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Abstract 
There are few high-quality corpora for the Ukrainian language. Moreover, while modern LLMs benefit 
from scale, applications benefit more from task-centric corpora aligned with downstream tasks. Wikipedia 
is a large, community-curated, well-structured and richly cited resource. This article explains how we 
leverage Wikipedia to build task-centric corpora for the Ukrainian language. 
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 Introduction 

with downstream use - 

research. There are some good modern benchmarks and resources for this task. 

1] show how to condition generation on 

[2] gives example 
how table-to-text items in training sample has to include highlighted cell selections and lexical 
constraints, which reduces hallucinations and teaches controlled generation from structured data. 
KILT [3] shows that each item can be bound to a stable Wikipedia snapshot via page IDs and 
character offsets, enabling deterministic rebuilds, disambiguated entity targets, and leakage checks 
between train/dev/test. PAQ [4
questions. Such generation must be used carefully by keeping source passages for each question, 

without spurious patterns. BEIR offers a heterogeneous retrieval benchmark spanning fact 
checking, QA, and more, suitable for zero-shot retrieval evaluation [5]. MIRACL provides expert-
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annotated, multilingual monolingual retrieval over Wikipedia across 18 languages (not including 
Ukrainian), aligning with modern IR pipelines[6 -

-hop questions, matching LLM reasoning evaluation[7]. AmbiQA and successors 
model questions with multiple valid interpretations and answers, recent work on generative 
disambiguation sharpens evaluation under ambiguity [8].  FEVEROUS extends FEVER to require 
structured + unstructured evidence, closer to real Wikipedia use [9]. AmbiFC introduces 10k claims 
with fine-grained evidence, advancing robustness beyond single-evidence claims [10]. However, all 
mentioned works do not support Ukrainian language. 

The authors have experience in designing linguistic resources and datasets [11, 12, 13]. In order 
to facilitate further research in Computational Linguistics for Ukrainian language we aim to design 
and implement a reproducible Ukrainian language centered Wikipedia-to-Tasks pipeline that will 
do the following:  

• robustly extracts and cleans content from MediaWiki snapshots; 
• performs adaptive chunking that respects section/paragraph boundaries and augments 

queries with retrieval context; 
• builds lexical, dense, and hybrid indices with explicit provenance; 
• generates and normalizes instruction and QA pairs supported by retrieval evidence; and 
• filters answer mismatches by embedding 

similarity) with targeted human review. 

 Related Works 

Nevertheless, several published resources can serve as practical surrogates.  
MKQA provides aligned question answer pairs across 26 languages (including Ukrainian) for 

ope ]. Multilingual QA pairs not bound to a specific Wikipedia snapshot or 

For our task, we must mine evidence on Ukrainian Wikipedia and bind each item to page/section 
IDs to make it usable for training, as an evaluation 

 
UNLP 

questions (ZNO) [15

 
 1.0 suite publishes Ukrainian evaluation tasks for sanity checks and model 

selection [16]. It is a broad Ukrainian evaluation battery with no Ukrainian Wikipedia passage 
provenance. It can be useful after training to check tokenization/morphology and to detect 
regressions unrelated to retrieval. 

blished in ACL Findings 2021 [17]. It is 

 
 c retrieval and 

highlighting [18
enrich entity fields in the index,  supervise evidence span highlighting, and evaluate entity fidelity 
in generated answers. 
TRWU contributes Ukrainian news messages with stance/sentiment/bias labels for robustness 
experiments [19]. It contains  kept for robustness (behavior on 
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pages) if we later extend beyond QA. 

 Source acquisition and filtering 

The Wikimedia Dumps portal documents the pages-articles.xml.bz2 files, directory structure, and 
checksums. We pinned the corpus to a single Wikimedia dump snapshot of the target Wikipedia 
(e.g., ukwiki-20250401-pages-articles.xml.bz2) to guarantee reproducibility and leakage control. We 
pulled the dump from https://dumps.wikimedia.org/ukwiki/20250401/ using wget with resumed 
transfers and verified integrity against the published checksums. We recorded the snapshot date, 
dump file names, file sizes, and checksums in a machine-readable manifest (snapshot.json). We 
chose the pages-articles dump (namespace 0) so only encyclopedic articles are included by default. 
We also archived the stub-meta-current.xml.gz for quick metadata lookups. The manifest stores 
{project: "ukwiki", snapshot: SNAP, dump: filename, md5} and is checked into version control. 

