Refinement-Driven Role-Based Enterprise Workflow
Modeling Considering Access Control

Yevheniia Yehorova®t, Marina Waldén®*1

1Abo Akademi University, Tuomiokirkontori 3, 20500 Turku, Finland

Abstract

Modeling enterprise workflows has a direct impact on business process management, ensuring the efficient use of
resources. Business processes span multiple organizational or system roles that perform tasks to achieve company
goals. In this paper, we continue to extend an approach to role-based workflow modeling, based on a refinement
that enables stepwise development of workflows from abstract models to detailed implementations. The main
idea of our approach is to iteratively refine the model by adding new roles, resources, and sensitivity levels, while
maintaining logical consistency and control over access policies. We used an abstract multidimensional matrix
for the theoretical visualization of the refinement and the UPPAAL tool for developing and validating the models.
Our approach is visualised using a healthcare case study, where hospital workflows are implemented.

Keywords
Role-Based Modeling, Stepwise Refinement, Workflow Modeling, Refinement-Based Modeling, Parallel Process
Modeling, Hospital Workflow

1. Introduction

In the modern world, effective management of business processes, particularly each workflow, directly
affects the success of the organization as a whole. A workflow is a sequence of tasks, actions, and
operations performed by roles within an enterprise to achieve set goals [1, 2]. In this context, workflow
modeling plays a main role. It enables the analysis of the sequence of tasks performed, the distribution
of roles (human, system, artificial intelligence), and their interaction [1]. With the growing complexity
of computing processes, increasing data volumes, and the need to quickly respond to changes, there
is a growing need for dynamic scaling, adaptation, and assurance of secure access to resources in
workflows. Integrating access control mechanisms into models allows not only to manage tasks, but
also to establish who can perform operations in the process and under what conditions.

Traditional methods of manual analysis are no longer sufficient for organizations due to the huge
volume of data and tasks. Modeling of workflows have long been essential tools for studying the
behavior of people, systems, and processes. This also applies to predicting performance and identi-
fying bottlenecks. However, modeling workflows in actual conditions faces some problems. Modern
approaches to business process management should take into account not only the need for formal
modeling but also flexibility, adaptability, and the ability to utilize the latest technologies. The issue of
access control within processes becomes especially critical, since the execution of operations is often
associated with the processing of confidential information and interaction between roles with different
levels of responsibility. Access control mechanisms in process models allow enterprises to improve the
manageability and transparency of resource use and to minimize the risk of achieving strategic goals.

Designing reliable and manageable workflow systems requires a foundation in access control mod-
eling, layered architecture, and granularity. This paper uses a combination of several fundamental
approaches. The transition from an abstract model to specific access policies is carried out in a stepwise

CEUR-WS.org/Vol-4171/paper_4.pdf

PoEM2025: Companion Proceedings of the 18th IFIP Working Conference on the Practice of Enterprise Modeling: PoEM Forum,
Doctoral Consortium, Business Case and Tool Forum, Workshops, December 3-5, 2025, Geneva, Switzerland

*Corresponding author.

"These authors contributed equally.

& yevheniia.yehorova@abo.fi (Y. Yehorova); marina.walden@abo.fi (M. Waldén)
@ 0009-0008-5526-4448 (Y. Yehorova); 0000-0001-8703-3179 (M. Waldén)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5

CEUR
E Workshop
Proceedings

mailto:yevheniia.yehorova@abo.fi
mailto:marina.walden@abo.fi
https://orcid.org/0009-0008-5526-4448
https://orcid.org/0000-0001-8703-3179
https://creativecommons.org/licenses/by/4.0/deed.en

manner using refinement [3, 4]. This is the process of making the model more precise while maintaining
its correctness. Finally, the model is organized as a multi-layered architecture, where each logical
representation of the system is structured in layers [1, 5]. Layers allow behavioral and organizational
aspects to be separated, ensuring the modularity and manageability of the model.

In our previously proposed enterprise workflow modeling approach [1], the main focus was on the
layered structuring of roles, modeling the logic of interactions and separating responsibilities in the
system. The Role-Based Access Control (RBAC) was used primarily as a mechanism for structuring
internal and external entities. All roles interacted in a single unified model of multi-layered workflow
architecture. Aspects related to issues of data access control, resource operations, and refinement of the
resources themselves were not considered at that stage.

In this paper, we extend the previously proposed approach by introducing access control components
based on a hybrid RBAC and MAC approach. In this approach, roles not only structure the workflow
but also have specific permissions for operations (read, execute) on defined resources. Resources, in
turn, are classified by sensitivity levels. This extension enables providing the model with strict security
policies, especially when it comes to healthcare, space, and military industries [6].

We show the advantages of our method through a healthcare case study where medical staff, patients,
and systems represent the roles. The approach is visualized using UPPAAL, and the models are available
at the link.

2. Related Work

Workflow modeling with access control in mind is rapidly evolving, integrating BPM, access control,
and formal methods [7, 8]. Role-based access control models (RBAC) [9] remain the foundation of
most approaches to rights management in BPM systems; however, they do not account for the gradual
granularity of business logic. Mandatory access control (MAC) [10] provides strict confidentiality but is
not adapted to dynamic processes. Current research considers separate approaches, formal verification
of BPM models, or combined hybrid RBAC/MAC [11] mechanisms. The gap lies in the fact that most
approaches provide an abstract access policy, or it is implemented as an external component separate
from the modeling process. The proposed approach fills this gap by formalizing access control as part
of the stepwise construction of the model, which ensures its logical integrity.

