CEUR-WS.org/Vol-4171/paper_6.pdf

C

CEUR

Workshop
Proceedings

Towards IT Platform Independence with pimUML
From Semantically Rich DEMO Models to Low Code

Nicholas A. Bzowski®*, Marien R. Krouwel? and Henderik A. Proper?

1Business Informatics Group, TU Wien, Vienna, Austria
’Make IT Right, Utrecht, The Netherlands

Abstract

With the ever-growing complexity of modern enterprises, and their supporting IT systems, it becomes increasingly
challenging to maintain good business-IT alignment. In recent work, we reported on a model-driven engineering
approach to transform, (business) semantically rich, DEMO models to low-code software artifacts for the Mendix
low-code platform, with the aim to improve business-IT alignment. The latter approach, however, heavily depends
on the specifics of the chosen platform. To reduce IT platform dependence, the Model Driven Architecture
approach suggests to discern three levels of models of a system: a business-oriented computation independent
model (CIM), an (IT) platform independent model (PIM), and an (IT) platform specific model (PSM). In this paper,
we present a more refined approach with the aim to increase the extensibility of the existing DEMO to Mendix
transformation to other target IT-platforms, while also “opening up” for other CIMs besides DEMO models. The
development of this approach is done in multiple (agile) design cycles, in which pimUML, a novel UML profile to
express PIM models, is developed and evaluated for preservation of semantics in each transformation step.

Keywords
Model Driven Architecture, low code, enterprise ontology, DEMO, UML, Mendix

1. Introduction

Enterprise computing has evolved from simple automation and inventory control on mainframes in
the 1960s into Enterprise (Management) Information Systems that support all day-to-day operations
across multiple departments and even across enterprises [1, 2]. This advancement has resulted in the
role of IT becoming increasingly intertwined with corporate strategy and operations [2, 3], while at the
same time business environments are constantly faced with both opportunities and threats as a result
of competition, increasing customer expectations, changing regulations, and emerging technologies [4].
Consequently, it becomes even more important that enterprises are able to simultaneously adapt
business and IT, with business-IT alignment as a critical success factor [5, 6].

Due to the complexity of modern Enterprise Information Systems, maintaining business-IT alignment
can be challenging. One solution to overcome this gap can be found in generating software artifacts from
business-oriented models [7], also known as Model-Based (Systems) Engineering [8] or Model-Driven
Software Development [9, 10], of which low code can be considered a more recent implementation [11].
A popular approach includes Model Driven Architecture®! [12] (MDA), in which higher-level enterprise
models can be transformed to code through a series of model-to-model transformations (see Fig. 1). MDA
suggests discerning three levels of models of a system: a business-oriented computation independent
model (CIM), an (IT-)platform independent model (PIM), and an IT-platform specific model (PSM).
However, MDA itself does not prescribe a certain level of business semantics of the models involved,
nor can it guarantee that the transformations preserve all semantics [13].

In recent work [15, 6], we explored the possibilities of mapping (business) semantically rich DEMO

PoEM2025: Companion Proceedings of the 18th IFIP Working Conference on the Practice of Enterprise Modeling: PoEM Forum,
Doctoral Consortium, Business Case and Tool Forum, Workshops, December 3-5, 2025, Geneva, Switzerland

*Corresponding author.

& nbzowski@gmail.com (N. A. Bzowski); marien@make-it-right.nl (M. R. Krouwel); henderik proper@tuwien.ac.at (H. A.
Proper)

® 0009-0002-3814-6876 (N. A. Bzowski); 0000-0003-4115-3858 (M. R. Krouwel); 0000-0002-7318-2496 (H. A. Proper)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Model Driven Architecture is a registered trademark of the Object Management Group

mailto:nbzowski@gmail.com
mailto:marien@make-it-right.nl
mailto:henderik.proper@tuwien.ac.at
https://orcid.org/0009-0002-3814-6876
https://orcid.org/0000-0003-4115-3858
https://orcid.org/0000-0002-7318-2496
https://creativecommons.org/licenses/by/4.0/deed.en

Figure 1: The Model Driven Architecture process, as described in [14]

- -

Figure 2: PIM as neutral intermediate model between multiple CIMs and PSMs

CiM 1 PIM PSM 1

CIM 2 L: PSM 2

CIM n PSM n

enterprise models directly to the Mendix low-code platform. In terms of MDA, this constitutes a direct
CIM-to-PSM transformation. By introducing a PIM layer in between, the process can be relatively
easily opened up to accommodate other PSMs as well as other CIMs, analogous to a router in a network
(Fig. 2). This research aims to improve the extensibility of the existing DEMO to Mendix transformation
to other IT-platforms while “opening up” for other (complementary) CIMs besides DEMO.