Grounding all tasks in a single Wikipedia snapshot is the standard practice that underpins 
reproducibility, comparability, and leakage control in knowledge-intensive benchmarks (e.g., 
KILT). Binding our pipeline to a specific snapshot ensures that retrieval sets and generated 
examples are stable across reruns and across research groups. Compared to pipelines that mix API 
reads with live content, our snapshot discipline yields deterministic corpora, mirroring best 
practice in KILT and BEIR while focusing on Ukrainian. This improves auditability (we can always 
point to the exact article revision) and allows fair head-to-head retriever evaluations. 

We converted wikitext to cleaned plain text using WikiExtractor[20] with JSON output enabled, 
then performed a light second-pass cleanup with mwparserfromhell for edge cases. Each output 
record contains {id, title, url, lang, revision, section_path, text}. WikiExtractor is the de-facto tool 
for transforming Wikipedia dumps into plain text, handling templates and producing scalable 
shards, mwparserfromhell[21] adds robust programmatic markup handling for edge cases. Using 
both minimizes noise without losing provenance. Some public corpora ship only monolithic text or 
rely on ad-hoc regex cleaning. Our extractor pipeline outputs structured JSONL with section paths, 
enabling section-aware retrieval and generation. This improves downstream RAG quality and 
facilitates manual audits (reviewers can jump to the exact section).  

Although pages-articles already targets namespace 0, we applied additional page-type and 
quality filters before indexing: 

1. Redirects & disambiguation: dropped pages beginning with #REDIRECT and those 
containing common disambiguation templates, we also filtered pages whose entire body is 
a bulleted list of links (list-pages and set-index pages). 

2. Minimum content , we 
removed articles dominated by tables/lists (>70% non-prose). 

3. Structural sanity: excluded pages with extreme template density (ratio of markup tokens to 
words) and pages with no alphabetic tokens in the first paragraph. 

Retrieval systems are sensitive to noisy or weakly structured pages, filtering out non-prose 
content improves dense retriever effectiveness and reduces hallucination in RAG. Benchmarks 
such as BEIR and MIRACL curate Wikipedia content with quality controls (native judgments, 
explicit exclusions), which supports our conservative filtering stance. Relative to English-centric 
pipelines (KILT/BEIR), our Ukrainian-first filtering aggressively removes list-pages/disambiguation 
pages that often poison top-k retrieval. This is expected to lower the proportion of non-answerable 
passages retrieved by >10% while retaining coverage of long-tail topics. 

Next sub-step is provenance & audit trail. Precise provenance enables error analysis and 
deterministic rebuilds key requirements echoed across KILT, BEIR or FEVEROUS. Maintaining 
revision IDs supports future diff-based updates without full re-extraction. Now every passage 
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carries strong provenance: {page_id, revision_id, title, url, section_path, snapshot_id, timestamp, 
lang}. We computed a stable document hash (SHA-1 of normalized wikitext) and stored it in both 
the JSONL[22] and the manifest. During ingestion we wrote structured logs per step (download, 
extract, clean, filter), each with counters and timing information. Many open releases expose only 
raw text or opaque indices. Our intermediate results are inspection-friendly and ready for hybrid 
retrieval, with enough metadata to reproduce any result or review any generated answer. 

 Chunking and Tokenization 

Our segmentation design converts article-level text into retrieval-ready passages with the 
following requirements: indexability under subword token limits of modern encoders, contextual 
coherence sufficient for sentence-level factual questions, and consistency across languages 
(Ukrainian primary, multilingual optional) if possible. 

={100, 
200, 300}) with overlap O (default O=0.2L) using the tokenizer aligned to the downstream encoder, 
so consecutive windows start at token indices. 

We adopted the tokenizer of the encoder actually used for passage representation to eliminate 
train test mismatches in subword boundaries. Our default tokenizer is BERT-family 
WordPiece[23] (30k vocabulary, using [CLS]/[SEP] specials), but the pipeline is model-agnostic, so 
other models can be used also, such as SentencePiece (Unigram/BPE), byte-level BPE, and variants 
required by multilingual encoders (e.g., XLM-R[24], mDeBERTaV3[25]) and sentence-embedding 
models (e.g., E5[26]/BGE[27]). (Discussion on other tokenizers is placed in Discussion section). In 
masked-LM encoders, subword tokenizers (such as WordPiece, SentencePiece) stabilize OOV 
handling in morphologically rich languages and reduce vocabulary size without sacrificing 
coverage.  

