
117 
 

Development and Justification of Techniques for Periodic 
Quality Control of Random/Pseudorandom Number 
Generators for Cryptographic Applications ⋆ 

Lyudmila Kovalchuk1, , Oleksii Bespalov1  and Hanna Nelasa1 ,  

1 G.E. Pukhov Institute for Modelling in Energy Engineering, General Naumov Str. 15, Kyiv, 03164, Ukraine 
 

Abstract 

The use of random/pseudorandom number generators with good cryptographic properties is critical for 
cryptographic applications, especially when these generators are used to generate key data. Using a 
generator whose outputs do not form a "perfect" random sequence significantly reduces the cryptographic 
properties of a cryptosystem. Specifically, the system becomes vulnerable to a directed brute-force attack, 
which allows one to recover the most probable key of a cryptographic algorithm, based on deviation of 
equiprobable distribution. However, developers of such generators typically focus on engineering, 
analytical, and statistical quality checks of the proposed generator, and pay virtually no attention to 
developing effective quality control methods for the generator throughout its lifecycle. This paper aims to 
fill this gap. Its goal is to develop and validate an effective (in terms of speed and quality) periodic 
verification of the correct operation of a random/pseudorandom number generator, ensuring its 
cryptographic properties are preserved. Such testing is necessary for the timely detection of generator 
operational deviations at the early stages of their occurrence, before their impact becomes critical. This 
paper develops a periodic generator quality check procedure, called  second-level  (the 
first-level verification is performed upon generator adoption). A set of statistical tests for performing this 
verification is proposed; it is shown that these tests identify various types of generator operational 
deviations and are independent. It also shows how the results of applying these tests to generator outputs 
should be processed. As an example of the use of a second-level verification, the results of its application 
to a standardized generator based on DSTU 7624:2014 "Kalina" are presented. 
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1. Introduction 

The NIST STS [1] statistical test suite, designed to verify the cryptographic qualities of 
random/pseudo-random number generators (RNGs/PRNGs), is a powerful and extremely important 
tool. It is mandatory when verifying a newly developed generator before its adoption, or after a 
major overhaul of a hardware generator [2]. 

However, in addition to a one-time inspection upon adoption, hardware generators require 
additional periodic control. Hardware RNG testing requires more complex approach than others 
classes of digital devices. This is due to the following factors.  
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1. In contrast to traditional approach to functionality verification, for hardware RNG it is 
impossible to organize verification according to the black box approach [3], or using known test 
input-output values, or like that. 

2. The occurrence of a failure in hardware RNG functioning, causing incorrect output 
sequences, usually will not be immediately detected. 

3. Hardware generators are significantly vulnerable to misuse or to use in inappropriate 
physical conditions [4], or to the deterioration of the quality of the physical source of randomness 
[5]. 

Thus, for hardware generation of random/pseudo-random sequences with a given level of 
security, it is necessary to perform periodic (once a day, a week, etc.) verifications of the 
correctness of its functioning, assessing the quality of the output sequences. 

At the same time, periodic checking should not be as complicated and resource-consuming as 
the verification upon adoption. This is due to the fact that periodic checking is applied to such a 
RNG/PRNG, which, firstly, has good cryptographic properties, and secondly, has passed 
preliminary engineering checks for reliability of functioning. In addition, periodic checking should 
be applied to a working RNG/PRNG without stopping it, therefore it should occur almost in real 
time. 

the RNG/PRNG Verification Strategy defined in [1] and improved in [6]. As in lightweight 
cryptology, this analogue should, on the one hand, require significantly less time, and on the other 
hand, perform less detailed verification. 

The structure of the article is the follows. In Section 2 we consider articles on the topic, analyze 
directions of their investigations. In the Section 3 the main results are given, namely: detailed 
description of tests proposed for second-level verification; justification of the tests independence; 
application of proposed second-level verification for standardized PRNG. We conclude with Section 
4, summarizing the usage of our results and describing the possible direction of future 
investigations. 

2. Related work 

The vast majority of contemporary works, devoted to issues related to RNG/PRNG, can be divided 
into the following clusters by topic. 

