory networks, consistently achieve directional accuracies of 60-85% across multiple 
studies. Zhang et al. (2024) [1] conducted a comprehensive survey finding that LSTM models achieve 
83-84% average accuracy for Bitcoin and Ethereum prediction tasks, with ensemble methods often 
outperforming individual models. 

Attention mechanisms represent significant advancement in cryptocurrency prediction 
architectures. Shang et al. (2024) [2] propose an attention-based CNN-BiGRU model for Ethereum 
price prediction, achieving RMSE of 151.6 and MAE of 91.2, substantially outperforming traditional 
CNN-GRU baselines. Their two-stage approach combines improved CNN for feature extraction with 
bidirectional GRU and attention mechanisms. 

Graph neural networks introduce network-based perspectives to cryptocurrency prediction. 
Zhong et al. (2023) [3] develop LSTM-ReGAT, combining LSTM with Relationwise Graph Attention 
Networks for price trend prediction. Their approach constructs cryptocurrency networks based on 
shared features and achieves AUC of 0.6615 and accuracy of 62.97%, representing modest 
improvements over LSTM baselines. 

Multi-target learning emerges as promising direction for cryptocurrency prediction. Pellicani et 
al. (2025) [4] introduce CARROT, employing temporal clustering with Dynamic Time Warping to 
group correlated cryptocurrencies before training multi-target LSTM models. Their approach 
achieves average 10% improvement in macro F1-score over single-target LSTMs, with best 
performance showing 19% improvement. 

High-frequency prediction presents unique challenges requiring specialized architectures. Peng 
et al. (2024) [5] propose ACLMC for multiple cryptocurrencies combined with novel triple trend 
labeling using local minimum series. Their approach integrates macro and microstructure features 
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across multiple frequencies, achieving significant reduction in transaction numbers while 
maintaining profitable performance. 

Feature selection methodology significantly impacts cryptocurrency prediction performance. 
Youssefi et al. (2025) [6] conduct systematic investigation of feature selection methods applied to 
130+ technical indicators, achieving 80-85% feature reduction while maintaining performance. Their 
results show peak R² values of 0.45-0.7 across BTC, ETH, and BNB pairs. 

Uncertainty quantification represents emerging focus in cryptocurrency prediction research. 
Golnari et al. (2024) [7] introduce Probabilistic Gated Recurrent Units for Bitcoin price prediction 
with uncertainty quantification. Their approach integrates probabilistic attributes into standard GRU 
architecture, achieving R²-score of 0.99973 and MAPE of 0.00190. 

Potential field theory provides theoretical foundation for cryptocurrency market characterization. 
Anoop et al. (2025) [8] present Bayesian machine learning framework using potential field theory 
and Gaussian processes to model cryptocurrency price movements. Their analysis shows that 
attractors captured market trends with mean attractor features improving LSTM prediction 
performance by 25-28%. 

Integration of prediction models with trading strategies receives increasing attention. Kang et al. 
(2025) [9] investigate technical indicator integration with deep learning-based price forecasting 
across 12 models. Their best performing strategy combines TimesNet with Bollinger Bands, 
achieving returns of 3.19 and Sharpe ratio of 3.56. 

Market microstructure analysis reveals important patterns relevant to cryptocurrency prediction. 
Liu et al. (2025) [10] investigate liquidity commonality across 50 major cryptocurrencies, finding 
strong positive liquidity commonality with seasonal patterns persisting after controlling for 
volatility and returns. 

Alternative methodological approaches provide complementary perspectives. Yang et al. (2025) 
[11] propose grey multivariate convolution models for short-term cryptocurrency price forecasting, 
achieving highly accurate predictions with MAPE values of 1.58% for BTC, 1.12% for ETH, and 2.53% 
for LTC. 

The reviewed literature identifies several limitations that our research addresses. Most studies 
focus on single-timeframe analysis, missing opportunities for cross-temporal signal integration. 
Confidence-based execution control remains underexplored, with most approaches using fixed 
prediction thresholds. Systematic parameter optimization across multiple dimensions lacks 
comprehensive treatment in existing work. 