3. Access Control

Access control is the primary mechanism for ensuring information security. Its task is to limit the
actions of subjects (user, system) over objects (data, resources) in working to achieve the goals of
the enterprise. An effective access control system allows the prevention of unauthorized access and
minimizes the risks of internal abuse. The choice of access control model critically affects the flexibility
of management. The most used access control models are role-based and mandatory. In the context of
large enterprise companies, role-based access control (RBAC) is most often used. Mandatory access
control (MAC) is additionally used in the military, government, and healthcare sectors, where security
is a high priority. Given that our case study is within the healthcare area, it is useful to consider both of
these access control models.

3.1. Role-Based Access Control

Role-based access control (RBAC) is a standard mechanism for managing the access of users and systems
based on their role in an organization [7, 8, 9]. It is used in a variety of settings, from enterprises
to mission-critical systems. RBAC is an approach in which roles define user permissions. Each user
could be assigned one or more roles, and each role contains a set of permissions to perform actions or
operations on resources. It helps to avoid errors in assigning permissions to each user and simplifies
access management [9]. The main components of RBAC are following:

https://abofi-my.sharepoint.com/:f:/g/personal/yevheniia_yehorova_abo_fi/EuAfwEbR62VGnwkjMCCrEFIB_Ia8aB0-qVilOK4PoCphcw?e=ePLi2a

« Users or subjects are people, systems, or processes that perform actions, operations, or tasks in an
organization.

« Roles are abstract sets or categories for grouping entities (users or subjects) with similar responsi-
bilities and permissions. The permissions are required to perform specific tasks or actions. A role
is often associated with a type of activity and defines a level of access [10].

« Permissions are attributes that define which operations a role can perform on resources (e.g., read,
write, execute). The allowed operations are defined globally for the entire role without specifics.

« Objects or resources are data, files, systems, and services that require access to use the resource
within the organization’s workflow.

3.2. Mandatory Access Control

Mandatory Access Control (MAC) is an access control model where permissions are defined at the
system level rather than at the user level. Restrictions are enforced by access policies and security labels.
MAC does not use roles but strictly controls access through security levels.

Security level is a strictly defined characteristic of a subject that determines the category of data
to which the user has access. The security level is strictly fixed in the system and consists of two key
components: subject classification - the user’s clearance level, object classification - the security level of
the resource (class). Each resource is assigned a class, and each subject is assigned a clearance. Access
is allowed only if the subject’s clearance level is greater than or equal to the object’s sensitivity class
[10] otherwise it is denied.

clearance(subject) > class(object) (1)

3.3. Combination of RBAC and MAC

MAC and RBAC are role-based and label-based access control models, but each has its characteristics
and mechanisms for assigning rights, advantages, and limitations [10]. However, their strict applicability
raises the question: What if these key characteristics, operating principles, and application areas of
these models are combined? While MAC provides strict controls based on security levels, RBAC is more
business process-oriented and provides controls based on roles. In both models, the subject is the users.
Their permissions in MAC depend on their clearance levels, and in RBAC, on their roles.

Based on this part of the analysis, we can conclude that in both cases, the user must have a label —
a clearance level or role. In addition, MAC also protects objects that have sensitivity levels (classes).
Here, we combine the two described models and obtain a hybrid flexible access model, where the role
determines access, taking into account the type of sensitivity of objects and the level of access of each
role.

As a result, our approach is based on the following:

Each user has a role.

The access level is assigned to the role rather than to an individual user.
Users may be granted different clearances despite having the same role.
Each object (or resource) has a sensitivity level (class).

A

Even if users have the same role and clearance, access to certain information may still be restricted
based on resource sensitivity.

This is especially important in domains with critical information, such as healthcare, finance, and
government systems. Based on this, access control matrices can be built by considering roles, resources,
and sensitivity.

3.4. Abstract Multidimensional Access Matrix

The simplest and most formal structure for representing access control is the Access Control Matrix
(ACM). The classic ACM is a two-dimensional table whose rows correspond to system subjects and

columns to objects. The matrix cells contain a set of permitted operations that a particular topic can
perform on the corresponding object (e.g., read, write, execute) [12]. A simple two-dimensional matrix
is insufficient for representing complex access policies and does not scale well, especially in distributed
and context-dependent systems. Such systems introduce additional parameters - roles, security levels,
execution context - each of which adds a new dimension to the original matrix. In our approach, new
dimensions are not defined statically, but are introduced stepwise through refinement of the model at
each level in multidimensional access matrices.

4. Stepwise Development

The role-based workflow model is best modeled as a parallel system. Such a system comprises multiple
entities, including both people and systems or services, that interact simultaneously, independently,
and asynchronously. Given the high complexity of such systems, stepwise development is beneficial for
their formalization and synthesis. The proposed approach aims to gradually refine and verify the model,
improve manageability, and facilitate a stepwise transition by layers from an abstract representation
of the workflow to a specific model suitable for simulation of the process, taking into account the
synthesis of roles into a single, common workflow. The abstract model can be visualised using an
abstract access matrix with entities and their coordination. In the refinement of the model, this matrix
supports the synchronized development of roles, operations, resources, and sensitivity levels in a single
model. This approach provides an increased accuracy in access control and resource classification, as
well as detailed accounting of sensitivity levels, preserving the behaviour of the model. In addition, it
enables the implementation of the principle of least privilege, according to which a subject is granted
only the minimum rights necessary to perform their direct tasks [13]. This reduces the risks of errors
and internal issues.