2.1. The methods of RNG/PRNG creation or improvement 

Thus, in [7] a number of methods for constructing high-quality RNG by harnessing the inherent 
noise properties of multistage ring oscillators and using fast Fourier transformation-based noise are 
proposed. The authors verify the statistical properties of their proposed RNG using a test suite [1] 
and obtain results confirming its cryptographic qualities. 

The authors of [8] consider memristor TRNGs (True Random Number Generators) obtained 
using various entropy sources for producing high quality random numbers or sequences, analyze 
their strengths and weaknesses, and show that memristor TRNGs stand out due their simpler 
circuits and lower power consumption in comparison with CMOS (Complementary Metal-Oxide-
Semiconductor)- based TRNGs. 

The work [9] is devoted to the evaluation of the theoretical bound for the min-entropy of the 
output random sequence through the very efficient entropy accumulation using only bitwise XOR 
operations, under the condition that the inputs from the entropy source are independent. The 
obtained theoretical results were applied to the quantum random number generator that uses dark 
shot noise arising from image sensor pixels as its entropy source. 

Chaos Based Cryptography Pseudo-Random Number Generator Template with Dynamic State 
Change is proposed in [10]. It is also analyzed using NIST STS tests [1]. Obtained results show that 
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chaotic maps can be successfully used as a building blocks for cryptographic random number 
generators. 

The work [11] deals with the method of Improving the Statistics Qualities of Pseudo Random 
Number Generators. The authors present a new non-linear filter design of PRNG that improves the 
output sequences of common pseudo random generators in terms of statistical randomness . 

At last, [12] proposes a variety of randomness extraction methods to post-process the output of 
random number generators and evaluated their impacts on the statistical properties. The findings 
show that all proposed post-processing methods improved the statistical properties of RNG/PRNG. 

2.2. New methods for verifying the cryptographic qualities of a generator or 
applying known methods to widely used generators 

In [13], the use of Neural Networks for the assessment of the quality and hence security of several 
Random Number Generators is considered. The authors focus both on the vulnerability of classical 
Pseudo Random Number Generators, such as Linear Congruential Generators and the RC4 
algorithm, and extend their analysis to non-conventional data sources, such as Quantum Random 
Number Generators based on Vertical-Cavity Surface-Emitting Laser. Their findings reveal the 
potential of NNs to enhance the security of RNGs, along with highlighting the robustness of certain 
QRNGs, in particular the VCSEL-based (Vertical-Cavity Surface-Emitting Laser) variants. 

The work [14] proposes a rough sets based analyzing system to analyze the quality of 
Pseudorandom Number Generator, while the design of generators is outside the scope of this 
paper. 

The special of RNGs, namely Physical Prime Random Number Generator Based on Quantum 
Noise is considered in [15]. Such generators have not yet been explored, and in this work the 
authors experimentally implement and characterize a vacuum-based probabilistic prime number 
generation scheme with an error probability of about 3.5×10 . 

2.3. Review articles with comprehensive and comparative analysis of different 
well-known RNG or PRNG 

The good example of such articles is [16], which reviews the performance and statistical quality of 
some well known algorithms for generating pseudo random numbers. For completeness, we should 
also mention such articles as [17], [18], [19]. 

However, as the study of these works showed, none of them considers the full process of 
functioning of the RNG/PRNG during its lifetime, in particular the issue of verifying the 
cryptographic qualities of the RNG/PRNG at different stages of its functioning. 

In [5] and [20], the necessity to use three different types of RNG/PRNG quality verification was 
justified. The first-level verification is performed during the adoption process. The second-level 
verification is performed periodically at certain specified intervals to prevent usage of the 
RNG/PRNG with a slight (but dangerous) degradation of its cryptographic properties and to detect 
such degradation at an early stage. The third-level verification is a continuous verification aimed at 
instantly detecting significant failures in operation. 

For the first level verification, an Improved Strategy for RNG/PRNG Quality Verification was 
proposed in [6 -3 simple tests (like chi-square 
and maximal series tests) which may detect significant deviations from equiprobable distribution, 
or significant symbol dependency, or different physical faults. But the question about the second-
level (periodic) verification is still opened, and we are going to focus on it in this paper. 