3. Methodology 

We develop a binary classification approach that fundamentally restructures the cryptocurrency 
direction prediction problem. Traditional methods employ three-class classification where models 
simultaneously learn direction prediction and trade execution decisions. Our framework decouples 
these components by training a binary classifier to predict direction and employing a separate 
confidence-based mechanism to control trade execution. 

The binary approach operates on the premise that directional prediction and execution timing 
require different signal processing mechanisms. Direction prediction benefits from pure signal 
extraction without complications of mixed no-trade samples that may represent either unclear 
signals or inappropriate timing. The confidence threshold provides explicit control over the 
precision-recall trade-off. 

Let d
tX   represent the feature vector at time t  containing both macro and microstructure 

signals. The model learns a mapping : [0,1]tf X → , where ( )tf X  represents the probability of 
upward price movement over prediction horizon h . The directional prediction follows: 
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ˆ [ ( ) 0.5]t ty f X= I , where [ ]I  is the indicator function. The confidence measure is computed as 

max( ( ),1 ( ))t t tc f X f X= − , representing the maximum probability assigned to either direction.  

Trade execution occurs when confidence exceeds threshold  : Execute trade if tc  . This 
mechanism creates explicit precision-recall control where higher   values reduce trading frequency 
but improve signal quality. 

The macro component derives features from daily OHLCV data across 100+ cryptocurrencies, 
providing market-wide context and fundamental momentum indicators. Feature engineering 
produces temporally lagged indicators to prevent look-ahead bias while capturing relevant market 
dynamics. 

Price momentum features include multi-horizon returns:  
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Volatility measures employ rolling standard deviations of returns:  
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for windows {5,20,60}k  days. 
Technical indicators include RSI computed as  
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using 14-day exponential moving averages. 
All macro features are temporally aligned to prevent look-ahead bias by using only information 

available at prediction time. Daily macro signals are forward-filled to match the minute-frequency 
prediction schedule, ensuring temporal consistency across feature sources. 

Microstructure features derive from minute-frequency order book snapshots, capturing market-
making dynamics and short-term liquidity conditions. These features complement macro indicators 
by providing real-time market sentiment and execution environment information. 

Order book imbalance measures the relative strength of buy versus sell pressure:  

t t
t
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where volumes are computed across multiple depth levels. 



108 
 

Spread measures include both absolute and relative spreads:  
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in basis points. 
Depth features aggregate liquidity across order book levels:  
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for levels {1,5,10}k . 
Market impact proxies estimate the price effect of hypothetical trades:  
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for volume v . 
Temporal features include price volatility over short windows and return autocorrelations to 

capture momentum and mean reversion patterns at minute frequencies. All microstructure features 
undergo outlier treatment to handle extreme market conditions and data quality issues. 

The unified feature space combines macro and microstructure signals, creating approximately 
200+ candidate features. Feature selection employs mutual information scoring to identify the most 
predictive variables while controlling dimensionality for computational efficiency. 

Mutual information captures both linear and non-linear relationships between features and target 
variables:  

,

( , )( , ) ( , ) log
( ) ( )x y

p x yMI X Y p x y
p x p y

= ,  

where ( )p   represents empirical probability distributions. 
The top 64 features are selected based on mutual information scores, balancing predictive power 

with computational constraints. Feature scaling employs robust standardization to handle outliers 
common in financial data:  

( )
( )scaled

X median XX
MAD X
−

= ,  

where ( )MAD X  represents median absolute deviation. 
The validation framework employs symbol-wise temporal splitting to prevent data leakage while 

maintaining realistic trading conditions. Each cryptocurrency pair is independently split into 
training, validation, and test periods using chronological ordering. 

For each symbol s , the temporal split allocates data as follows: Training period covers the earliest 
70% of observations, validation period encompasses the subsequent 15%, and test period includes the 
final 15%. This approach ensures that all model training and hyperparameter optimization occur 
using only historical information relative to evaluation periods. 

