CEUR-WS.org/Vol-4171/paper_39.pdf

C

CEUR

Workshop
Proceedings

Toward a Unified Variability Language: Integrating
Feature-Model into the ArchiMate Metamodel

Ahmed Dehne! and Kurt Sandkuhl?

T Rostock University, Albert-Einstein-Str. 22, 18059 Rostock, Germany
2 Jonkoping University, Box 1026, 55111 Jonkoping, Sweden

Abstract

The rapid pace of digital transformation and emerging Al-driven solutions is driving variability across
enterprise architectures (EA), spanning business processes, data structures, and supporting IT services.
Effectively managing this variability requires a methodical approach that integrates cross-layer concerns.
Motivated by this challenge, we propose an extension to the ArchiMate metamodel that embeds feature-
modeling constructs directly into EA models. Our approach introduces three feature types—Mandatory,
Optional, and Alternative—as first-class elements and defines “Building Blocks” to encapsulate modular
combinations of business activities, application services, and data objects. We implement these extensions
within the open-source Archi tool, leveraging its native meta-model customization capabilities. A detailed
industrial case study demonstrates the practicality and expressiveness of our extended metamodel. This
work advances method support for variability management in EA.

Keywords
Variability, Enterprise Architecture Management, ArchiMate Metamodel Extension, Feature Modeling,
Enterprise Architecture building block

1. Introduction

The ongoing digital transformation, the emergence of innovative business models, and the
proliferation of artificial intelligence (Al) solutions are driving a significant increase in variability
within enterprises. This variability manifests across multiple layers of an organization
simultaneously. For example, enterprises often face numerous variants of business processes, which
in turn necessitate adaptations in the underlying data architectures. These observations are supported
by various studies examining the impact of digital transformation on enterprise architecture(e.g., [1],
[2], [3]) as well as the influence of Al on organizational structures and operations (e.g., [4], [5]). As a
result, managing variability has become a routine but complex challenge in enterprise operations.

To address this, organizations adopt different strategies ranging from rigid standardization, where
variability is minimized, to approaches that embrace full flexibility. Regardless of the chosen strategy,
a deeper understanding of how changes affect different parts of the enterprise is essential. Enterprise
Architecture (EA) models serve as a tool to visualize the interdependencies across various enterprise
layers. However, current research and practice offer limited support for managing variability across
these architecture layers in a cohesive manner.

At the same time, data engineering is gaining prominence in organizations due to the growing
reliance on data-driven products and services, as well as Al-based solutions [6]. From an EA
standpoint, effective data engineering should align closely with the organization’s data architecture
to prevent issues such as incompatibility and unnecessary structural divergence. We propose
designing modular, data-aware building blocks integrated in business processes. Methodical support

1PoEM2025: Companion Proceedings of the 18th IFIP Working Conference on the Practice of Enterprise Modeling: PoOEM
Forum, Doctoral Consortium, Business Case and Tool Forum, Workshops, December 3-5, 2025, Geneva, Switzerland

Q ahmed.dehne@uni-rostock.de (A. 1); kurt.sandkuhl@uni-rostock.de (A. 2)

® 0000-0002-7431-8412 (A. 2)

@ @ © 2025 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

for variability management can enable enterprises to respond more flexibly to change, improve
consistency across architecture layers.

In previous work, variability challenges in EA have been investigated [7] and the prototype of a
development method for identifying building blocks in EA models that integrate several architecture
layers has been developed. Building on this work, this paper aims to improve this method by
achieving a better integration of variability concepts into the modeling language ArchiMate, which
is used to represent the building blocks. More specifically, we enhance ArchiMate by introducing key
variability-modeling concepts, integrating these extensions into the Archi modeling environment,
and demonstrating their application through a case study.

The remainder of the paper is organized as follows. Section 2 outlines our research methodology.
Section 3 presents the necessary background in enterprise architecture management and reviews
related work on EAM building blocks. In Section 4, we describe our extensions to ArchiMate—
incorporating feature-model concepts—including a summary of our previous work (4.1), the tailored
metamodel augmentations for seamless feature-model integration in Archi (4.2), and the core
modeling elements underpinning the combined ArchiMate-feature model framework (4.3). Section 5
illustrates how the extended metamodel can be used. Section 6 discusses findings and outlines future
work.