The window family is motivated by prior retrieval-augmented systems that operate on short 
passages (approx. 100 200 tokens), and by recent analyses of long-context behavior indicating 
sensitivity to the position of evidence. Overlap protects discourse continuity across boundaries, 

away from the beginning or end of the prompt, by ensuring that the same sentence can occur near 

retrieval and generation. For sections shorter than L it is accepted that they form a single passage, 
very long sentences are allowed to straddle boundaries to preserve token-level determinism. 
However, we ensure at least one boundary falls at whitespace. We record token_span and 
char_span for every passage to retain reproducibility and facilitate highlighting. 

We performed simple test on a small subset of our corpus with bag-of-words representation and 
queries derived from section leads. We compared different values of L (100,200,300) with different 
overlaps O (0.1, 0.2, 0.3) under a simple retriever. Shorter windows (100 200) consistently showed 
better retrieval precision at short queries, while 300-token windows slightly improved recall for 
multi-sentence questions. Overlap at 0.2 was found as optimal point between index growth and 
recall. Going for 0.3 offered limited additional benefit. These patterns accord with prior literature 
that emphasizes short, self-contained passages for retrieval-augmented QA. 

Fast tokenizers provide deterministic normalization and alignment maps, enabling exact 
reconstruction of text spans for audits. This matters for retrieval because span misalignment 
degrades dense similarity and complicates evidence highlighting. Finally, overlap increases index 
size, we mitigate this with deduplication keyed by (page_id, token_span) and by pruning windows 
that are near-empty after cleaning. 

There is a certain risk in such approach since fixed windows can split discourse phenomena 
(anaphora, enumerations). There are other options but we decided against using them in spite of 
mentioned risks due to their disadvantages. 
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Sentence-aware splitting uses sentence boundaries to avoid mid-sentence cuts, optionally 
packing adjacent sentences until a token budget is reached. It improves readability and fewer 
dangling coreferences, but there are disadvantages: reliance on sentence segmenters that may 
degrade on titles, lists, or scientific notation and introduce language-specific errors. 

Semantic (embedding-aware) splitting provides adaptive boundaries chosen by embedding 
similarity between adjacent sentences, chunks expand or contract to keep intra-chunk coherence 
high. It often produces fewer irrelevant tokens per chunk, but it has disadvantages: higher 

 
Hierarchical or hybrid splitting organizes passages at multiple granularities (section to 

paragraph to token windows) to enable coarse-to-fine retrieval. It is flexible with recall/precision 
trade-offs, but it has such disadvantages as index complexity and fusion logic at query time. 

We adopted fixed token windows as the primary method for their determinism, speed, and 
 However, our code path keeps sentence-aware 

and semantic splitters as pluggable components for ablations. 

 Storing Data 

5.1. Storage of chunks in an indexed JSON format 

We adopted a line-oriented JSONL corpus as the basis store for all passage-level artifacts produced 
-granularity supports incremental processing, 

graceful degradation (malformed lines quarantined without corrupting neighbors), and easy diffing 
across releases. It also simplifies re-tokenization experiments: the same JSONL payload can be 
re-tokenized into alternative chunkings without re-extracting Wikipedia content, preserving 
provenance fields verbatim across regenerations. 

Although JSONL lacks intrinsic indexing, line boundaries permit offset indexing without 
parsing the entire file. During writing we captured tell() positions and compressed-block 
boundaries, at finalize time we produced an index table (SQLite) keyed by doc_id. This way, 
retrieving k passages from disparate shards requires only k random seeks and decompression of at 
most k gzip members. 

 Each passage is recorded as a self-contained JSON object on a separate line, enabling stream 
processing and line-granular recovery. We bound every passage to an immutable, 64-bit doc_id and 
preserved both char_span and token_span derived during segmentation, so that auditors can 
reconstruct the exact context byte-accurately from the source text. For efficient random access, we 
generated a compact offset index that maps doc_id into tuple of (file_path, byte_offset, byte_len) 
and persisted it as a SQLite container provide supporting functionality (sidecar). This yields O(1) 
document lookup while keeping the storage human-inspectable. 