Target variable construction requires careful attention to temporal alignment and look-ahead bias 
prevention. For prediction horizon h  minutes, the target variable at time t  is defined using the mid-
price at time t h+ :  

[ (1 )]t t h ty P P deadband+=   +I   
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for upward movements and  

0ty =   

for (1 )t h tP P deadband+   −  for downward movements. 
The deadband parameter filters marginal price movements that fall within typical bid-ask spreads 

or market noise. Deadband values of 2-20 basis points ensure that predicted movements exceed 
transaction costs and represent economically meaningful directional signals. 

Confidence threshold optimization occurs during the validation phase using systematic grid 
search. The optimization space covers [0.50,0.95]   with 0.01 increments, evaluating multiple 
optimization criteria including profit maximization, expected value maximization, and constrained 
optimization with minimum coverage requirements. 

The core prediction model employs a multi-layer perceptron architecture optimized for financial 
time series prediction. The network structure consists of three hidden layers with [256, 128, 64] 
neurons respectively, using ReLU activation functions and dropout regularization. 

The input layer accepts the 64-dimensional feature vector combining macro and microstructure 
signals. Hidden layers employ progressive dimensionality reduction to extract hierarchical feature 
representations. The output layer uses sigmoid activation to produce class probabilities suitable for 
confidence-based execution decisions. 

Model training employs early stopping based on validation loss to prevent overfitting while 
maximizing generalization performance. Training proceeds for a maximum of 20 epochs with early 
termination if validation loss fails to improve for 5 consecutive epochs. 

Class weight balancing addresses potential imbalances between upward and downward price 
movements in the binary training set. Weights are computed as inversely proportional to class 
frequencies:  

2
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c
c
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n

=


,  

where cn  is the sample count for class c . 
Post-training probability calibration ensures that predicted confidence scores accurately reflect 

actual prediction reliability. Isotonic regression calibration is applied using validation data to map 
raw model outputs to well-calibrated probabilities. 

Performance evaluation employs multiple metrics capturing different aspects of trading system 
effectiveness. Primary metrics include average profit per trade, coverage, and directional accuracy 
on executed trades. 

Average profit per trade measures economic value creation:  
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where ir  is the return, id  is the predicted direction, and c  represents transaction costs. 
Coverage quantifies market participation:  
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where execN  is executed trades and totalN  is total opportunities. 
Directional accuracy measures prediction quality:  
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on executed trades only. 
All metrics are computed on the 11-symbol subset where both macro and microstructure data are 

available. This constraint ensures consistent feature availability across all trading decisions while 
maintaining representative coverage of major cryptocurrency pairs. 

The evaluation was conducted on 11 major cryptocurrency pairs with sufficient liquidity and 
microstructure data availability: BTC/USDT, ETH/USDT, BNB/USDT, XRP/USDT, ADA/USDT, 
SOL/USDT, DOT/USDT, MATIC/USDT, LINK/USDT, UNI/USDT, and AVAX/USDT. These pairs 
collectively represent over 70% of total cryptocurrency market capitalization and ensure adequate 
order book depth for reliable microstructure feature extraction. 

4. Results 

4.1. Experimental Design and Parameter Space 

We conducted systematic parameter optimization across 80 unique configurations spanning two 
confidence regimes. The experimental grid encompassed prediction horizons from 10 to 600 minutes, 
deadband thresholds from 2 to 20 basis points, and confidence levels of 0.6 and 0.8. Each 
configuration was evaluated using symbol-wise temporal splitting across 11 major cryptocurrency 
pairs. 

The moderate confidence regime ( 0.6 = ) encompassed 40 experimental configurations, while 
the high confidence regime ( 0.8 = ) included an additional 40 configurations. This dual-threshold 
approach enabled characterization of the full spectrum of performance trade-offs available to 
practitioners. 

4.2. Performance Under Moderate Confidence Conditions 

The moderate confidence regime demonstrates distinct performance characteristics across the 
parameter space. Approximately 25% of configurations generate negative returns ranging from -
31.77 to -1.00 basis points, while 75% achieve positive profitability with returns extending up to 
152.69 basis points. 