One promising PIM language is B-UML [16], which was developed in parallel to the research reported
in this paper. However, the B-UML language appears to be designed primarily as an intermediate model
for code-to-code transformation [16], or as an intermediate model from models with relatively low
(business) semantics [17]. Other initiatives include DISME [18]. However, the latter initiative combines
DEMO enterprise modeling with platform-specific constructs, completely ignoring the distinction
between the three MDA layers.

In this paper, we report on the development of pimUML, a set of UML profiles to express PIM models.
In developing pimUML, the transformation mappings from the DEMO Fact Model to pimUML and from
pimUML to Mendix have been redefined and evaluated for the level of semantic preservation.

The remainder of this paper is structured as follows. Section 2 is concerned with the research
approach we have used in developing pimUML. In Sect. 3 the relevant literature regarding MDA, UML,
DEMO, and Mendix are summarized. Finally, the results and evaluation of this research are presented
in Sect. 4, after which conclusions and future research are discussed in Sect. 5.

2. Research Approach

As the goal of this research is to define a PIM to allow a stepwise transformation from DEMO to low
code, we adopt the design science research methodology (DSRM) for the creation and evaluation of
innovative artifacts. As both the problem space and solution space need to be further refined, we adopt
a more iterative approach, also known as agile design science (ADSRM,; see [19]). The latter approach is
based on the generic DSRM, while being augmented with agile techniques for studies in which iterative
and experimental design is necessary. In terms of being ‘agile’, it adds features such as “problem backlog”
and “hardening sprint”. With each new sprint, findings may give rise to new questions being posed that
are added to the problem backlog to be addressed in a later sprint. To maintain rigor, a hardening sprint
may be performed periodically to solidify findings from previous sprints.

The actual research project was executed in eight sprints (see Table 1) of three weeks each.? The

*Not all results could be included in this paper; more details can be found in [20]

Table 1
Overview of the performed sprints and results

Sprint | Activities Results
1 Defining problem scope and setting solution objectives Sect. 3
2 Semi-structured literature review Sect. 3
3 Metadesign Sect. 4.1
4 PIM development and evaluation: standard UML
5 PIM development and evaluation: xUML
6 PIM development and evaluation: fUML
7 Hardening sprint: defining pimUML Sect. 4.2
8 Development and evaluation of mapping from pimUML to Mendix | Sect. 4

first sprint was focused on scoping the problem by analyzing relevant literature. It turned out that
a better understanding of the three MDA abstraction layers was necessary, which was consequently
tackled in a semi-structured literature review in sprint 2. After a metadesign sprint (3), sprints 4-6
focused on different UML profiles (see Sect. 4.2) to define a PIM and a CIM-to-PIM transformation, all
using the procedure from [21]. In the hardening sprint 7, the strongest components of the previous
three sprints were synthesized into pimUML, which in sprint 8 was evaluated with the development
of a transformation to Mendix. The mappings created during the design sprints were demonstrated
and evaluated using the EU-Rent case [22, 23]. To quantitatively evaluate pimUML, the semantic
preservation of transformations to and from the PIM was established [24, 25].

3. Theoretical Background

As this research builds upon existing concepts and artifacts, such as MDA, DEMO, UML and low code,
this section provides the relevant background.

3.1. Model Driven Architecture

Model Driven Architecture (MDA) is an example of Model Based Engineering (MBE) and Model Driven
Software Development (MDSD) (and related terms, see [26]) that uses UML to visualize and generate
code [27]. Where MDSD typically uses only one step of model transformation (or code generation),
MDA uses a series of model transformation to produce code (see Fig. 1). Typical advantages of model
transformations, including MBE, MDSD and MDA, are a) better understanding [28, 29, 30], b) increased
productivity [28, 29, 30], and c) traceability between model and code [31, 32] — key to achieve for
business IT-alignment.

To better understand the applicability of the MDA approach to generate low-code applications from
DEMO models, a semi-structured literature review was conducted (sprint 2) to better understand the
three abstraction layers [20]. The resulting (working) definitions of CIM, PIM and PSM are:

CIM - The computation-independent model captures the business operations, including domain-
specific vocabulary, actors, processes, and business rules. It focuses on functional aspects and
tends to completely stay away from specific technologies [33]. Its primary users are business
analysts, enterprise architects, and other business experts [33, 34].