4.1. Refinement

Refinement [14], based on Refinement Calculus [15], refers to an iterative process of improving an
existing system. The stepwise refinement method [14] consists of a series of correctness-preserving
transformations, each of which adds new functional or structural elements to the system without
modifying the already proven behaviour stated by the invariant and the correctness of the previous
model. In parallel systems, behavior is modeled with events of the form of guarded commands. An
event can be executed if its guard evaluates to true. Parallel execution of two events means that they
can be executed in any order, achieving the same result.

At each refinement step, superposition refinement [16] is applied, where new variables and new
events are added together with an invariant to introduce new features to the system without changing
the old behaviour. To prove that a system is a correct superposition refinement of another, more abstract
system, the following proof obligations must be satisfied [3, 14]:

1. New variables can be introduced that satisfy the new invariant.

2. Assignments to the new variables that preserve the new invariant can be introduced. Moreover,
the guards of the refined events can be strengthened.

3. Each new event in the refined specification should only assign to the new variables and should
preserve the new invariant.

4. The new events in the refined specification should not take over the execution, but their guards
should eventually become false. Hence, it is ensured that the refined system still allows the old
behaviour.

5. Whenever an event in the abstract specification is enabled, then either the corresponding refined
event or one of the new events should be enabled.

By discharging all these proof obligations for each refinement step in the system development, we
have proven the correctness of the system concerning its specification. This means that the refined

system should satisfy its invariant concerning the new behaviour, preserve the behaviour of the abstract
system, and not introduce deadlocks, nor infinite loops that could suppress the old behaviour.

Stepwise superposition refinement can be seen as a layered development, where each refinement step
forms a separate layer that adds details on top of the abstract model [5]. This allows for localization of
changes, increased modularity of the model, and simplification of its analysis.

4.2. Refinement of model components

Role refinement has been discussed in detail earlier [1], where roles were classified by belonging to
the organization (internal/external) and by the task performer (human/system). External roles were
refined by adding properties, while internal roles were refined through task decomposition. These
classifications directly influence the subsequent selection of resources and sensitivity levels that we
are interested in here in this work. Not only are roles specified here, but also resources, classes, and
clearances, which together lead to a specification of operations and their admissibility.

Our approach allows us to form the model of access control as a matrix in order to visualize the
overall behavior of the workflow. This paper focuses only on internal roles, since they implement the
actions that make up the structure and sequence of steps in the workflow. Refinement is carried out in
layers from the abstract definition of roles to more specific ones, depending on the tasks performed.
Stepwise development of internal roles allows us to refine the workflow structure and to ensure the
correct inheritance of access rights. Clarifying roles at the initial stages ensures the level of importance
for compliance with the principles of least privilege (PoLP) [13, 17, 18]. PoLP is a fundamental principle
of information security, according to which a subject is granted only those rights that are necessary to
perform their direct functions. This reduces the risk of internal threats and accidental security breaches.

4.2.1. Refinement of Resources and Security Levels

Resources in the context of workflow are the objects on which operations are performed. They can
be data, systems, services, or any other entities that roles interact with. Like roles, resources can be
developed with superposition refinement, which is critical for ensuring the consistency of the access
model.

In this paper, resource refinement is implemented as a stepwise refinement of an abstract resource
into more specific ones. For example, resource "report" can be refined to be of attributes "financial” and
"analytical". In addition, new resources can also be introduced in a refinement step. For instance, if
at the abstract level the resource was represented only as a data source, then at the refinement step it
can be introduced as a separate entity with new operations (e.g., execute) and included in the model
as a new resource with access rights. This is considered as superposition and requires consistency
with other dimensions (roles and security levels) of the model. Such an expansion of the resource set
is driven by the functional requirements of the refined roles, which may require additional services
or data to perform tasks. Therefore, resource refinement cannot be considered in isolation. It must be
coordinated with other dimensions of the model.

New resources require correct classification by security level (sensitivity), as well as assignment of
appropriate permitted operations within the refined access matrix. Sensitivity is a dimension related to
access policy. The security level is stepwise refined into specific classes (e.g., sensitive is refined into
confidential and secret). To ensure the correctness of the model and the consistency of all dimensions
of the access matrix, the refined entities should satisfy the proof obligations in Section 4.1. Additionally,
we introduced model development rules (see Fig. 1), which give guidelines for the development process.
The combination of model development rules and proof obligations facilitates us to guarantee the
correctness of the developed model. All entity refinements are reflected in a multi-dimensional access
matrix. The result of stepwise development is a structured, formally refined model that is applicable
both for simulating its behavior and for automatic synthesis of access policies. This is especially useful
for systems where multiple roles perform actions on the same objects, but with different access rights.

Rl |New sub-roles can inherit some permissions, but not have more permissions than the parent role

R2 |Ifthe original role had rights to certain resources, the set of qualified roles must provide at least the same coverage

Roles

R3 | Each qualified role is granted access only to those resources that are necessary to perform its specific tasks.