3. Our results. Description of criteria and justification for the chosen 
statistics. P-values calculation 

The object of this work is process of random/pseudorandom numbers and sequences generation. 

https://www.google.com/search?client=firefox-b-d&sca_esv=318dfbf2fb24382c&cs=0&sxsrf=AE3TifPtRxLAMu9FQZodEq8PIHGiZYT4Ug%3A1758376301670&q=Vertical-Cavity+Surface-Emitting+Laser&sa=X&ved=2ahUKEwiT0sWWvuePAxUZR_EDHWTPCa4QxccNegQIAxAB&mstk=AUtExfDn_kf6pUrxMOqlyci9cjhs0m_3nLQDsSw1d1ElFJlmm3h4Qi_ygwJpW9z6iseZyut3Nfk_C_mW7xQpaTiklOlAbDSDwalzDUpumAA6HzRJOWDh2jzoKIYK4Oif-moNIChCTINwUkfzH4sQMONTDKiXD-_gh7GCJ4y29HNJiMlrjqBcnIEIJ409iJwykvQB2gCG1X1wG50gi1djyH03qhTDN8T_WSoIirwWBv8Kof7o5tg0W1o26OvitG3jyDWoMxHR6pb2G9Sw9zEAKPfhLjm4v8vi9T1EwfnFIa4y1_MUrA&csui=3
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The main purpose of it is to create an efficient second-level verification, which can be 
periodically applied to RNG/PRNG to verify correctness of its functioning. Here 

we understand fast procedure, which is able to detect different dangerous deviation in 
its work on their early stage, while these deviations become essentially dangerous. 

For the second-level verification, it is sufficient to use a significantly smaller tests suite than for 
the first-level one. This is explained by the fact that at this stage it is not necessary to conduct a 
comprehensive analysis of the RNG/PRNG, but only to make sure that it functions correctly. But 
the technique for test results processing can be the same as in the Improved Strategy [6]. 

The requirements for the tests suite for the second level verification are as follows: 

• tests should be independent; 
• tests must be selected in a such way, that the obtained set contains tests that can check all 

major types of deviations from randomness, such as: violation of symbol equiprobability; 
presence of dependencies between symbols; presence of a symbol's dependence on its place 
in the sequence; etc.; 

• tests should be quick and easy to perform; 
• the number of tests should be as minimal as possible. 

Based on the above requirements, a set of statistical tests will be proposed below, their choice 
will be justified, and what deviations each test detects will be shown. We will call this set of tests 
OPTIMA-5 according to the number of tests in the set. In order to make it possible to apply the 
Improved Strategy to the test results, an appropriate algorithm for calculating the P-value 
corresponding to the obtained statistic will be given for each test. 

In what follows, we will use the hypothesis 0H

from the RNG/PRNG is an implementation of a true random sequence, i.e. sequence of 
equiprobable, 
hypothesis 1H  is complex and may be formulated as 0H  is not true . The tests given below are 
aimed at testing the hypothesis 0H . 

3.1. Monobit 2 -test 

Let  
=1

n

i i
 be a sequence of independent random variables, equiprobably distributed on the 

alphabet  = 1 ,..., NA a a  of the size . 
Then the random variable 


= =

−
= = − 

2 2
2

1 1

( )N N
i i i

i ii i

M np M
n

np np
, 

where  = =i l ip P a ,  i N ,  l n , iM  is the number of symbols ia  in the sequence  
=1

n

i i
, will 

asymptotically have a  2 -distribution with -1 degrees of freedom. 
Under the condition of equiprobable distribution of variables i  (according to 0H  ), we have 

=
1

ip
N

 and 


=

= −2 2

1

N

i
i

N
M n

n
.                                                                     (1) 

If - 
2  for a given significance level  is calculated 

from the formula  = −2( ) 1F , where ( )F x  is a 2 -distribution function with -1 degrees of 
freedom (the value of the distribution function is tabulated, see, for example, [21]). 
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If -1 30, then the distribution  22  approaches normal distribution with parameters 

− +( ; 2( 1) 1, 1)N x N , and the limit value of the statistic 
2  for a given significance level  may be 

found from the formula ( )  = − − +
2

2 1
2( 1) 1

2
N z , where   = −( ) 1z  and ( )x is the standard 

normal distribution function (the value of the distribution function is tabulated, see for example 
[22]. 