The extraction pipeline produced gzipped shards (approx. 1
lang/snapshot_id and by the first digits of doc_id. We normalized Unicode (NFC), compacted 
whitespace, and retained minimal yet sufficient metadata: page_id, revision_id, title, url, 
section_path, lang, snapshot_id, tokenizer, encoder, tokens, token_span, char_span, and text. The 
resulting JSONL serves simultaneously as: ground truth for all later layers, as an audit log of 
segmentation decisions, and a portable interchange format requiring only a text reader. 

Schema (abbreviated). {doc_id:int64, page_id:int64, revision_id:int64, title:str, url:str, 
section_path:list<str>, lang:str, snapshot_id:str, tokenizer:str, encoder:str, tokens:int32, 
token_span:list<int32>, char_span:list<int32>, text:str}. We deliberately avoided nested blobs that 
duplicate the raw article, keeping each passage atomic and append-only. When a subsequent 
snapshot changes an article, we allocate fresh doc_ids, ensuring immutability of previously 
released shards. 
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5.2. Building a vector index for RAG from JSON  

We constructed the initial retrieval subsystem entirely from the JSONL corpus, omitting any 
text field was embedded using basic BERT [23] (default: 

bert-base-multilingual-cased) with mean pooling over the last hidden layer gated by the attention 
mask. We then L2-normalized the resulting vectors and stored them as a contiguous matrix 
(float32, NumPy .npy). At query time, we compute a BERT embedding for the query with the same 
procedure and perform brute-force cosine search against the matrix. Although asymptotically more 
expensive than specialized ANN structures, this JSON-only baseline provides deterministic 
alignment with the tokenizer used in segmentation, high auditability, and a strong sanity-check for 
later, more complex indices. 

For this purpose JSONL shards were streamed in batches, texts were prefixed with no special 
markers (BERT does not require instruction prefixes), tokenized with the exact tokenizer pinned in 
Part 2, and encoded on GPU where available. We retained exact tokenizer/model revisions in the 
shard manifest to guarantee reproducible embeddings. The embedding matrix and a parallel 
doc_ids.npy vector (int64) were written per shard, with simple statistics (mean norm is approx. 1.0, 
zero NaNs) logged for each batch. 

While specialized retrieval encoders exist, BERT remains a robust baseline for multilingual 
semantics when paired with an appropriate pooling strategy. Using the same tokenizer/wordpiece 
inventory as segmentation removes a source of drift between segmentation and retrieval and 
simplifies ablation: any retrieval gains can be attributed to indexing rather than tokenization 
mismatch. 

For a query string, we apply the same BERT tokenizer and mean-pooling, normalize the vector, 
and compute cosine similarities against the passage matrix using blocked matrix multiplication to 
keep CPU caches warm. We then select top-k by partial sorting and return the corresponding 
doc_ids. Empirically, on a single 16-core server, brute-force cosine over approx. 250k passages 
remains within interactive latencies (approx. 10 60 ms) due to efficient BLAS kernels. Beyond that 
scale, sharding the matrix across processes provides linear throughput gains. 

In parallel to embeddings, we distilled a small SQLite sidecar keyed by doc_id holding title, url, 
section_path, lang, and char_span. Given retrieved doc_ids, we reconstruct human-readable 
evidence by reading the passage from JSONL (via the offset index explained in Part 4) and 
highlighting the char_span. This minimal path preserves strict provenance while keeping the 
indexing stack lightweight. 

The JSON-only, BERT-based retrieval provides a transparent and reproducible baseline that 
reaches acceptable Recall@k for definition and entity-centric queries on our snapshot while 
maintaining deterministic evidence reconstruction. It establishes a floor against which later 
improvements (alternate encoders or ANN structures) can be measured without confounds.  

5.3. HNSW: index construction and optimization for fast nearest‑neighbor search  

We transitioned from the JSON-only, brute-force cosine baseline to a graph-based approximate 
nearest-neighbor (ANN) index using Hierarchical Navigable Small Worlds (HNSW)[28]. The goal 
was to maintain high Recall@k while driving down tail latency for interactive RAG. HNSW 
organizes vectors into a multi-layer navigable small-world graph; queries descend levels greedily 
and then perform local best-first search at the ground layer. 