2. Research Approach

The main objective of this research is to contribute to a better understanding of variability
management in enterprise architecture. The project follows the paradigm of design science research
(DSR) [8]. DSR is a research paradigm aiming at problem-solving in organizational settings, focusing
on developing valid and reliable knowledge for designing the required solutions. The envisioned
solution, called "artefact" in DSR, in our research is methodical and technological support for
managing variability based on enterprise architecture building blocks. DSR research projects typically
consist of several phases and require the use of different research methods depending on the DSR
phase and intended design solution. Based on a detailed problem investigation and requirements
definition in previous work, this paper concerns the third phase of a DSR project: design and
evaluation of the artefact.

The “design and evaluate” step in the DSR process typically includes several iterations in search
of the best design of the artefact. Starting from the method prototype presented in previous work,
this paper aims at a better integration of the representation of building blocks as models. In the first
prototype, two models are used in combination — the EA model of the building block and a feature
model to capture dependencies. In this iteration of the design, this integration of both models is in
focus. More concretely, an extended ArchiMate meta-model is proposed and validated in a case study.

3. Background and Related Work

This section lays the theoretical foundation for this thesis. Section 3.1 introduces the fundamentals
of Enterprise Architecture Management (EAM). Section 3.2 summarizes prior research on variability
management in EAM, derived from a structured literature review. Section 3.3 presents the concept of
Method Engineering. Finally, Section 3.4 reviews our earlier contributions, including the method
requirements, the development of a prototype methodology, and insights gained from an industrial
case study.

3.1. Enterprise Architecture Management

Modern enterprises operate through a complex network of stakeholders engaged in development,
operation, and governance. These actors often require different views of organizational structures,
processes, and components. To support alignment and effective communication across these domains,

architectural thinking has emerged as a strategic practice [9]. In this context, architecture refers to
the core elements of an enterprise, their interconnections, and the guiding design principles.

Enterprise Architecture Management (EAM) offers a systematic approach to modeling and
managing these elements. As a management discipline, EAM seeks to provide a cohesive
representation of the enterprise, facilitating planning, transformation, and continuous improvement
across various architectural layers [10]. The resulting enterprise architecture (EA) acts as a structured
map—capturing the current state, interdependencies, and design logic of the system [11].

TOGAF, a well-established EAM framework, is widely recognized as an industry standard [12]. It
defines three primary architectural domains: business architecture, information architecture (often
divided into data and application architectures) and technology architecture, which encompasses
infrastructure and physical systems.

To support these frameworks in practice, modeling languages such as ArchiMate are commonly
used. ArchiMate provides a standardized notation that allows consistent representation across
domains and supports communication between diverse stakeholders.

3.2. Variability in EAM

Our earlier study [7] explored how variability is addressed within the field of Enterprise
Architecture Management through a structured literature review (SLR), based on the methodology
proposed by Kitchenham [13]. The core research question guiding the review was: "What is the
current state of research on managing variability in enterprise architecture?" The process involved
defining selection criteria, systematically identifying relevant literature, extracting key insights, and
synthesizing the results.

The review revealed a broad range of studies addressing variability at various architectural layers.
A significant portion of the literature focuses on Business Architecture. For instance, works by Rurua
et al. [14], Mani et al. [15], Asadi et al. [16], and Benavides et al [17] examine variability in enterprise
domains, modeling approaches, and service-oriented systems. Technology Architecture also receives
considerable attention, with Wille et al. and Wehling et al. [18] investigating methods for mining
architectures and reducing complexity. In the realm of Application Architecture, research by
Langermeier et al. [19] and Nerome & Numao [20] explores modular development and software
product lines. Fewer studies address Software Architecture (e.g., Allian et al.) [21] or Information
Architecture, with Adjoyan & Seriai [22]providing a rare example focused on dynamic, service-based
modeling.