For example, for  = 16 and =0.001, we have 
2 =37.7; for =2N  and =0.01, we have 

 
2 = 10.83. 
A sequence passed the test with a significance level  if  2 2 . 
P-value calculation. 
If − 1 30N , then the P-value corresponding to the calculated value of the statistic 


=

= −2 2

1

N

i
i

N
M n

n
 is calculated as 


= −2

21 ( )P F , where ( )F x  is 2 -distribution function with 

-1 degrees of freedom. 
If − 1 30N , then the P-value corresponding to the calculated value of the statistic 


=

= −2 2

1

N

i
i

N
M n

n
 is calculated with the next steps: 

- calculate the value = − − −22 2( 1) 1z N ; 
- calculate the P-value from the equation 


= −2 1 ( )P z , where ( )x  is the standard normal 

distribution function (the value of the distribution function is tabulated, see [22]). 

3.2. Bigram 2-test 

Let  
=1

n

i i
 be a sequence of independent random variables, equiprobably distributed on the 

alphabet  = 1 ,..., NA a a  of the size . 

Then the sequence   
=

= 2

1

n

j j
, where   −= 2 1 2( , )j j j , consisting of non-overlapping bigrams, 

is a sequence of independent random variables that take values in the alphabet A A of size 2N . 

Then the random variable 

= =

−
 = = − 

2 2

2

, 1 , 1

( )N N
ij ij ij

i j i jij ij

M kp M
k

kp kp
,                                (2) 

where ( ) = = ,ij l i jp P v a a , =
2

n
k , ijM  is the number of all bigrams ( ) ,i ja a A A  in the 

sequence , will asymptotically have a  2 -distribution with −2 1N  degrees of freedom. 

Under the condition of equiprobable distribution of variables i , the corresponding bigrams 

will also have equiprobable distribution, i.e. =
2

1
ijp

N
, therefore 

=

 = −
2

2 2

, 1

N

ij
i j

N
M k

k
. 

If − 1 30N , then the limit value of the statistic 
2  for a given significance level  is 

calculated from the formula   = −2( ) 1F , where ( )F x  is a 2 -distribution function with −2 1N  

degrees of freedom. 
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If − 2 1 30N , then the distribution  22  approaches normal − +2( ; 2( 1) 1, 1)N x N , and the 

limit value of the statistic 
2  for a given significance level  may be found from the formula 

( )  = − − +
2

2 21
2( 1) 1

2
N z , where 

  = −( ) 1z  and ( )x  is the standard normal distribution 

function. 

For example, for =16N  and  =0.01  we have 
2 = 309.781 ; for =2N  and =0.01, we have 


2 = 6.63. 

A sequence passed the test with a significance level   if 2 2X X . 

P-value calculation. 

If − 1 30N , then the P-value corresponding to the calculated value of the statistic 

=

 = −
2

2 2

, 1

N

ij
i j

N
M k

k
 is calculated as 


= − 2

21 ( )P F , where ( )F x  is 2 -distribution function with 

−2 1N  degrees of freedom. 

If − 1 30N , then the P-value corresponding to the calculated value of the statistic 


=

= −2 2

1

N

i
i

N
M n

n
 is calculated with the next steps: 

- calculate the value =  − − −2 22 2( 1) 1Z N ; 

- calculate the P-value from the equation 

= −2 1 ( )P Z , where ( )x is the standard normal 

distribution function (the value of the distribution function is tabulated, [22]). 

The two tests described above check the equiprobability of distributions of symbols and 

bigrams. Note that the combination of these tests also checks pairwise symbol dependencies. 

3.3. Number of runs test 

Let  
=1

n

i i
 be a sequence of independent random variables, equiprobably distributed on the 

alphabet A of the size . 