R4 | Refining roles may require a revision of the associated resources, allowed operations, and security levels

Ol |Resources can be refined to new sub-resources depending on functional necessity for performing the tasks of the roles.

New resources can be added depending on the functional necessity for performing tasks, where no existing resources are
available to cover the new tasks of sub-roles.

Resources
o]
ra

New resources must be consistent with the refined roles and security levels. New resources may require new
Strengthened security levels.

A security level can be strengthened by adding sub-levels of security, depending on the previously allowed access.
Access to abstract data is not a guarantee of access to its more sensitive parts.

Security
levels

S2 |Refining security levels depends on the role and resource refinements.

Figure 1: Workflow model development rules

4.3. UPPAAL

In order for our approach to be more feasible, we need tool support. We use the UPPAAL tool [19]
to model not only the operations and the relationships of the roles in the system, but also resources
and access to them. UPPAAL is a model-checking tool for the modelling, verification, and validation
of real-time systems [19]. A system developed within this tool consists of one or several processes,
composed in parallel, and is modeled as networks of timed automata. In this paper, channels are used for
binary synchronisation. With UPPAAL, the system can be modeled with a number of refinement steps,
and the correctness of the system can be proved. Moreover, both reachability and safety properties
can be verified. The UPPAAL simulator is used for the imitation of the general workflow. It shows all
instantiated automata and active locations of the current state and allows the user to see every step of
every template at the same time.

5. Our Approach - Refinement-Driven Role-Based Modeling

We propose an approach to role-based enterprise workflow modeling driven by refinement and access
control. The scenarios take into account several aspects at once - role structure, resource hierarchy,
and levels of sensitivity and access. We build on our previous work [2], where a multi-layer role-
based workflow was presented, focused on dividing participants into external and internal roles as
well as on their interaction. Our approach on refinement-driven role-based modelling involves the
following: adding attribute clearance to roles by MAC; classifying resources by sensitivity; introducing
a multidimensional access control matrix that links roles, objects, role clearance levels (clearance), and
resource classes (class); stepwise refinement of the model, including role and resource type, and access
levels; modeling refined states and transitions in UPPAAL, taking into account the hybrid access model;
verification of the critical paths of the model.

Our approach contains four modeling stages. At the first stage, an internal role is defined, for which
both a workflow model and an access control model will be developed. This article focuses on a hybrid
access control model. Therefore, in addition to the role itself, it is necessary to determine the set of
resources that are necessary to perform functional tasks and the minimum set of sensitivity levels that
will limit access to confidential information.

The second stage involves stepwise construction of an abstract multidimensional access matrix (see
Fig. 2). This structuring is the basis for unified access analysis. The matrix is a four-dimensional tensor
with axes for roles, objects, role clearance, and object class. Each point in this multidimensional space
represents a specific combination of a role interacting with a specific object, within a specific clearance
level and sensitivity class. The abstract multidimensional access matrix can be formally represented as:

Opr: (R x cl(R)) x (Obj x class(Obj)) — Bool (2)

where

« R — multiple roles (e.g., hospital staff);

« cl(R) - clearances of roles (e.g., low, high, restricted);

« Obj — multiple objects or resources (data, systems);

« class(Obj) — classes of objects (e.g., public, confidential);

+ Opr - the set of possible operations assigned to each admissible configuration.

The access conditions are checked for each configuration. According to the access rule, an operation
is allowed if and only if the clearance of the role is higher than or equal to the class of the object.
Operations are formed as a result of applying the access control policy to the combination of role, object,
clearance, and class. Thus, the matrix describes not only the permitted combinations but also which
operations are explicitly allowed in each context.

Resources| Objy Obj(y+1) Objm
Class class s1 class s2 class sl
Roles | Clearance
Rx clect c1(x)>=s1(y) A Opr x.y c1(x)>=s2(y+1) A Opr x_{y+1) c1(x)>=sl{m) A Opr x.{m)
cl c2 c2(x)>=s1(y) A Opr xy c2(x)==s2(y+1) A Opr x.(y+1) . c2(x)==sl(m) A Opr x.{m)
R(x+1)[clc3 c3(x+1)==s1(y) A Opr (x+1).y c3(x+1)==52(y+1) A Opr (x+1).(y+1) c3(x+1)==sl(m) A Opr (x+1).(m)
Rn cl ck ck{n)==s1(y) A Opr n.y ck(n)==s2(y+1) A Opr n.{y+1) . ck(n)==sl(m}) A Opr n.(m)

Figure 2: Abstract Multidimensional Access Matrix

The main idea of our approach is to iteratively refine the model by adding new roles, resources, and
security levels, while maintaining logical consistency and control over access policies. Relationships
between roles in the modeling process are implemented through synchronization, which allows interac-
tions between roles within a single workflow. After constructing the abstract matrix, the first layer of
the model is developed and visualized in a verification tool (e.g., UPPAAL). Roles are given as templates,
resources as states, and security levels as guards.

At the third stage, all components of the model are refined into more specific ones (Section 4):
roles by grouping according to functions or responsibilities; resources by refining into new types or
possibly adding new systems; security levels by strengthening them depending on roles and resources.
Each refined entity is updated in the matrix, and changes in one dimension automatically affect other
dimensions (cf. Fig. 2 and Fig. 3).