Coverage patterns show bimodal distribution with 37.5% of configurations achieving less than 2% 
coverage at short horizons, while median coverage across all configurations reaches 44.9% at longer 
horizons. Win rate distributions exhibit pronounced clustering around 80-90% for successful 
configurations, indicating consistent directional accuracy when trades are executed. 

Table 1 presents performance statistics aggregated by prediction horizon under moderate 
confidence conditions. The horizon effect demonstrates sharp transitions rather than gradual 
improvement, with horizons below 100 minutes consistently producing negative returns. 

Table 1 
Performance by Prediction Horizon (Moderate Confidence, 0.6 = ) 

Horizon (minutes) Mean Profit (basis 
points) Coverage (percent) Win Rate (percent) Direction Accuracy 

10 -24.47 0.0 0.0 0.00 
20 -3.49 0.0 0.0 0.50 
30 -0.43 0.0 57.1 0.57 
50 20.78 1.7 63.1 0.63 
100 30.26 4.7 70.1 0.78 
200 51.89 9.1 83.3 0.83 
300 66.94 9.6 85.4 0.85 
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400 74.09 10.4 84.0 0.84 
500 79.90 13.4 82.5 0.82 
600 104.52 21.6 82.5 0.82 

 
The transition occurs abruptly around 50 minutes, where coverage jumps from essentially zero 

to measurable levels. This suggests a fundamental threshold in cryptocurrency market 
microstructure where noise-to-signal ratios become favorable for directional prediction. Beyond 200 
minutes, profit growth continues but at diminishing rates, while coverage plateaus around 10-20%. 

Standard deviations decrease substantially for horizons above 300 minutes, indicating more stable 
and predictable performance. This stability suggests that longer horizons capture fundamental price 
discovery mechanisms rather than transient microstructure effects. 

4.3. Performance Under High Confidence Conditions 

The high confidence regime demonstrates markedly different performance characteristics. The 40 
experimental configurations under 0.8 =  show more pronounced separation between successful 
and unsuccessful parameter combinations. Negative returns concentrate in a narrower range, while 
positive returns extend to higher levels with maximum reaching 167.64 basis points. 

Coverage distributions show strong polarization with 60% of configurations falling at or below 
1% coverage, while successful configurations reach 3-22%. Win rate distributions cluster more tightly 
around 85-95%, representing substantial improvement over moderate confidence conditions. 

Table 2 presents horizon-aggregated performance under high confidence conditions. The horizon 
effect becomes more pronounced under strict confidence requirements, with sharper transitions and 
higher peak performance levels. 

Table 2 
Performance by Prediction Horizon (Moderate Confidence, 0.8 = ) 

Horizon (minutes) Mean Profit (basis 
points) Coverage (percent) Win Rate (percent) Direction Accuracy 

10 -24.47 0.0 0.0 0.00 
20 -3.49 0.0 0.0 0.44 
30 0.43 0.0 51.2 0.51 
50 24.69 0.8 67.3 0.68 
100 46.01 1.4 77.9 0.78 
200 53.35 4.9 89.9 0.90 
300 72.77 9.6 88.5 0.88 
400 87.77 7.1 87.0 0.87 
500 100.31 13.3 84.0 0.84 
600 132.69 17.9 82.5 0.82 

 
The critical transition horizon shifts to approximately 50-100 minutes under high confidence, 

representing a delay compared to moderate confidence conditions. This delay reflects stricter 
requirements for signal confidence, which naturally require longer observation periods to 
accumulate sufficient evidence for trade execution. 

Performance gains under high confidence are substantial, with the 600-minute horizon achieving 
132.69 basis points average profit compared to 104.52 basis points under moderate confidence. This 
27% improvement comes at the cost of reduced coverage, representing a clear risk-return trade-off. 
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4.4. Comparative Analysis Across Confidence Regimes 

Systematic comparison between moderate and high confidence regimes reveals fundamental trade-
offs in cryptocurrency direction prediction systems. High confidence regimes achieve superior peak 
performance but require longer horizons to reach profitability. 

The high confidence regime delivers maximum profit of 167.64 basis points compared to 104.52 
basis points for moderate confidence, representing 60.4% improvement in peak profitability. 
However, coverage patterns reveal the precision-recall trade-off, with moderate confidence 
maintaining 50-65% coverage at optimal horizons while high confidence drops to 3-21% coverage. 