Define a random variable  
−

+

=

=  +
1

1
1

( ) 1
n

n i i
i

G I (the number of series in the sequence  
=1

n

i i
). 

Then 
−

=

= + = − − +
1

1

1
1 ( 1)(1 ) 1

n

n
i

MG MI n
N

; 
−

=

−
= = −

1

2
1

1
( 1)( )

n

n
i

N
DG DI n

N
. 

Since nG  is a sum of identically distributed, independent random variables, the random variable 
−

= n n

n

G MG
G

DG
                                                           (3) 

has asymptotically the standard normal distribution, i.e. −
→ (0,1)n n

n

G MG
N

DG
 when →n . 

Therefore, for the chosen significance level  obtain: 

    
 −
 =  =    − =  +  − =
 
 

( ) ( ) ( )n n

n

G MG
P G P G G G G P G G P G G

DG
 

= − + − = − + − = −1 ( ) ( ) 1 ( ) 1 ( ) 2 2 ( )F G F G F G F G F G     , 
where ( )F x  is the standard normal distribution function. 
A sequence passed the test with a significance level  if 



123 
 



−
n n

n

G MG
G

DG
, 

where G  is calculated from the equation 


= −( ) 1

2
F G . 

For example, for =0.01 we have G =2.58. 
P-value calculation. 

The P-value corresponding to the calculated value of the statistic −
= n n

n

G MG
G

DG
 is calculated 

from the equation ( )=  −2 1 ( )GP F G , where ( )F x  is the function of the standard normal 
distribution. 

The number of runs test checks the absence of dependencies between the symbols. For example, 
if the probability of changing the next symbol is greater than ½, then the number of series will be 
too large; otherwise, if this probability is small, too long series will appear, and the number of 
series will be small. 

3.4. Places of symbols test 

Let  
=1

n

i i
 be a sequence of independent random variables, equiprobably distributed on the 

alphabet  = 1 ,..., NA a a  of the size . 

Let us define a random variable   
−

=

= =
1

1

( )
n

i
i

R iI  (the sum of the positions of the symbol v A  

in the sequence  
=1

n

i i
). Then 

    
= =

+
= = = = =  2

1 1

( 1)
( ) , ( )

2

n n

i i
i i

n n
MR iP DR i DI

N
, 

since  =( )iI  are independent random variables with variance 
         = = = − = = = − = =2 2 2( ) ( ) ( ( )) ( ) ( ( ))i i i i iDI MI MI MI MI  

   
−

= = − = =
2

1
( )(1 ( ))i i

N
MI MI

N
, 

and for sufficiently large n  


=

− − + + − − + −
= =  =   

3 2 3
2

2 2 2 2
1

1 1 2 3 1 ( 1)(2 1) 1

6 6 3

n

i

N N n n n N n n n N n
DR i

N N N N
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Then 


   



+ 
−  − + +    

= = −  −       − −      

2

2
2 22

2

3 3

2

( 1)

3 1 3 12

1 ( 1) 2 2

3

n n
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R MR R RN n N nN
n

N n N n n N n n NDR

N

. 

The random variables   
−

=

= =
1

1

( )
n

i
i

R iI  A) are independent, so (for sufficiently large n) the 

distribution of the quantity  



−R MR

DR
 can be considered as N(0,1). Therefore, the limiting 

distribution of the sum of their squares is the 2 -distribution. Therefore, we can assume that the 
variable 
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



−

=

+ 
= − 

 


21

0

3 1

2

N RN n
T

n n N
                                           (4) 

has 2 -distribution with degrees −1N  of freedom and for the chosen significance level  the limit 

statistics 


2  can be calculated as ( )
 

  =  = −2 21 ( )P T F , where ( )F x  is the 

 2-distribution function with −1N  degree of freedom. 
A sequence passed the test with a significance level   if 


 2T . 

If − 1 30N , then the limit value of the statistic 
2  for a given significance level  is calculated 

from the formula  = −2( ) 1F , where ( )F x  is a 2 -distribution function with -1 degrees of 
freedom (the value of the distribution function is tabulated). 