The fourth stage is the merging of the refined components and the creation of a refined access matrix
(First layer) (see Fig. 3 as a pattern and the full refined version at the link.). The refined matrix is
subsequently covered by the model at the next layer and verified accordingly. Comparison of the two
layers allows us to assess how the refinement affects the security, consistency, and completeness of the
model. This iterative structure makes our approach suitable for scalable enterprise architectures while
ensuring controllability, formalization, and verifiability.

Old Resource Objy
New Resource Objy.1 Objy.d
Class class s1.1 class s1.h
QlId Role | New Role | Clearance
Rx.1 clc1.1 c1.1(x.1)>=s1.1(y.1) A Opr (x.1).(y.1) c1.1(x.1)>=s1.h(y.d) A Opr (x.1).(y.d)
o Rx.a clc2.1 c2.1(x.a)>=s1.1(y.1) A Opr (x.a).(y.1) c2.1(x.a)>=s1.h(y.d) A Opr (x.a).(y.d)
X Rx.(a+1) clc2.1 c2.1(x.(a+1))>=s1.1(y.1) A Opr (x.(a+1)).(y.1)] c2.1(x.(a+1))>=s1.h(y.d) A Opr (x.(a+1)).(y.d)
cl c2.f c2.f(x.(a+1))>=s1.1(y.1) A Opr (x.(a+1)).(y.1)| c2.f(x.(a+1))>=s1.h(y.d) A Opr (x.(a+1)).(y.d)

Figure 3: Refined Multidimensional Access Matrix (First Layer)

6. Case Study

Our approach is visualised by a healthcare system, which is a complex environment in which various
roles, data with different sensitivity levels, and strict operational constraints interact. The workflow

https://abofi-my.sharepoint.com/:f:/g/personal/yevheniia_yehorova_abo_fi/EuAfwEbR62VGnwkjMCCrEFIB_Ia8aB0-qVilOK4PoCphcw?e=ePLi2a

model considers interaction between medical staff and patients, taking into account role differences
and data sensitivity. The process models hospital employees who act within clearly defined sub-roles
and access levels corresponding to their authority. The patient is considered an auxiliary external role
initiating the request process, while the main behavior of the system is modeled through the operations
of internal roles. The goal of this work is to formally describe and stepwise refine the role-based
workflow model, taking into account access rules based on data sensitivity. Hence, we formalize the
behavior of roles and, on this basis, we visualize them and their interaction using the UPPAAL automata
modeling tool, which allows us to simulate the workflow and verify it.

6.1. Overview of Development by Our Approach

In the first stage of modeling, we develop an abstract layer. It includes one abstract role - Hospi-
tal_Staff[1], and an abstract resource - Data, for which a sensitivity classification is specified. To
simplify the training model at an abstract level, it was decided to define only patient data (Data) as
the main resource. Working with confidential information is the most critical in medical systems.
This assumption does not limit the applicability of the model, but makes it more compact and vi-
sual. The access policy is formalized using two key parameters: clearance to determine the role
clearance level and class to determine the resource security level. We define values for the levels:
clearance € {undefined, public, sensitive}, and class € {public, sensitive}. Clearance undefined
means no access and is used as the basic default denial rule based on the principle of least privilege.
Class does not require a value undefined because the resource always has a certain sensitivity. A
resource with an access level public is available to all roles with clearance public or higher. To access
sensitive resources (class = sensitive), a role must have clearance sensitive or higher.
Thus, the matrix can be formally represented as a function:

Operation : (Roles x Clearance) x (Resources x Class) — {permit,deny} (3)

where Roles = {Hospital_Staf f}, Clearance = {undefined, public, sensitive}, Resources =
{Data}, Class = {public, sensitive}, and Operation = {read}.

At this stage, only one operation read is considered, since reading is the basic and most universal
access operation. We chose read as a primary example, allowing us to test the logic of access control for
the different values of clearance and class. The access policy is implemented according to the following
logic: (read : permit) — if clearance is higher or the same as class, (read : deny) — if clearance is lower
than class. Based on this, an abstract access matrix is developed and presented in Fig. 4 It displays all
possible combinations of a role and its clearance level concerning resources of different sensitivity
(class) for a fixed read operation. This matrix is the basis for defining guards in the UPPAAL model.

Resources Data
Class public sensitive
Roles Clearance
undefined read : deny read : deny
Hospital_Staff | public read : permit read : deny
sensitive read : permit read : permit

Figure 4: Abstract Access Matrix for the Hospital Staff

6.2. Development and Simulation in UPPAAL
6.2.1. Abstract Specification

After constructing the matrix in Fig. 4, we proceed to modeling in UPPAAL. Roles, resources, and
sensitivity levels are modeled as states, transitions, guards, and variables. In the abstract layer, the
system is modeled as the interaction of three key entities: Patient, Hospital, and Hospital_staff. These
entities are implemented as separate, independent templates in UPPAAL, which are synchronized via

channels using variables to simulate the workflow in a hospital. The Hospital acts as a mediator that
listens to all events of the roles. All its transitions are abstract and are implemented in Hospital_staff,
where access levels are defined. The core logic is implemented in the Hospital staff template, which
models the role’s behavior and access to patient data. According to the access matrix (see Fig. 4), all
six permissible combinations of the variables clearance and class were covered in the model. These
variables are directly specified in the global declaration of the model: by default class and clearance
are are of type int with the initial value 0, while permit and deny are of type bool and initialized to
false. The sensitivity levels are encoded as integer constants with the following values: null = 0,
undefined = 1,public = 2,and sensitive = 3.
Accordingly, the decision is made according to logic in Section 6.1

permit = true; if class < clearance A class # null N clearance # null (4)
deny = true; if class > clearance A class # null N clearance # null (5)

Thus, at each moment, the model covers a specific cell of the access matrix. The values of the variables
are specified explicitly, and the simulation is performed for one fixed configuration, which affects the
behavior of the entire system.