A key takeaway from this review is that most existing approaches concentrate on variability at a
single architectural layer, often overlooking cross-layer effects. To address this limitation, our work
advocates for an integrated, multi-layer approach to variability modeling, emphasizing reuse
strategies at various levels. An updated scan of the literature for this paper found no new significant
contributions beyond our own work [7].

4. ArchiMate Meta-Model Extension for Feature Modeling

Starting from a brief summary of our previous work, this section motivates and develops the
extension of the ArchiMate meta-model and presents its concepts in detail.

4.1. Contributions from Previous Publications

In previous work [23], we applied Method Engineering principles to define method requirements
and a prototype methodology for variability management in enterprise architecture (EA). The
identified key requirements are: explicit modeling of cross-layer variability (business, application, and
data layers); integration of disparate approaches into a cohesive variability framework; a unified
modeling approach for all layers; use of standardized languages like ArchiMate for clarity and tool
compatibility; seamless integration with commercial modeling tools; and visual representation of

architectural dependencies to aid configuration and reduce complexity. To meet these requirements,
we developed a prototype method based on modular building blocks—configurable units derived from
a reference architecture and adapted for specific business contexts, each comprising one or more
business processes or functional activities, corresponding application and data components, and
clearly defined interfaces for compatibility and reuse—modeled in ArchiMate and extended with
feature models to describe configuration options, constraints, and interdependencies. The method
follows a structured, sequential process of process modeling (analyzing enterprise processes to
identify variability points and classify them into archetypes), variability analysis (capturing optional
and alternative design elements with feature models), data architecture alignment (identifying data
needs, sources, and integration logic), feature-model development (creating structured
representations of the configuration space), and block definition (composing complete building blocks
with traceable interfaces and reuse potential). Implemented in ArchiMate and validated in an
industrial study, the approach proved effective at managing architectural complexity and enhancing
adaptability in dynamic enterprise environments.

5. Definition of
Building Blocks 1. Process
Modelling

«Identifying Building
s +Functional analysis
«Creating Templates = Identification of
Naming an variation points
Documenting

4. Development of 2. Analysis of
Feature Model Variability

+Creating a Feature Model ~Analysis of variation
-Identifying Variation Points points
+Selecting Mandatory Data -Decomposition

3. Expansion of
the Data
Architecture

+*Data Source
Identification

+Data Transformation

+Data Integration

Figure 1: Methodical approach and method prototype

Figure 1 depicts the methodical approach and overall architecture of our prototype. To fulfill steps
1 (process modeling), 2 (variability analysis) and 3 (data-architecture expression), we leveraged
ArchiMate within the Archi tool [24]. For step 4 (feature-model development), we employed Microsoft
PowerPoint as a lightweight, flexible environment for designing feature models. The ArchiMate and
PowerPoint artifacts defined our initial architectural building blocks, which we then manually re-
modeled in ArchiMate using Archi. This dual-tool, dual-language workflow revealed a significant
limitation: maintaining consistency across two distinct modeling languages and tools proved time-
consuming and error-prone. Specifically:

e Synchronization Overhead: Whenever we updated the feature model, we had to manually
propagate changes into the ArchiMate model—and vice versa—to keep both artifacts
aligned, effectively doubling our effort and prolonging iteration cycles.

e Risk of Inconsistency: Manual translation between PowerPoint and ArchiMate increased
the likelihood of discrepancies—missing attributes, mismatched relationships or outdated
elements—that compromised the integrity of our documentation.

e Tooling Gaps: Neither Archi nor PowerPoint supports native interoperability, forcing ad-
hoc export/import steps (e.g., screenshots, copy-and-paste, manual property mapping)
that further amplified the potential for human error.

e Steep Learning Curve: Mastery of two distinct modeling paradigms and interfaces
complicated onboarding and limited opportunities for cross-domain collaboration.

These challenges not only hindered productivity but also compromised the accuracy and
maintainability of our enterprise architecture models. To overcome these limitations, we enhanced
our approach by integrating ArchiMate and feature modeling into a single, unified language and tool.
Building on the ArchiMate metamodel, we retained its core enterprise architecture concepts while
embedding feature-model constructs directly within it.