We trained no additional model: with BERT-derived, L2-normalized passage embeddings 
produced before we adopted inner product as equivalent to cosine on unit-norm vectors and 
constructed HNSW indexes per shard (approx. 1 5 M passages). We set default hyperparameters to 
M = 32, efConstruction = 200, efSearch = 64, with adaptive increases of efSearch for queries 
exhibiting low score margins. Indexes were wrapped in IndexIDMap2 to preserve 64-bit doc_ids 
and serialized alongside a manifest that records (dim, metric, M, efConstruction, efSearch, 
checksum). 
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HNSW yields a favorable latency recall frontier on sentence-level embeddings and supports 
incremental additions. Memory overhead scales roughly linearly with M and the number of nodes; 
thus, M = 32 balances recall and RAM, while efConstruction = 200 improves connectivity without 
prohibitive build time. Empirically (on our Wikipedia-like corpus), this configuration reduced 
median query time by an order of magnitude relative to brute force, with high Recall@20 
preserved. We verified that these trends match established evaluations reported in independent 
benchmarking environments and vendor-neutral documentation. 

We parallelized construction across shards. Each worker (CPU-bound for HNSW) mapped 
embeddings_bert.npy read-only, built a IndexHNSWFlat(d, M, METRIC_INNER_PRODUCT), set 
efConstruction, and added vectors in contiguous ID order to favor cache locality. After 
add_with_ids, the index was reparameterized with efSearch defaults and written to disk. We 
performed post-build sanity checks: degree distribution histograms, connectedness probes (BFS 
sample), and a smoke-test query set with known neighbors. 

Queries encoded by BERT are normalized and searched with HNSW k-NN. We monitor margin 
-1 and top-2) and empty-hit rate. If a margin is small or the hit set is nearly 

duplicate, efSearch is raised (e.g., 64 is changed to 
reranker cost in downstream generation. 

Search returns doc_ids, which we join to the SQLite sidecar to recover title, url, section_path, 
lang, and exact char_span. The index and metadata are version-locked via manifest hashes to 
guarantee reproducibility. 

HNSW is robust to moderate noise and local clustering; however, performance can degrade on 
purely random vectors. We therefore encode with stable BERT embeddings and normalize vectors 
to mitigate norm drift. We also reject shards whose post-build checks show abnormally high 
disconnected components or degree pathology and recompute with higher M. The HNSW 
deployment produced an interactive retrieval layer with stable p90 latency and competitive 
Recall@k, while preserving strict, file-based reproducibility. This forms the first production-ready 
search substrate atop our JSONL corpus. 

 Templates for retrieval‑augmented generation 

6.1. Template choice 

We evaluated several variants of templated with understanding that they are not mutually 
exclusive. 

QA style (Question/Context/Answer) - replaces Instruction with Question. atural for 
factoid QA and pairs well with DPR retrievers[29]. ess expressive for summarization 
or style-constrained tasks. 

ReAct-style RAG interleaves Thought and Act(Search) steps to fetch more passages during 
inference. It improves factuality and reduces hallucination by allowing targeted retrieval. But it 
requires a controller and tool integrations (increasing development complexity) and is costlier and 
harder to cache. 

Demonstrate-Search-Predict bootstraps few-shot demonstrations with retrieval in the loop 
approach is strong for tasks that benefit from pipeline-aware exemplars. However, it is even more 
complex and manpower intense than ReAct RAG and one must be careful with curation needed to 
avoid leakage which rises manpower requirements even more. 

XML-constrained RAG wraps segments in tags: 

<task><instruction>{instruction}</instruction> 
 

<answer></answer></task> 
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It is machine-readable and plays well with validators, also it is helpful for structured output 
requirements. Disadvantages are: sensitivity to novel tags and a bit reduced human readability. 

JSON schema RAG when 
 directly machine-readable and simplifies downstream scoring (same as XML-constrained). 

However, it can over-constrain free-form exposition and is fragile if the model produces trailing 
commentary. 

We decided to use the Instruction/Context/Answer (I/C/A) for ground generation in retrieved 
evidence because it is sufficient for the task at hand. We adopted triple-quotes for marking the 
context block to minimize boundary errors and support verbatim spans, while keeping machine 
parsing trivial. Each context passage is accompanied by [doc_id] and char_span for provenance. 
Our post-processor verifies that the final answer is attributable to identified sources and/or 
satisfies RAG-specific metrics. 

 
System: You are a careful assistant. Use only the Context. If the Context is insufficient, say so. 

Instruction:{instruction} 
Context: 
""" 
[{doc_id_1}:{char0_1}-{char1_1}]{passage_1} 
[{doc_id_2}:{char0_2}-{char1_2}]{passage_2} 

 
""" 
Answer: 

This format decouples Instruction (task control) from Context (evidence) and exposes explicit 
provenance tags that our evaluator can match against citations. 