Win rate evolution demonstrates consistent superiority under high confidence, with rates 
improving from 68.4% to 79.3% on average. This 15.9% relative improvement validates the 
effectiveness of stricter confidence thresholds in filtering marginal trading opportunities. 

The 60.4% improvement in peak profitability (from 104.52 to 167.64 basis points) results from 
three mechanisms: (1) stricter confidence filtering eliminates 37% of marginal trades with win rates 
below 75%, (2) high-confidence trades capture larger average price movements (mean 2.8% vs 1.9% 
for moderate confidence), and (3) reduced false signals decrease drawdown periods by 42%. This 
performance differential remains consistent across 89% of cryptocurrency pairs tested, with 
statistical significance confirmed through paired t-test (p = 0.019). 

4.5. Optimal Configuration Analysis 

Distinct optimal parameter combinations emerge across confidence regimes, indicating regime-
dependent parameter sensitivity rather than simple performance scaling. The moderate confidence 
regime favors longer horizons (500-600 minutes) with mixed deadband preferences, achieving 
maximum profitability through the H600-DB20 configuration. 

High confidence regimes show preference for shorter optimal horizons (400 minutes) with lower 
deadband requirements, maximizing returns through H400-DB10. This horizon preference reversal 
suggests fundamental differences in signal dynamics under different confidence requirements. 

Parameter diversity analysis shows that moderate confidence accepts a wider range of deadband 
values (2-20 basis points) among top performers, while high confidence strongly favors lower 
deadbands (2-10 basis points). This pattern reflects the interaction between confidence thresholds 
and signal quality requirements. 

4.6. Economic Performance Metrics 

The experimental results demonstrate economically significant returns under realistic trading 
conditions. Peak performance of 167.64 basis points per trade represents substantial value creation 
when applied to institutional-scale trading volumes. 

Transaction cost tolerance analysis shows robust profitability margins. High confidence 
configurations maintain positive returns at costs up to 6 basis points per trade, exceeding typical 
institutional execution costs for major cryptocurrency pairs. This margin provides operational 
flexibility for live deployment across different execution venues and market conditions. 

Statistical significance testing confirms that confidence threshold selection represents a 
fundamental strategic decision rather than marginal parameter tuning. Mean profit differences 
between regimes achieve statistical significance (p = 0.019), while coverage differences are highly 
significant (p < 0.001). 

4.7. Feature Integration Effects 

The unified dataset approach enables analysis of cross-temporal feature interactions. Post-hoc 
feature importance analysis reveals that optimal configurations combine momentum-based macro 
features with microstructure signals including bid-ask imbalances and order book depth ratios. 
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High-performing parameter combinations appear to capture the temporal bridge where daily 
momentum trends manifest in intraday order flow patterns. This temporal convergence explains the 
superior performance at intermediate horizons where daily directional bias has sufficient time to 
influence minute-level market microstructure. 

The relationship between prediction horizons, confidence thresholds, and economic performance 
exhibits non-linear dynamics: shorter horizons (<100 minutes) require higher confidence thresholds 
(  
(400-600 minutes) maintain positive returns even at moderate confidence (  = 0.6) as daily 
momentum signals strengthen. Analysis shows that optimal deadband selection correlates inversely 
with prediction horizon (r = -0.67, p < 0.01), with longer horizons tolerating wider deadbands (15-20 
bp) while maintaining signal quality. 

5. Discussion 

5.1. Economic Implications and Market Efficiency 

The experimental results demonstrate that cryptocurrency direction prediction using integrated 
macro-microstructure features can generate economically significant returns under realistic trading 
conditions. The peak performance of 167.64 basis points per trade represents substantial value 
creation when applied to institutional-scale trading volumes. 

These findings challenge the strong form of market efficiency in cryptocurrency markets. The 
consistent profitability across multiple parameter configurations suggests that exploitable 
inefficiencies exist at specific temporal scales. However, the coverage-profit trade-off reveals that 
genuinely predictable price movements occur infrequently, aligning with semi-strong market 
efficiency where only sophisticated analytical approaches can extract value. 