Initially, the patient arrives at the hospital, and their arrival is confirmed by a notification to the
hospital(arrival_notification). This notification is the starting point for the medical staff workflow. The
patient is moved to the state patient_in_progress. The hospital staff begins collecting the necessary data
and measuring parameters, recording health indicators, and collecting additional data (data_collected).
After completing the information collection, a decision is made on further verification and analysis
of the data. At this stage, the hospital staff selects one of the possible scenarios for working with the
collected information. The first option is manual verification, in which specialists independently analyse
the collected parameters and decide on the patient’s further actions. If this option is selected, the staff
manually verifies the data (data_checked_manually), after which the processing is completed.

The second possible option is to use the system with automated verification. If the hospital staff
chooses to use the automated system (auto_data_check_requested), the data is sent to it for verification
and analysis. Before the check of access, two key parameters are selected. The clearance is selected
through one of three dedicated channels (hosp_staff_*_clearance), and class is set through a separate
channel, depending on the type of information being processed (read_*_data). At this stage, the question
of the availability of the system, including its tools, functions, and operations, arises. Since different
roles of hospital staff imply different levels of permissions and capabilities, access to the system must
be differentiated. However, at an abstract level, we have defined only two possible access levels: access
granted (permit) or access denied/no access (deny).

In case of access restriction (deny), the system blocks the use of its capabilities and redirects the
hospital staff to manual checking. In this situation, the hospital staff is forced to analyze the data
manually since automated tools are unavailable and cannot process the information. If access to the
system is allowed (permit), the system continues processing the data.

Once all steps are completed, all temporary access parameters are reset (accesses_reseted). The patient
processing is completed (process_finished), and the patient receives the status ready to leave the hospital
(ready_to_leave). When the patient leaves the hospital (patient_left), the hospital confirms exit, and the
arrival notification is reset (arrival_notification = false).

6.2.2. Layered Development

Although the presented abstract model provides a compact and correct representation of the access
control logic, it includes only a single role (Hospital_Staff) and resource (Data). Therefore, we apply
stepwise refinement as described in Section 5. At the First refinement layer, the model is expanded by
three dimensions: roles, resources, and security levels.

The abstract role Hospital_staff is refined into three new operational roles based on task: Registrar,
Med_staff, and Physician. The Registrar is responsible for patient registration and admin data man-

agement. The Med_Staff performs basic medical procedures and preliminary evaluations, while the
Physician examines the patient, establishes a diagnosis, and prescribes treatment.

The abstract resource Data was refined into two new sub-resources and one completely new resource,
taking into account the source and usage of the data. A new resource Analyzer was added according to
the superposition principle, which involves a new operation execute. Consequently, we received three
new components of the model at Layer 1: Personal_data (patient data, e.g. name, gender, age, date of
birth), Medical_data (patient medical parameters, e.g. tests, diagnoses, anamnesis), Analyzer (system for
automated verification and analysis).

While personal data can be both public and sensitive, medical data is sensitive by default [20, 21].
The patient’s public personal data includes name, date of birth, gender, and sensitive personal data
includes passport data, insurance, and residential address. At the abstract level, clearance is represented
by three values: public, sensitive, and undefined (default), while class is represented by public and
sensitive values. After the refinement, we define new security levels since all medical data is sensitive
by default, but not all of them are accessible to hospital staff. Thus, the sensitive category is refined
into two sublevels: confidential and secret. This refinement also applies to the class values. Considering
this, Registrator has access to the functions and data that are necessary for registering patients. Role
Med_staff has access to personal data and, partially, to the patient’s medical data. Role Physician has
full access, including secret data and system resources, at this stage of the simulation. Accordingly, the
access control mechanism is updated to enforce these distinctions.

As a result of the refinement, the access control matrix is expanded (see Fig. 5) and now includes
three new sub-roles, two new sub-resources, and a new resource, as well as a refined set of security
levels. The new system Analyser is superposed on to the model by adding new channels, variables, and
guards that perform new tasks in such a way that the old behavior of the model is not affected.

6.2.3. Refined Model in UPPAAL

After the refinement, the template Hospital Staff is refined into three separate templates corresponding
to the refined roles Hospital_Staff € {Registrator, Medical_Staff , Physician}. In the new model,
each role performs its part of the process, initiating events, setting variables, and performing transitions
when guards hold. Each of the new sub-roles now acts within new access levels, and operations on
resources are permitted according to the updated First layer matrix (see Fig. 5). Interaction between
roles is implemented through synchronization of the corresponding templates. Transitions between
states occur when conditions (guards) hold and the values of variables are set by one role, and then
read by another role. Data transfer between roles is organized independently and makes it possible
to implement multithreading. Thus, the refined model preserves the integrity of the system. The
refinement from the abstract level to the refined level can be proved correct, preserving the safety
invariants.