6.2. Test implementation 

On the technical side we implemented a context packer that assembles the top-k passages returned 
by HNSW into a bounded-length window. Passages are ranked by a convex combination of 
similarity, recency (revision date), and entity overlap with the instruction. We de-duplicate 
near-identical passages by doc_id and Jaccard overlap on token sets to reduce redundancy. 

We used Mistral-7B-Instruct [30] as the default generator owing to its latency quality balance 
on commodity GPUs. The serving stack treats the generator as stateless: prompts are assembled per 
request. To test that generated text is supported by provided evidence, we integrated very simple 
attribution-focused metrics. Each answer is accompanied by a list of predicted citations (doc IDs); 
our scorer computes faithfulness and context relevance using per token Jakard. 

 Adaptive prompts for QA: template design, instantiation, and 
ablation 

Having established a high-recall nearest-neighbor index over BERT embeddings, we designed a 
family of adaptive prompt templates question in a normalized slot, optionally 
elicit reasoning traces for more demanding tasks, and standardize the answer channel to facilitate 
evaluation. We additionally support a Template insertion control (e.g., 

) that toggles the latent reasoning mode without enforcing a particular trace length. 

7.1. Formats and design trade-offs  

Structured prompts reduce ambiguity and provide latent affordances for reasoning strategies 
(decomposition, plan/execution separation). Empirical studies report large changes from format 
choices alone, even when semantic content is held constant. Reasoning-eliciting templates 
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consistently improve success on compositional and arithmetic tasks. Meanwhile, formatting 
sensitivity implies that stable, parseable layouts (XML/JSON) can mitigate variance and ease 
downstream evaluation. 

We tried several forms to test robustness and accommodate different inference regimes (not 
templates): 

Minimalist (Question - Answer):  
#Question:{question} 
#Answer: <final answer here>.  

Such approach allows for lowest token overhead, strong for simple factoid QA when retriever is 
accurate. However, it is fragile on multi-step reasoning, there is no explicit affordance to plan. 

Self-Ask  
#Question:{question} 
#Sub-question 1: <question> #Answer 1: <answer> 
#Sub-question 2: <question> #Answer 2: <answer> 

 
It encourages explicit decomposition and can integrate search actions between sub-questions. 

The disadvantages are longer prompts and it requires reliable gating to avoid over-decomposition. 
Plan-and-Solve  header 

#Plan 
#   
#  
#Solve <reasoned answer> 

This approach separates planning from execution and reduces missing-step errors. But, it also 
adds 10 25% token overhead and is sensitive to header labels. 

Least-to-Most 
#Problem:{question} 
#Easier subproblems: [s1,s2,   
#Solve in order and combine. 

Such approach helps with compositional generalization. Though it has high manpower cost for 
subproblems and there is a risk of leakage if subproblems reveal answers. 

Tree-of-Thought controller 
#Goal:{question} 
#Think in branches of up to B alternatives per step; depth D; evaluate with heuristic H. 
#Return only the final answer. 

It enables breadth exploration and backtracking, but it has highest inference cost and requires 
custom controller and stopping rules. 

Schema-constrained / XML-tagged 
#<q>{question}</q><r/> 
#<format>final-only</format> 

It has best advantages: it is parseable, it aligns with downstream extraction and plays well with 
safety filters. The only drawback is that LLMs are sensitive to unknown tags, so continuity is 
paramount. 

In our ablations, minimalist and Plan-and-Solve variants yielded the best latency accuracy 
balance under tight budgets, while Self-Ask and Tree-of-Thought offered higher ceilings on 
multi-hop tasks at increased token cost. The XML-tagged variant proved most robust to noisy 
context windows and is our default for production datasets because it simplifies evaluation and 
redaction. 
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7.2. Template spec and serialization 

We formalize an Instance as a 4-tuple (question, reasoning, answer, template_label) with optional 
reasoning and template_label. Each instance is serialized into two orthogonal views:  

• a human-readable  (for this manuscript), and  
• a machine template with explicit delimiters for injection into LLM contexts. 

Our default machine template for adaptive prompts: 
<task> 
<question>{question}</question> 
<reasoning>{reasoning}</reasoning><!--optional--> 
<answer>{answer}</answer> 
</task> 
 
<controls> 
<template>{template_label}</template> <!--e.g., Explain step by step: [{question}]--> 
</controls> 

 
The XML-like markers act as sentinel delimiters to reduce boundary errors during 

concatenation and to ease post-hoc parsing. We preserve the underlying JSONL record as ground 
truth by mirroring these fields as keys . 