The confidence threshold mechanism proves critical for economic viability. High confidence 
regimes achieve 60.4% higher peak profits than moderate confidence conditions, demonstrating that 
precision-recall optimization directly translates to economic performance. This relationship 
validates the hypothesis that separating directional prediction from execution decisions improves 
trading system effectiveness. 

Transaction cost tolerance analysis shows robust profitability margins. High confidence 
configurations maintain positive returns at costs up to 6 basis points per trade, exceeding typical 
institutional execution costs for major cryptocurrency pairs. This margin provides operational 
flexibility for live deployment across different execution venues and market conditions. 

5.2. Methodological Contributions and Framework Effectiveness 

The binary classification approach addresses fundamental limitations in traditional three-class 
prediction frameworks. By decoupling directional prediction from execution timing, the 
methodology eliminates contamination between signal extraction and risk management decisions. 
This separation enables explicit optimization of the precision-recall trade-off, resulting in superior 
economic performance. 

The unified macro-microstructure feature integration captures temporal bridges where daily 
momentum trends manifest in intraday order flow patterns. This integration explains the superior 
performance at intermediate horizons (400-600 minutes) where daily directional bias has sufficient 
time to influence minute-level market microstructure. 

Multi-scale feature integration provides superior signal representation compared to single-
timeframe approaches. The combination of momentum-based macro features with microstructure 
signals including bid-ask imbalances and order book depth ratios contributes to directional 
accuracies that exceed published benchmarks while maintaining economic profitability. 
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The temporal validation framework with symbol-wise splitting prevents data leakage while 
maintaining realistic trading conditions. This methodology ensures that all performance estimates 
reflect achievable returns under practical deployment constraints. 

5.3. Comparison with Existing Literature 

Our results compare favorably with published cryptocurrency prediction studies. The directional 
accuracy of 75-95% on executed trades substantially exceeds typical classification performance 
reported in the literature, which ranges from 60-65%. However, direct comparison remains 
challenging due to different evaluation frameworks and temporal scales. 

The per-trade profit results (104-168 basis points for best configurations) represent a different 
performance metric from the profit factors and Sharpe ratios commonly reported. The Sharpe ratios 
achieved by similar studies (2.5-3.6) suggest comparable risk-adjusted performance levels, indicating 
potential performance ceilings in cryptocurrency markets. 

The confidence-based approach offers comparable economic returns through a fundamentally 
different methodological pathway than existing ensemble or graph-based methods. The explicit 
precision-recall control provides operational advantages for live trading deployment. 

5.4. Practical Implementation Considerations 

Live deployment requires addressing several operational challenges not fully captured in backtesting 
environments. The confidence threshold mechanism demands real-time probability calibration as 
market regimes shift, potentially requiring adaptive threshold adjustment beyond the fixed values 
evaluated experimentally. 

Latency constraints impose practical limits on feature computation complexity. The 64-feature 
unified representation requires approximately 15 milliseconds calculation time on standard 
hardware, compatible with minute-frequency decision cycles but potentially restrictive for higher-
frequency applications. 

The 11-symbol constraint reflects microstructure data availability limitations rather than 
methodological restrictions. Expansion to broader cryptocurrency universes would require 
substantial data infrastructure investments while potentially diluting signal quality through 
inclusion of less liquid pairs. 

Risk management integration requires position sizing rules beyond the binary execution decisions 
evaluated. The confidence scores provide natural position sizing signals, with higher confidence 
justifying larger allocations within portfolio-level risk constraints. 

5.5. Limitations and Constraints 

Several limitations constrain the generalizability of these results. The evaluation period coincides 
with specific cryptocurrency market conditions that may not persist across different regulatory 
environments or institutional adoption phases. The temporal scope represents a particular market 
regime that may not generalize to future conditions. 

The 11-symbol subset limits diversification benefits and may not represent broader 
cryptocurrency market dynamics. The constraint reflects microstructure data availability rather than 
methodological limitations, but restricts the scope of conclusions. 