Old Resources Data
= Analyser
New Resources PersonalData MedicalData
Class public confidential confidential secret confidential
Old Roles New Roles Clearance

undefined read : deny read : deny read : deny read : deny te : deny
Registrator |public read : permit read : deny read : deny read : deny execute : deny
confidential read : permit read : permit read : deny read : deny te : deny
undefined read : deny read : deny read : deny read : deny execute : deny
Hospital_Staff | Med_Staff |public read : permit read : deny read : permit read : deny te : deny
confidential read : permit read : permit read : permit read : deny execute : deny
undefined read : deny read : deny read : deny read : deny te : deny
Physician |confidential read : permit read : permit read : permit read : deny execute : permit
secret read : permit read : permit read : permit read : permit execute : permit

Figure 5: Refined Multidimensional Access Matrix for the Hospital

6.3. Evaluation of the Rules and Validation of End-to-End Access Control Cases

The model is simulated separately for each refined layer, which allows for stepwise detection and
correction of logical errors. At the abstract layer of the model, end-to-end scenarios were simulated to
verify the overall access control logic. Scenarios can be executed manually, with stepwise tracking of all
transitions and states, or automatically, using the Verifier module and pre-prepared scripts describing
the expected behavior of the model. In addition to simulation, a formal check of the critical properties
of the model is performed according to the formulas (4) and (5). In particular, the Deadlock-freeness
(A[] not deadlock) is confirmed, as well as the reachability of correct execution branches depending on
the configuration of input parameters. This checks that proof obligation 5 in Section 4.1 is satisfied.

The presented rules were implemented both in the abstract matrix and in a practical case study
(see Fig. 6). This confirms that the proposed approach maintains logical integrity: roles are clarified
without expanding rights, resources are fragmented or added only when needed, and security levels are
strengthened depending on the context.

Rules Case Study
R1 ([New sub-roles not have more permissions than the parent role Hospital Staff — Registrator, Registrator cannot gain access above parent.
R2 |[Combined rights of sub-roles at least same parent. Registrar, Med _Staff and Physician together cover all Hospital Staff accesses
R3 | Each role gets only task-relevant access. Physician ha?:f::ztsr: tt{: Silelg]if;iE: ::)Télfl‘g?t?;-MtclicalData
R4 |Refining roles may revise resources, operations, and security levels Physician has secret access to MedicalData; Registrator no access
(1 [Resources can be split into sub-resources Data — PersonalData, MedicalData
2 |New resources added if existing do not cover tasks Resource Analyser is added
3 |New resources must be consistent with the refined roles and security levels Physician ONLY is allowed to execute Analyser (execute : permit).
81 |Levels can be strengthened with sub-levels Physician: public — confidential — secret
82 | Refining security levels depends on the role and resource refinements. Med_Staff has access to confidential but NOT to secret MedicalData.

Figure 6: Formal rules coverage by Abstract model and Case Study

7. Conclusions

The proposed approach combines role structuring, matrix description of access logic, and stepwise
refinement to formalize, simulate, and verify workflows in complex distributed systems. The refinement
steps enable intuitive design of access control and formal validation. Unlike the classic RBAC model,
where access is assumed to be based on a role, in the developed approach, access rights are refined
and strengthened. A hybrid combination of RBAC and MAC allows for strict delimitation of access to
sensitive data and the necessary flexibility for the daily work of the staff. This makes our approach
relevant for medical and other sensitive domains. Using a multidimensional access matrix makes it
possible to scale the model with minor effort since adding new roles, resources, or sensitivity levels
does not require reworking the core logic. In addition, the approach allows for access refinement based
on the context and level of data sensitivity. The proposed approach supports independent stepwise
refinement of workflow components with their parallel execution. This creates a basis for modular
development and stepwise validation of access policies, applicable both at the design and execution
stages. Thus, the proposed approach provides a coherent transformation of an abstract description of
access control policies to their executable and verifiable implementation, which makes it a promising
tool for building reliable access control systems of high complexity and data criticality.

Declaration on Generative Al

During the preparation of this work, the authors used Grammarly only for grammar and spelling checks
and take full responsibility for the content.

References

(1]

[12]
[13]

[14]

Y. Yehorova, M. Waldén, A layering approach with role-based workflow modelling for the enterprise
workflow, in: Proceedings of the 14th International Conference on Simulation and Modeling
Methodologies, Technologies and Applications (SIMULTECH 2024), SCITEPRESS, Dijon, France,
2024, pp. 266-273. DOI: 10.5220/0012754900003758.

Workflow Management Coalition, The workflow reference model, 1995.

C. Snook, M. Waldén, Refinement of statemachines using Event B semantics, in: J. Julliand,
O. Kouchnarenko (Eds.), B 2007, volume 4355 of Lecture Notes in Computer Science, Springer, Berlin,
Heidelberg, 2006, pp. 171-185. DOI: 10.1007/11955757 _15.

M. Broy, K. Stelen, Specification and Development of Interactive Systems: Focus on Streams,
Interfaces, and Refinement, Springer, Berlin, 2012.