Prompt-format sensitivity is substantial, so structure and delimiters are not cosmetic. Our 
ablations showed double-digit swings in exact-match when toggling separators and tag names, 
formatting strongly affects LLM behavior. 

For each question we normalized the user questions by lowercasing only function words and 
preserving named entities. This prevents capitalization-based retrieval drift while keeping entity 
surface forms intact. Each question is linked to its retrieval bundle (top-k passages + doc_ids) for 
provenance. 

For easy questions (factual, single-hop), we leave <reasoning> field empty and rely on evidence 
citations during generation. For compositional or multi-hop questions, we generate a concise, 
model-internal outline during dataset construction (two to four sentences) that expresses salient 
relations or decompositions (e.g., -wavelength 

). We use the <template_label> to switch on an instruction phrase (e.g., Explain step by 
step), without prescribing the full chain-of-thought at inference -this lets the serving model decide 
how much intermediate text to expose. 

We keep <answer> empty at prompting time (for test splits) or fill it for training instances used 
in instruction tuning. In both cases the template reserves the slot and the post-processor knows 

 
This kind of templates naturally support hidden reasoning or outline-level hints but allows to 

evaluate only the final answer against evidence. 
By consolidating on the XML- -by-

achieved consistent improvements on multi-hop questions without exposing long reasoning traces, 
lowered annotation overhead than with Self-Ask and Tree-of-Thought, and created robust parsing 
in our evaluation harness. The template also integrates seamlessly with our RAG context, as tags 
cleanly delimit query, evidence, and expected outputs. 
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 Validation and filtering of examples 

After all is done the remaining bottleneck for dataset quality is example hygiene: overly general 
queries must be removed, near-duplicate instructions must be collapsed, and examples whose 
answers are not attributable to the retrieved context must be rejected.  

We adopt a three-gate policy executed in the following order: (G1) query specificity, (G2) 
instruction de-duplication, (G3) context-to-answer consistency. The ordering is motivated by cost: 
pre-retrieval processing is (G1) cheapest, near-duplicate detection (G2) amortizes costs over entire 
shards, and faithfulness checks (G3) is the hardest. All gates leave a machine-readable audit trail 
(JSON) that explains the decision with scalar scores and thresholds. 

All gates produce structured audit records that log features, scores, thresholds, and the reason 
for accept/reject. This allows re-running the validator across snapshots with different 
hyperparameters without re-encoding texts. We deliberately bias toward precision (filtering too 
much) in G1 and G2, because failures escalate to a rewrite/curation queue; in G3 we balance 
precision/recall so as not to discard legitimate paraphrastic answers. 

Of course there are some issues. Entity-free queries that are still specific in closed domains (e.g., 
mathematics) may be over-filtered. Lexically diverse paraphrases may evade MinHash. Embedding 
proximity misses subtle contradictions. Nevertheless automation greatly reduces amount of 
required manual filtering. 

8.1. Gate 1 - Overly general queries 

The objective is to identify and remove prompts whose information need is under-specified (e.g., 

evaluation. We formalize under-specification as low lexical specificity. 
We combine pre-retrieval predictors from [31] with lightweight lexical features:  

• avgIDF and sumIDF over content tokens computed from our passage collection, low values 
indicate generic terms.  

• Stopword ratio and entity density (named entities per token), to penalize boilerplate 
phrasings while retaining entity-anchored requests.  

• Length controls (minimum 3 content tokens after stopword removal) to rule out one-term 
commands. 

We compute these signals per query and apply a learned decision rule trained on a small, 
hand-labeled dev set. The classifier is a calibrated logistic regression over standardized features 
(avgIDF, stopword ratio, lexical specificity, content length), chosen for transparency. 

Applying G1 removes a consistent tail of vague prompts while preserving entity-centric and 
compositional questions. This aligns with reports that pre-retrieval specificity predictors are strong 
proxies for query quality and reduces the frequency of ungroundable generations in our RAG 
evaluation. 

8.2. Gate 2 - Duplicate instruction detection 

The objective is to collapse near-duplicate Instruction and Question variants to avoid training and 
test leakage, evaluation bias, and over-representation of popular intents. 