4.2. Modeling Feature Modeling in Archi: Tailored Metamodel Extensions for
Seamless Integration

For the extension of the ArchiMate metamodel to support feature-model notation. We evaluated
three potential approaches—each designed to represent “Mandatory,” “Optional,” and “Alternative”
feature values. Below, each approach is described in turn, with its respective advantages and
disadvantages.

Approach 1: Extend ArchiMate Concepts via Properties

e Description: Augment existing ArchiMate elements (e.g., Business Process) by adding a
“Feature Value” property (Mandatory, Optional, Alternative) directly to each relevant
concept, leveraging the inherent property mechanism of the ArchiMate modeling
language.

e Advantages:

Rapid Implementation: Can be configured immediately via the built-in property editor.
Low Overhead: No need to define new element types or write custom scripts.

e Disadvantages:

Diagram Clutter: Every view must display the additional property, which may clutter the
interface.

Extraction Required: A separate script or function is needed to scan all elements and
compile their feature-value assignments.

e Proposal: Creation of Building Blocks

e “Feature Value” Property: Add a single enumerated property (Mandatory, Optional, and
Alternative) to relevant element types.

e Export Script: One simple script to scan elements and output their feature-value
assignments.

Approach 2: Model Feature Values as Relationship Properties

e Description: Attach the “Feature Value” attribute to the relationships connecting
ArchiMate elements, indicating whether each connection is Mandatory, Optional, or
Alternative.

e Advantages:

Quick Setup: Leverages the same property-based mechanism as Approach 1 for rapid
deployment.
Consistent Editing Workflow: Uses familiar property-editing features within Archi.

e Disadvantages:

Similar Drawbacks to Approach 1: Relationship properties must be visible in every
diagram, and additional scripting is required to aggregate and report feature assignments.

Approach 3: Explicitly Define New ArchiMate Concepts in the Metamodel

e Description: Introduce three new element types in the ArchiMate metamodel—Feature
Mandatory, Feature Optional, and Feature Alternative—which can then be related back to
any existing ArchiMate concept via standard relationships.

e Advantages:

One-time Setup: New concept types need only be added once to the metamodel.
Centralized Editing: All feature-value definitions live in a single place, making updates
simple.

Clean Diagrams: Feature values appear as distinct elements, styled and labeled
consistently without cluttering the underlying elements.

e Disadvantages:

Additional modeling step: Each Feature element requires explicit creation and linking to
the relevant concepts, introducing one extra modeling activity per assignment.

e Proposal: Creation of Building Blocks

e New Element Types: In the metamodel, define three building-block element types—
Feature Mandatory, Feature Optional, Feature Alternative. Standard Relationship Patterns:
Create and document a “Feature Assignment” relationship pattern that links any
ArchiMate element to one of these new Feature types. Reusable Viewpoint: Build a
dedicated “Feature Model” viewpoint that automatically surfaces all Feature elements and
their assignments in a single diagram.

We chose Approach 3 because a single metamodel extension avoids repeated configuration,
centralizes feature definitions for easier maintenance, and uses distinct element types to keep views
clear and feature values visible.

4.3. Core Modeling Elements for Seamless ArchiMate and Feature Model
Integration

After deciding to extend the ArchiMate metamodel to support feature modeling, it was essential
to define the elements incorporated into this extension to maintain conceptual consistency and ensure
end-to-end traceability.

The extended metamodel includes a focused selection of ArchiMate constructs—Business Process,
Business Activity, and Business Role from the Business Layer; Application Component, Application
Service, and Application Interface from the Application Layer; and, where applicable, Technology
Layer elements—augmented by Data Object to capture essential information for process execution
and underpin core data-architecture aspects. At the same time, variability and configuration options
are handled via three feature-modeling elements—Mandatory Feature, Optional Feature, and
Alternative Feature—organized in a hierarchical structure to clearly distinguish each feature’s status.
Table 2 provides an overview of the key elements from ArchiMate and feature modeling.