PIM - The platform-independent model describes the computational concerns of applications, primarily
by capturing architectural and functional aspects of software systems. There tends to be a focus
on human-machine interactions, in both process design and user interface design [35]. A PIM is
primarily used by software architects and system analysts [34].

PSM - The platform-specific model may take many different forms, depending on the chosen target
technology. It covers many application aspects, from database design to user interface design.
Given their technical nature, PSMs are mostly used by software developers and system adminis-
trators [34].

For this research, DEMO fits the definition of a CIM, while a Mendix application model contains the
information as described for a PSM. We will use a UML-based language to define the intermediate PIM,
as UML is most commonly used for that layer. These three models and modeling languages will be
further detailed in the next sections.

3.2. CIM level: DEMO

The Design and Engineering Methodology for Organizations (DEMO) is a leading method within the
discipline of enterprise engineering [36], that sees enterprises as complex sociotechnical systems [37].
It has strong methodological and theoretical roots [38, 39, 40, 41] and sets communication as the primal
notion for the design of enterprises and its supporting software systems [42]. A DEMO model aims to
capture the operation of an enterprise in a technology-independent way [23] - this is also called the
enterprise ontology or its essence.

One of the key postulates behind DEMO is that facts in the world are created by acts, and that
these acts (and associated facts) follow a generic pattern in which coordination — or communication -
regards a production (act): the transaction. Every transaction goes through this pattern that includes 7
basic steps and a metapattern for cancellations, supporting all possible business exceptions. In every
transaction, two actors are involved: one as initiator, interested in the product or service, and one as
executor, responsible for delivering the product.

Based on the theories, DEMO includes a modeling language and a modeling procedure to ensure
both internal (model) consistency and external consistency (with the real world). DEMO [43] discerns
four model aspects: Cooperation (transaction kinds), Process (detailed dependencies), Fact (see below),
and Action (business rules). This research focuses on the DEMO Fact aspect that shows the semantic
model of products of the enterprise by defining (declared or derived) fact types (entity types with their
related product kinds, property types, attribute types, value types, and event types), existence laws, and
occurrence laws. Its metamodel is shown in Fig. 3; not shown in the picture is that a fact type is either
declared or derived (specialization, generalization, or aggregation).

Figure 3: Metamodel of the DEMO Fact Model, adopted from [43]

FACT TYPE Legend :] entity type {} value type

A generalization
A — property type

EVENT TYPE

domain

concerns

mincard domain {NUMBER}
maxcard domain {NUMBER}
mincard range {NUMBER}
maxcard range {NUMBER}

domain

| TYPE

/ range

3.3. PIM level: UML

The Unified Modeling Language (UML) was chosen as the primary candidate conceptual modeling
language for use in the experimental designs at the PIM level for a few key reasons. First and foremost,
it is recommended for use as a PIM by the OMG [44]. This is supported by the results of the semi-
structured literature review of this study, where UML was found to be the most commonly used PIM
language among the studies reviewed. Moreover, UML is the most commonly used conceptual modeling
language in the field of software engineering, both in industry and in academia [45]. Another key
benefit of UML is its ability to be extended and tailored for particular uses by defining profiles [44].

Although many variants of UML have been defined, for this research, three are considered most
relevant: ‘standard UML’, executable UML, and foundational UML. “Standard UML” is the term that we
use to refer to the latest version of UML (at the time of writing: v2.5.1) [46]. Executable UML (xUML), is
an executable UML profile proposed by Mellor [47], that prescribes the use of the UML state machine
diagram and action language to capture the execution semantics of a domain. Foundation UML (fUML),
is an executable subset of UML [48], similar to xUML with a focus on capturing execution semantics, but
prescribing activity diagrams for (graphically) expressing behavior and using the Alf action language
for a precise definition of the execution semantics.

3.4. PSM level: Mendix (low code)

Low code is a software development approach that allows developers to visually build applications,
primarily by using graphical editors with drag-and-drop functionality, with minimal manual coding
required [49, 50, 51]. Low code builds on MDSD principles and applies a higher level of abstraction
compared to high code, with main advantages including faster time-to-market and increased business
agility [52]. Low-code use cases can be found across different lines of business, where the applications
range from rapid prototyping to complete digital transformations [49, 53]. Despite their benefits, the
two most mentioned challenges in the adoption of low code regard the learning curve and the risk of
technology (or vendor) lock-in [50, 53, 52].