If -1 30, then the distribution  22 approaches normal − +( ; 2( 1) 1, 1)N x N , and the limiting 

value of the statistic 
2

 for a given level of significance is found from the formula 

( )  = − − +
2

2 1
2( 1) 1

2
N z , where   = −( ) 1z , ( )x  is a function of the standard normal 

distribution. 
For example, for =16N  and  =0.01  we have  =2 30.58 ; for =16N  and =0.001, we have 

 =2 37.7  
A sequence passed the test with a significance level   if  2 2 . 
P-value calculation. 
If − 1 30N , then the P-value corresponding to the calculated value of the statistic 





−

=

+ 
= − 

 


21

0

3 1

2

N RN n
T

n n N
 is calculated as = −1 ( )TP F T , where ( )F x  is 2 -distribution function with 

-1 degrees of freedom. 
If − 1 30N , then the P-value corresponding to the calculated value of the statistic 





−

=

+ 
= − 

 


21

0

3 1

2

N RN n
T

n n N
 is calculated with the next steps: 

- calculate the value =  − − −2 2( 1) 1z T N ; 
- calculate the P-value as = −1 ( )TP z , where ( )x is the standard normal distribution function 

(the value of the distribution function is tabulated). 
This test checks the dependence of a symbol on its position in a sequence. For example, it can 

detect any periodic or monotonic trends. 

3.5. Test of inversions 

Let  
=1

n

i i
 be a sequence of independent random variables, equiprobably distributed on the 

alphabet A of the size . 
We assume that =2n l  (otherwise we discard the last symbol of the sequence). 
Build an auxiliary sequence    −= 2 1 2i i iI , =1,i l , and calculate 

( ) ( ) = = = + = = = −
1 1 1 1

0 , 1 ,
2 2 2 2

i iq P p P
N N

 

 = − = −  =
2

1 1 1 1
, , 1,

2 2 4 4
i iM D i l

N N
. 
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Define the random variable 
=

=
1

l

n i
i

I  (the number of inversions, without overlapping, in the 

sequence  
=1

n

i i
). Then 

   
= − = −   
   

2

1 1 1 1
,

2 2 4 4
n nMI l DI l

N N
. 

Since nI  is the sum of identically distributed, independent random variables, then the variable 

−
= n n

n

I MI
I

DI
                                                        (5) 

has asymptotically standard normal distribution. Therefore, for the chosen significance level  
the next equality holds: 

 
 −
 =  = −
 
 

2 2 ( )n n

n

I MI
P I F I

DI
, 

where ( )F x  is the standard normal distribution function. 

A sequence passed the test with a significance level  if 

−
n n

n

I MI
I

DI
, where 

I  is calculated 

from the equation 


= −( ) 1

2
F I . 

For example, for =0.01 we have 
I =2.58. 

P-value calculation. 

The P-value corresponding to the calculated value of the statistic −
= n n

n

I MI
I

DI
is calculated as 

( )=  −2 1 ( )IP F I , where ( )F x  is the function of the standard normal distribution. 
Like the series test, this test detects dependencies between symbols, but of a different nature. 
It should be noted that, in general situation, a maximum length run test can be added to the 

above-described set of tests. However, for the second-level verification, it is unnecessary, since 
such a test is performed continuously according to the third-level verification. 

3.6. Independence of tests in the OPTIMA-5 set 

To check the independence of the tests of this set, two methods were used: (i) using the normal 
distribution [23]; (ii) using Chernov's inequality [24], both with the significance level  =0.01 . The 
number of sequences which passed all tests is =T 296. 

The significance level for checking hypothesis about independence is =0.0001A . The following 
results were obtained. 

Independence verification using normal distribution: credential interval is calculated as 
 1 2,W W , where 

( )
( ) ( )( ) 



 
−  − − 

= − −  = 
 
 

5 5

5

1

1 1 1
max 0, 1 4 0.9

300
W

, 

( )
( ) ( )( ) 



 
−  − − 

= − +  = 
 
 

5 5

5

2

1 1 1
min 1, 1 4 1

300
W . 

As   1 2,T W W , the hypothesis about tests independence is accepted. 
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Independence verification using Chernov's inequality: credential interval is calculated as 
 1 2,V V , where 

  = − =1 max 0, 193AV  and   = + =2 min 1, 300AV , with ( ) =  −1
m

n , 


= 
3 2

lnA
A

. 