Table 1

Overview of ArchiMate and Feature Modeling Elements Used in the Case Study
Element name Element picture Modelling Language
Business process _— = Archimate
Application service =S Archimate
Application interface T Archimate

Application Component T Archimate

Data object Data object 53 Archimate

Mandatory-Feature (m) mandatory Feature model
Optional-Feature (©) optional Feature model
Alternative-Feature (a)alternative Feature model

We used the specialization function in the Archi tool to adapt the metamodel, incorporating
feature concepts via a specialized Plateau element—mirroring the idea of a feature as a stable
architectural configuration—and a specialized Group element to represent building blocks as modular
units of interrelated processes, data, and services. These specialized Plateau and Group concepts also
offer the flexibility to establish diverse relationships with other ArchiMate elements such as Business
Process, Application Component, and Application Service, ensuring seamless integration of feature
models into the broader architecture. Table 2 presents the custom elements introduced in the
extended ArchiMate metamodel, highlighting the additions made to support feature modeling and
building block representation.

Table 2

Custom Elements Introduced in the Extended ArchiMate Metamodel
Element name Element picture
Mandatory-Feature AR AR
Optional-Feature Optional-Feature (™

Alternative-Feature

Building-Block Buitding Block W
e

A\

By adding feature-modeling elements to ArchiMate, we extended the metamodel to represent
variability—configuration options, optional and mandatory components, and alternative structures—
directly within enterprise architecture models. This bridges traditional ArchiMate modeling with
feature-based variability management. Our customized metamodel now combines standard
ArchiMate elements with new feature constructs, as shown in Figure 2

Building-Block ‘.ﬁ
.' composes
ccansEs composes composes
Mandatory Optional
e i (@)

Business Process =
Application Service o
Application Interface —O

Application Component&]

Data Object =l

Figure 2: Metamodel Extension Combining ArchiMate and Feature Modeling

The extended metamodel shows how Building Blocks hold and express variability. Each block can
stand alone or break down into sub-blocks for reuse, and it bundles features that drive configuration.
Features come in three types—mandatory (always included), optional (chosen as needed), and
alternative (pick one)—so you can model flexible architectures precisely. Every Business, Application,
and Data layer element must link to at least one feature, grounding each component in its
configuration. And because elements can join multiple features, shared services or data structures
naturally span different setups or product variants.

5. Leveraging the Extended Metamodel to Modularize Existing
Building Blocks

We applied the extended ArchiMate metamodel—enriched with feature-modeling elements and
their interrelations—to the building blocks from our case study. In earlier work [23], we evaluated
this on the “Geréteeinbau” (Device Installation) process, which details the steps for installing or
removing electricity and water meters.

Drevice installation WEFN 4
Measuring Poink
Operatar — cnnuelrtm —=—H Creationofa =
measuring station
|
i
Measuring points . Measuring Puint, | . fCreate r z
peotuction [NE] Operator installation order | technical equipment
Doc t o | : e movement [MSE]
i carry out ocument = Close technical =
| immediately ™ ¥ technical device order
! ¥
! |
) Test ok
i 1 i
| Dispusition and releaseof o . | Editing Technical - Test - contral the task of meter installation
no converters ------------& tochnical order Order WFM mat ok

Figure 3: Process of Device installation WFM

The workflow has several variation points—for example, after creating an installation order, it
checks for a converter and may branch into the “Editing Technical Order WFM [MSB/NB]” sub-
process. We added ArchiMate Data Objects to fill the data-layer gap and grouped elements under
Device Management (Device Type and Class). A PowerPoint feature model maps variability with six
activity-set building blocks (mostly mandatory), marking “Document Technical Device Installation”
and “Control Meter Installation” as alternatives, while shared data dependencies tie layers together.

@& @ @ @ @

Business
Process

,g_“ Create installation Disposition = release Create measuring Editing Technical Documént techn. Control meter
=2 [order of technical order station Order device ir ion ir ion
am h TN
5 g ; > _ \ y
= .9 Technical Responsibility Device Measuring Energy Output
[=] _OD Order Information Station Type Destination
Types of General Order General Location Warehouse Asset
movement Order Data Type Device Data Info. Class

| @ optional @ mandatory @alternative |

Figure 4: Feature Model showing building blocks identified for the device installation process

The feature model let us pinpoint process variants and candidate building blocks. We first built it
in PowerPoint, defined the blocks, then re-modeled them in Archi with ArchiMate. For example, the
Create Installation Order block links the Business Activity “Create Installation Order” to the
Application Service “Installation Technical Order,” provided by the Technical Order component and
accessed via the TECHAUFT_AUFTRAG.FMX interface for editing its Data Objects.