We combine lexical features MinHash to capture surface-form duplicates and semantic cosine 
with the same BERT mean-pooled embeddings used elsewhere. So, each normalized instruction is 
shingled (word 5-grams), hashed into a MinHash signature, and indexed. The BERT embedding 
matrix of instructions is searched with HNSW to collect cosine neighbors. We merge close items 
into clusters. This hybrid approach catches both trivial paraphrases and deep semantic duplicates. 
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It directly follows evidence that deduplication improves generalization and lowers memorization in 
LLMs, and mirrors web-scale dataset construction practices that rely on MinHash at scale. 

8.3. Gate 3 - Context-answer consistency 

The objective is to detect and reject examples whose Answer is not supported by the Context 
returned by the retriever, thereby enforcing attribution and reducing hallucinations. 

We combine a vector-proximity test with a textual alignment score: 

• Attribution compliance. If the template requires citations, we verify that cited doc_ids are a 
subset of the retrieved doc_ids. This is formal procedure.  

• Embedding proximity test. We split the answer into sentences, encode each with BERT 
mean-pooling, and compute its maximum cosine similarity to any sentence from the packed 
context. An example passes if sufficient number of scores of answer sentences exceed a 
threshold. This test is indexing-agnostic and efficiently batched.  

• For curated subsets we compute a factual consistency score with an alignment model 
between the context and the answer. Low alignment flags unsupported claims even when 
embeddings yield false positives. 

We first run the proximity test, failing items are dropped immediately. Passing items are passed 
to the alignment scorer. The two-stage test rejects obviously unsupported answers cheaply and 
reserves expensive alignment modeling for ambiguous cases. In practice this reduces hallucination 
rate and raises attribution scores in our RAG evaluations without inflating latency during dataset 
construction. 

 Discussion and future work 

While BERT-compatible WordPiece tokenization is our default for interoperability with BEIR-style 
retrievers, we considered several alternatives. Each of them has strong advantages and they are 
listed below, but disadvantages made them untenable at this stage of development. 

XLM-R [24] is a SentencePiece Unigram miodel. Its advantages are: strong cross-lingual 
performance, robust to morphology, trained on large CommonCrawl in 100 languages. The 
disadvantages consist of: 512-token limit, unigram segmentation differs from WordPiece, leading to 
different window statistics, larger models incur higher latency. 

mDeBERTaV3 [25] is a multilingual DeBERTa. Its advantages are: improved pretraining 
objective (RTD) and parameter sharing, strong multilingual transfer, available HF checkpoints. The 
disadvantages consist of: tokenizer is SentencePiece-like, sequence limits and memory use 
comparable to BERT-base, fewer production-grade embedding heads than E5/BGE. 

MPNet[32]/RoBERTa-family work as byte-level BPE. Its advantages are: byte-level resilience, 
strong sentence-embedding variants (e.g., all-mpnet-base-v2), larger maximum input length and 
fast tokenization. The disadvantages consist of: mismatch with WordPiece passage stats, byte-level 
normalization can change token counts for Cyrillic punctuation. 

Advanced embedding models such as E5-v2[33] and BGE-M3 [27]. Their advantages are: 
state-of-the-art retrieval transfer, multilingual coverage, explicit instructions for query/passage 
encoding, often tolerant to moderately longer chunks. The disadvantages consist of: require careful 
prompt formats (e.g., query:/passage: prefixes) and may expect different maximum lengths (e.g., 
512 1024 tokens) and pooling strategies. 

As for performance, there is another option for memory-sensitive applications. IVF+PQ [34] is a 
technique that combines two indexing methods for efficient search in high-dimensional vector 
data: Inverted File (IVF), which structures data based on similarity, and Product Quantization (PQ), 
which compresses vectors by dividing them into subvectors and quantizing them. This allows for 
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significantly faster search and reduced memory requirements for storing large data sets. It excels in 
memory efficiency while HNSW excels in recall latency balance on CPU so it can be done. 

 Conclusions 

We successfully designed and implement a reproducible Ukrainian language centered Wikipedia-
to-Tasks pipeline that can do the following:  

• robustly extracts and cleans content from MediaWiki snapshots; 
• performs adaptive chunking that respects section/paragraph boundaries and augments 

queries with retrieval context; 
• builds lexical, dense, and hybrid indices with explicit provenance; 
• generates and normalizes instruction and QA pairs supported by retrieval evidence; and 
• filters answer mismatches by embedding 

similarity) with targeted human review. 
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