M. Waldén, Layering distributed algorithms within the B-Method, in: D. Bert (Ed.), B’98, volume
1393 of Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 1998, pp. 243-260. DOL:
10.1007/BFb0053365.

I. Sommerville, Software Engineering, 10 ed., Pearson, Boston, 2016.

A. Daassa, N. Missaoui, M. Machhout, S. A. Ghannouchi, Access control in BPMSs: A case study
for building a privacy-preserving covid-19 process in bonita, Security and Privacy 8 (2025) €70050.
DOI: 10.1002/spy2.70050.

A.D. Brucker, I. Hang, G. Lickemeyer, R. Ruparel, SecureBPMN: Modeling and enforcing access
control requirements in business processes, in: Proceedings of the 17th ACM Symposium on
Access Control Models and Technologies (SACMAT ’12), ACM, New York, NY, USA, 2012, pp.
123-126. DOI: 10.1145/2295136.2295160.

V. Attaluri, V. Aragani, Sustainable business models: Role-based access control (RBAC) enhancing
security and user management, in: Driving Business Success Through Eco-Friendly Strategies, IGI
Global, Hershey, PA, 2025, pp. 341-356. DOI: 10.4018/979-8-3693-9750-3.ch018.

S. Osborn, Mandatory access control and role-based access control revisited, in: Proc. 2nd ACM
Workshop on RBAC (RBAC’97), ACM, Fairfax, 1997, pp. 31-40. DOL: 10.1145/266741.266751.
S. Ameer, J. Benson, R. Sandhu, Hybrid approaches (ABAC and RBAC) Toward Secure Access
Control in Smart Home IoT, IEEE Transactions on Dependable and Secure Computing vol. 20, no.
5 (2022) pp. 4032-4051. DOI: 10.1109/TDSC.2022.3216297.

M. Heydarian, T. Doyle, R. Samavi, MLCM: multi-label confusion matrix, IEEE Access 10 (2022)
19083-19095. DOI: 10.1109/ACCESS.2022.31510438.

A. Abbas, Maximizing security with the policy of least privilege and segregation of duties in
organizations, 2024. DOI: 10.13140/RG.2.2.20183.69287.

R. Back, K. Sere, Stepwise refinement of parallel algorithms, Science of Computer Programming
13 (1990) 133-180. DOI: 10.1016/0167-6423(90)90069-P.

R. Back, J. von Wright, Refinement Calculus: A Systematic Introduction, Springer, New York, 1998.
DOI: 10.1007/978-1-4612-1674-2.

S. Katz, A superimposition control construct for distributed systems, ACM Transactions on
Programming Languages and Systems 15 (1993) 337-356. DOI: 10.1145/169701.169682.
National Institute of Standards and Technology, NIST SP 800-12 Rev.1, https://csrc.nist.gov/, 2017.
Accessed 2025-01-01.

ISO/IEC, ISO/IEC 27002:2022. Information security, cybersecurity, and privacy protection — Code
of practice for information security controls, Technical Report, International Organization for
Standardization, 2022.

UPPAAL Team, UPPAAL Homepage, https://uppaal.org/, 2024. Accessed 2024-02-28.

European Union, General Data Protection Regulation (GDPR), https://gdpr-info.eu/, 2016. Accessed
2025-07-05.

U.S. Department of Health and Human Services, Office for Civil Rights (OCR), Health information
privacy, https://www.hhs.gov/hipaa/index.html, 2021. Accessed 2021-06-09.

http://dx.doi.org/10.5220/0012754900003758
http://dx.doi.org/10.1007/11955757_15
http://dx.doi.org/10.1007/BFb0053365
http://dx.doi.org/10.1002/spy2.70050
http://dx.doi.org/10.1145/2295136.2295160
http://dx.doi.org/10.4018/979-8-3693-9750-3.ch018
http://dx.doi.org/10.1145/266741.266751
http://dx.doi.org/10.1109/TDSC.2022.3216297
http://dx.doi.org/10.1109/ACCESS.2022.3151048
http://dx.doi.org/10.13140/RG.2.2.20183.69287
http://dx.doi.org/10.1016/0167-6423(90)90069-P
http://dx.doi.org/10.1007/978-1-4612-1674-2
http://dx.doi.org/10.1145/169701.169682
https://csrc.nist.gov/
https://uppaal.org/
https://gdpr-info.eu/
https://www.hhs.gov/hipaa/index.html

	1 Introduction
	2 Related Work
	3 Access Control
	3.1 Role-Based Access Control
	3.2 Mandatory Access Control
	3.3 Combination of RBAC and MAC
	3.4 Abstract Multidimensional Access Matrix

	4 Stepwise Development
	4.1 Refinement
	4.2 Refinement of model components
	4.2.1 Refinement of Resources and Security Levels

	4.3 UPPAAL

	5 Our Approach - Refinement-Driven Role-Based Modeling
	6 Case Study
	6.1 Overview of Development by Our Approach
	6.2 Development and Simulation in UPPAAL
	6.2.1 Abstract Specification
	6.2.2 Layered Development
	6.2.3 Refined Model in UPPAAL

	6.3 Evaluation of the Rules and Validation of End-to-End Access Control Cases

	7 Conclusions