Business Architecture Layer

Device installation WFM =>|
Create installation order =
Apllication Architecture layer
Installation Technical order €O
2] k4 Form ==
Technical order .ﬁ
TECHAUFT_AUFTRAG.FMX ==
Dhata Architectur layer
—1 order number ; —
Asset class = Device management B Cutput destination 5 Types of movement =
N
Device class 1 Mobile = |
G satas = E iy = -l Installation movement from meter =
Device type =] storage to int of consumption
— Date = B e] A Output = e 5 o pE
e Focation = e = management installation movement from meter £
: bearing to measuring station

warehouse Meter installation B3 Smart meter 1
— Meter =

R Converter B3

installation Order type for B3
e device \nslq\la(lnnEl
Device installation

Electric energy—

Figure 5: Building Block (Create installation order)

We demonstrate how the updated metamodel captures variability using the Create Installation
Order block as an example. By mapping its features to the business activity, application service and
interface, and data objects, we showcase the extended model’s flexibility. The next section details this
block’s representation, highlighting its features and variability structures.

g

A\

Device installation ":

Mandatory-Feature O

!

Create installation order ﬁ

Create installation order - Mandatory Create installation order -optional
[— Create installation order = e = Employees =
A Installation Technical order
warehouse =]
[— TECHAUFT_AUFTRAG.FMX —0
— Technical order |
[— Device management =]
[— order number =
[Asset class =l
e Types of movement =

Figure 6: Integration of Feature Variability and ArchiMate Elements in the "Create Installation
Order" Building Block

The Create Installation Order Building block spans three layers: at the Building Block Layer, it’s
defined as a mandatory component of the higher-level Device Installation block; at the Feature Layer,
it captures three variants—Mandatory, Alternative, and Optional; and at the ArchiMate Layer, each
variant maps to one or more ArchiMate elements—for example, the Mandatory variant includes the
following elements:

e From the Business Layer: the business activity Create Installation Order,

e From the Application Layer: the application service Installation Technical Order, the
application interface TECHAUFT_AUFTRAGFMX, and the application component
Device Management.

e From the Data Layer: the data objects Order Number, Asset Class, and Types of Movement.

This layered structure allows for a modular and configurable representation of architectural
components, with each feature capturing a distinct configuration and linking to concrete business,
application, and data elements.

Additionally, we identified the Creation of a Measuring Station Building block as an optional
feature within the Device Installation building block. Its Feature Layer defines “Creation of a
Measuring Station [Mandatory],” and in the ArchiMate Layer this feature links to a predefined set of
elements according to the extended metamodel, structured as follows:

e Business Layer: the business activity Creation of a Measuring Station,

e Application Layer: the application service Creation of a Measuring Station and the
application interface MP_EDIT.FMX,
e Data Layer: the data object Measuring Station.

This structured representation reflects the modular design of the architecture and demonstrates
how variability is integrated and traced across all layers using the extended metamodel.

6. Summary and Future Work

In this work, we show that adding feature-modeling constructs—features, variation points, and
binding mechanisms—to the ArchiMate metamodel creates a unified language for expressing
software-product variability in enterprise-architecture artifacts. Embedding these notions into the
Business, Application, and Technology layers yields a coherent framework that supports both high-
level strategic planning and detailed product-line engineering, preserving ArchiMate’s rigor while
boosting its expressiveness for variant-rich designs.

Our industrial case studies demonstrate that the extended metamodel captures a wide range of
product variants, letting architects define feature hierarchies alongside core services, application
components, and infrastructure. Traceability links between features and architectural elements
streamline impact analysis: when regulations change, customer needs shift, or platforms evolve,
teams can quickly identify affected variants, gauge the scope of updates, and propagate changes
consistently speeding decision cycles, reducing inconsistencies, and increasing confidence in large-
scale deployments.