As   1 2,T V V , the hypothesis about tests independence is accepted. 
Hence, both methods make the same decision and we may consider these tests to be mutually 

independent. 

3.7. Using improved strategy for second-level verification of PRNG, built 
according to Appendix A of DSTU 9041:2020 

It should be noted that, in general situation, a maximum length run test can be added to the above-
described set of tests. However, for the second-level verification, it is unnecessary, since such a test 
is performed continuously according to the third-level verification. 

To confirm the practical usage of the Improved Strategy for application in second-level PRNG 
verification, we applied the verification to the PRNG described in Appendix A of DSTU 9041:2020 
[23]. Note that Improved Strategy was described in details in [6], therefore, we only note here that 
it verifies the following requirements: 

- equiprobable distribution of P-values for each test (checked using limit chi-square 
distribution); 

- the proportion of sequences that passed each test (checked using limit normal distribution); 
- the number of sequences that passed all tests (checked using limit normal distribution). 
All tests from OPTIMA-5 were applied to 300 sequences, obtained from PRNG mentioned above. 

Then for each test distribution of 300 corresponding P-values was checked using chi-square test 
with significance level =0.0001A . Next, for each test the proportion of adopted sequences were 
checked, using limit normal distribution to calculate the edges of credential interval with 
significance level =0.0001A . At last, the proportion of sequences passed all tests was checked, 
using limit normal distribution to calculate the edges of credential interval with significance level 
=0.0001A . 
1. Distribution of P-values 
In conditions, described above, the limit statistics for chi-square criterion is 33.71995. Based of 

obtained P-values, the next statistics were calculated (Table 1): 

Table 1 
Distribution of P-values 

Test P-value Result 
Chi squared test 9.33333 Passed 
Chi sq. for bigrams test 11.00000 Passed 
Series number test 4.73333 Passed 
Sign places test 5.53333 Passed 
Inversions test 3.53333 Passed 

2. Proportion of accepted sequences 
In conditions, described above, the credential interval is [0.96702, 1.00000]. The corresponding 

proportions are (Table 2). 
3. Number of sequences passed all tests: 
Here we use approach based on normal distribution instead of approach, based on Chernoff 

inequality, described in [6]. 
In conditions, described above, the credential interval is [193, 300]. 
The number of sequences passed all 5 tests is 296. 
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Final decision: PRNG from Appendix A of DSTU 9041:2020 is adopted with Improved Strategy. 

Table 2 
Proportion of accepted sequences 

Test P-value Result 
Chi squared test 0.99667 Passed 
Chi sq. for bigrams test 0.99333 Passed 
Series number test 0.99667 Passed 
Sign places test 0.99667 Passed 
Inversions test 0.99667 Passed 

4. Conclusion and discussion 
The article proposed new technique for second-level verification of the cryptographic quality of 
RNG/PRNG, intended for key generation. The task of the second-level verification is to detect 
faults in RNG/PRNG before these faults become critical and dangerous from the cryptographic 
point of view. This second-level verification consists of 5 tests, which are detailed described in this 
work. For each test the simple algorithm to calculate corresponding P-value is given, because 
second-level verification uses the set of obtained P-values to make decision about RNG/PRNG 
quality. As part of justification of the set of tests, chosen for this verification, we proved that these 
tests are in dependent using two different methods: one is based on limit normal distribution, the 
second is based on Chernoff inequality. Both methods made decision about tests mutual 
independence. 

To demonstrate practical usage of the second-level verification, we applied it to standardized 
PRNG, and obtained the expected result: PRNG was accepted. 

As the follow direction of investigation, we consider justification of the value of time interval 
between second-level verifications, based on the nature of the generator, its characteristics, 
supposed variant of application and other factors. 
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