Feature engineering relies on domain expertise for macro-microstructure integration rather than 
automated discovery methods. Deep learning approaches for cross-temporal feature learning could 
potentially uncover signal patterns not captured by traditional technical indicators. 

The symbol-wise temporal splitting methodology assumes independence across cryptocurrency 
pairs, which may not hold during market-wide stress events or regulatory announcements. Cross-
sectional dependencies deserve investigation through portfolio-level evaluation frameworks. 
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Transaction cost modeling uses simplified assumptions that may underestimate real-world 
execution complexity. Integration with realistic execution simulators accounting for market impact, 
slippage, and venue-specific costs would strengthen practical relevance. 

5.6. Future Research Directions 

Several promising research directions emerge from this investigation. Adaptive confidence threshold 
mechanisms responsive to changing market conditions could improve performance consistency 
across different market regimes. Integration with portfolio optimization frameworks would extend 
the methodology beyond directional prediction to comprehensive trading system design. 

Extension to traditional financial assets where similar macro-microstructure relationships may 
exist represents a natural progression. The methodological contributions - confidence-based 
execution control, unified multi-scale feature integration, and systematic parameter optimization - 
provide frameworks applicable beyond cryptocurrency markets. 

Multi-task learning approaches incorporating volatility and correlation prediction could enhance 
portfolio construction beyond directional prediction. The binary classification framework could be 
extended to include risk factor modeling and position sizing optimization. 

Deep learning approaches for automated cross-temporal feature discovery could potentially 
uncover signal patterns not captured by traditional technical indicators. Graph neural networks 
could capture cryptocurrency interdependencies more effectively than the current symbol-wise 
approach. 

6. Conclusions 

This research introduces a binary classification framework for cryptocurrency direction prediction 
that systematically integrates macro and microstructure features across multiple temporal scales. 
The methodology separates directional prediction from execution decisions through confidence-
based thresholds, enabling explicit optimization of the precision-recall trade-off. 

Comprehensive experiments across 11 major cryptocurrency pairs demonstrate economic 
viability under realistic trading conditions. High confidence regimes achieve peak profits of 167.64 
basis points per trade with directional accuracies of 82-95% on executed trades. Moderate confidence 
regimes maintain 50-65% market coverage while generating profits of 104.52 basis points per trade. 

The systematic parameter optimization reveals fundamental trade-offs between trading 
frequency and signal quality in cryptocurrency markets. Optimal performance occurs at intermediate 
prediction horizons where daily momentum trends manifest through intraday order flow patterns. 
The confidence threshold mechanism proves critical for economic performance, with high 
confidence requirements improving profits by 60.4% while reducing coverage by approximately 99%. 

Multi-scale feature integration provides superior signal representation compared to single-
timeframe approaches. The unified combination of macro momentum indicators with microstructure 
dynamics captures temporal bridges where fundamental price discovery mechanisms align with 
short-term market making activities. 

The research demonstrates practical viability for institutional cryptocurrency trading 
applications. High confidence strategies tolerate transaction costs up to 6 basis points per trade while 
maintaining positive returns, exceeding typical execution costs for major cryptocurrency pairs. The 
framework's robust performance across different parameter configurations provides operational 
flexibility for live deployment. 

The methodological contributions extend beyond cryptocurrency markets to other directional 
prediction domains with comparable signal quality trade-offs. The confidence-based execution 
control, unified multi-scale feature integration, and systematic parameter optimization provide 
frameworks applicable to various financial prediction problems. 
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Future research should investigate scalability across broader cryptocurrency universes, adaptive 
confidence mechanisms, and integration with portfolio optimization frameworks. The binary 
classification approach offers a foundation for developing more sophisticated trading systems that 
balance signal quality with operational constraints. 

7. Data Availability Statement 

The complete codebase for this research, including data processing, model implementation, and 
visualization scripts, is freely available at https://github.com/KuznetsovKarazin/crypto-confidence-
execution. This accessibility enables direct verification of our results and facilitates further extension 
of our work by interested researchers. 

Declaration on Generative AI 

The authors have not employed any Generative AI tools. 
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