Beyond traceability, this richer modeling vocabulary fosters modular reuse. Architects can isolate
variant-specific behaviors, design targeted extensions, and systematically assemble solutions from a
common core. That modularity accelerates new offerings and clarifies governance by making
variability constraints explicit and machine-readable. Early tool prototypes even show how
automated validation catches configuration errors upstream, avoiding costly rework.

Despite these advances, broader adoption faces hurdles: many enterprise architects aren’t yet
familiar with feature-modeling concepts, so tailored training materials, examples, and workshops are
needed. Tool support must be scaled to handle hundreds of variation points without performance hits,
and research must integrate variability management into established governance lifecycles to keep
variant definitions aligned with evolving business strategies.

Looking forward, we’ll apply our method to additional industrial cases—spanning finance,
manufacturing, and telecommunications—to refine metamodel extensions for optimal variability
management. By iteratively modeling variation points in diverse contexts, we’ll calibrate guidelines,
tooling, and validation mechanisms, balancing expressiveness, performance, and usability.
Ultimately, this continuous-improvement cycle will deliver a robust, widely applicable framework
that empowers organizations to tackle complex product-line challenges with confidence.

Declaration on Generative Al

During the preparation of this work, the author(s) used ChatGPT-5 in order to: Grammar and
spelling check. After using these tool(s)/service(s), the author(s) reviewed and edited the content
as needed and take(s) full responsibility for the publication’s content.

References

[1] Kaidalova, J., Sandkuhl, K., Seigerroth, U.: How digital transformation affects enterprise
architecture management-a case study. International Journal of Information Systems and
Project Management, vol. 6, 5-18 (2018)

[2] Zimmermann, A., Schmidt, R., Sandkuhl, K., Jugel, D., Bogner, J., Mohring, M.: Evolution of
enterprise architecture for digital transformation. In: 2018 IEEE 22nd International Enterprise
Distributed Object Computing Workshop (EDOCW), pp. 87-96 (2018)

[3] Sandkuhl, K., Seigerroth, U.: Digital Transformation of Enterprises: Case Studies and
Transformation Paths. In: PACIS, p. 35 (2021)

[4] Rittelmeyer, J.D., Sandkuhl, K.: Effects of artificial intelligence on enterprise architectures-a
structured literature review. In: 2021 IEEE 25th International Enterprise Distributed Object
Computing Workshop (EDOCW), pp. 130-137 (2021)

[5] Park,S., yoon Lee, J., Lee, J.: Al system architecture design methodology based on IMO (Input-
AI Model-Output) structure for successful Al adoption in organizations. Data & Knowledge
Engineering, vol. 150, 102264 (2024)

[6] Fruhwirth, M., Ropposch, C., Pammer-Schindler, V.: Supporting Data-Driven Business Model
Innovations: A structured literature review on tools and methods. Journal of Business Models,
vol. 8, 7-25 (2020)

[7] Dehne, A., Sandkuhl, K.: Variability modelling in enterprise architecture management-survey
on existing approaches. In: 22nd International Conference on Perspectives in Business
Informatics Research Workshops and Doctoral Consortium, BIR-WS 2023 Ascoli Piceno 13
September 2023 through 15 September 2023, vol. 3514, pp. 94-107 (2023)

[8] Hevner, A., Chatterjee, S.: Design research in information systems: theory and practice.
Springer Science & Business Media (2010)

[9] Winter, R.: Architectural thinking. Wirtschaftsinformatik, vol. 56, 395-398 (2014)

[10] Simon, D., Fischbach, K., Schoder, D.: Enterprise architecture management and its
role in corporate strategic management. Information Systems and e-Business Management,
vol. 12, 5-42 (2014)

[11] Ahlemann, F., Stettiner, E., Messerschmidt, M., Legner, C.: Strategic enterprise
architecture management: challenges, best practices, and future developments. Springer
Science & Business Media (2012)

[12] The Open Group: The TOGAF® Standard, 10th Edition. Architecture Development
Method. Van Haren Publishing (2022)
[13] Kitchenham, B., Brereton, O.P., Budgen, D., Turner, M., Bailey, J., Linkman, S.:

Systematic literature reviews in software engineering-a systematic literature review.
Information and software technology, vol. 51, 7-15 (2009)

[14] Rurua, N., Eshuis, R., Razavian, M.. Representing Variability in Enterprise
Architecture. Bus Inf Syst Eng, vol. 61, 215-227 (2019). doi: 10.1007/s12599-017-0511-3
[15] Mani, N., Helfert, M., Pahl, C.: A Domain-specific Rule Generation Using Model-

Driven Architecture in Controlled Variability Model. Procedia Computer Science, vol. 112,
2354-2362 (2017). doi: 10.1016/j.procs.2017.08.206

[16] Asadi, M., Mohabbati, B., Kaviani, N., Gasevi¢, D., Boskovi¢, M., Hatala, M.: Model-
driven development of families of Service-Oriented Architectures. In: Apel, S., Cook, W.R.,
Czarnecki, K., Kastner, C., Loughran, N., Nierstrasz, O. (eds.) Proceedings of the First
International Workshop on Feature-Oriented Software Development, pp. 95-102. ACM, New
York, NY, USA (2009). doi: 10.1145/1629716.1629735

[17] Benavides, D., Galindo, J.A.: Variability management in an unaware software product
line company. In: Collet, P., Wasowski, A., Weyer, T. (eds.) Proceedings of the Eighth
International Workshop on Variability Modelling of Software-Intensive Systems, pp. 1-6.
ACM, New York, NY, USA (2014). doi: 10.1145/2556624.2556633

[18] Wille, D., Wehling, K., Seidl, C., Pluchator, M., Schaefer, 1.: Variability Mining of
Technical Architectures. In: Cohen, M., Acher, M., Fuentes, L., Schall, D., Bosch, J., Capilla, R.,
Bagheri, E., Xiong, Y., Troya, J., Ruiz-Cortés, A. et al. (eds.) Proceedings of the 21st
International Systems and Software Product Line Conference - Volume A, pp. 39-48. ACM,
New York, NY, USA (2017). doi: 10.1145/3106195.3106202

[19] Langermeier, M., Rosina, P., Oberkampf, H., Driessen, T., Bauer, B.: Management of
Variability in Modular Ontology Development. In: Hutchison, D., Kanade, T., Kittler, J.,

Kleinberg, J.M., Kobsa, A., Mattern, F., Mitchell, J.C., Naor, M., Nierstrasz, O., Pandu Rangan,
C. et al. (eds.) Service-Oriented Computing - ICSOC 2013 Workshops. Lecture Notes in
Computer Science, vol. 8377, pp. 225-239. Springer International Publishing, Cham (2014).
doi: 10.1007/978-3-319-06859-6_20

[20] Nerome, T., Numao, M.: A Product Domain Model Based Software Product Line
Engineering for Web Application. In: 2014 Second International Symposium on Computing
and Networking, pp. 572-576. IEEE (2014). doi: 10.1109/CANDAR.2014.105

[21] Allian, AP., Sena, B. Nakagawa, E.Y.: Evaluating variability at the software
architecture level. In: Hung, C.-C., Papadopoulos, G.A. (eds.) Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing, pp. 2354-2361. ACM, New York, NY, USA
(2019). doi: 10.1145/3297280.3297511

[22] Adjoyan, S., Seriai, A.: An Architecture Description Language for Dynamic Service-
Oriented Product Lines. In: Proceedings of the 27th International Conference on Software
Engineering and Knowledge Engineering. International Conferences on Software
Engineering and Knowledge Engineering, pp. 231-236. KSI Research Inc. and Knowledge
Systems Institute Graduate School (2015). doi: 10.18293/SEKE2015-217

[23] Dehne, A., Sandkuhl, K.: Towards Method Support for Variability Modelling in
Enterprise Architecture Management. In: Repa, V., Matulevicius, R., Laurenzi, E. (eds.)
Perspectives in Business Informatics Research. Lecture Notes in Business Information
Processing, vol. 529, pp. 119-134. Springer Nature Switzerland, Cham (2024). doi: 10.1007/978-
3-031-71333-0_8

[24] Archi ArchiMate Modelling: Archi. Archimate modelling tool (2010)