Mendix® is a low-code application development platform that is currently owned and maintained
by Siemens. A Mendix application consists primarily of four different components that realize the
application architecture: domain (data) models, pages (user interface), micro- and nanoflows (server and
client based logic resp.), and workflows (long-running application processes).* Mendix can be deployed
on different cloud environments and supports several types of databases.

4. Results

The results of this research include a metadesign, pimUML, and the (updated) transformation mappings,
along with a demonstration and evaluation.

4.1. Metadesign

Based on the results of the semi-structured literature review on the MDA abstraction layers [20], and
following the procedure to construct a conceptual framework to guide IS research [54], a metadesign
(see Table 2) was formulated to guide the development of pimUML. It contains relevant concepts from
enterprise ontology [23] and conceptual schema-centric development [55], positioned in both the
MDA layers as well as in the layered enterprise software architecture layers [56]. In each column, the
semantics captured by the listed constructs add to the semantics captured by constructs listed in the
column(s) to the left. In other words, each abstraction level should include the constructs listed in each
relevant architectural layer in addition to those listed at higher abstraction levels, thus reducing the
abstraction through semantic enrichment. The metadesign aided in scoping pimUML by specifying
which architectural layers should be excluded to ensure platform independence. For example, while a
domain model should be included at the PIM level, a database schema should not, as this could make
the PIM dependent on specific database solutions. Moreover, everything related to presentation should
be excluded from the PIM, as UI design can vary greatly depending on the target platform.

4.2. pimUML

As Standard UML, xUML, and fUML all belong to the UML family, various notions from these three
profiles were combined to define a novel UML profile called pimUML to define a (business) semantically

*http://www.mendix.com
“The complete Mendix metamodel is described in https://docs.mendix.com/apidocs-mxsdk/mxsdk/mendix-metamodel/

http://www.mendix.com
https://docs.mendix.com/apidocs-mxsdk/mxsdk/mendix-metamodel/

Table 2

Metadesign for the MDA abstraction layers: relevant concepts and decisions for enterprise applications in terms
of the four-layered architecture

CIM

PIM

PSM

Presentation

Views
Layout
Navigation
Ul elements
Styles

Business

Vocabulary

Business entities and relationships
Business rules

Business events

Data algorithms
Data model
Inference mechanism

Data representation
Data structures
Message formats
Control structures

CRUD operations
Data integrity constraints

CRUD commands
Data mapping

State management
Naming conventions

Source |Persistence

Physical data
DBMS structure
DB schema design

rich PIM. The pimUML metamodel [20] is a subset of the latest version of UML (version 2.5.1), including
the Action Language for Foundational UML (Alf) and the Object Constraint Language (OCL). Constructs
included prioritize platform independence over diagram readability, and capture either structural,
behavioral, or execution semantics:

« For structural semantics, the UML class diagram is used to capture business entities, as well as
their attributes and relationships (data model).

« For behavioral semantics, UML state machines are used to model the life cycles of entity instances
(inference mechanisms). Transition triggers express what transition occurs in response to what
event, transition effect behaviors express what operation must be executed to realize that state

transition, and the state entry events express what post-operations must be executed in response
to the state transition.

« For execution semantics, the UML activity diagram is used to model the (CRUD) operation related
to the entities. Actions included in pimUML are exclusively those predefined in the official UML

Figure 4: Example CIM-to-PIM mapping rule

Input pattern

Output pattern

[x]isy

L/

<N

TK+z+ac/Set+x+y(this)

y = false

X

x+ID: Integer {id}

y: Boolean = false

Set+x+y

first(x):x

|

y

%ﬂ AddStructuralFeatureValueAction]—)@

specification in [46]. Activities are supplied an object as a parameter. Control flow edges denote
the step-by-step ordering of action execution, while object flow edges denote the flow of data
objects between actions. Additionally, Alf can be used to specify precise execution semantics
when necessary.

4.3. Transformation mappings

While defining pimUML, the transformation mappings, in terms of mapping rules (see Fig. 4 for
an example) and helper functions, from the DEMO Fact Model to pimUML and from pimUML to
Mendix where updated constantly to ensure practical applicability. As the transformation mappings are
between modeling languages of different families, the resulting transformations are exogenous, out-place
transformations [57]. The mappings from the DEMO Fact Model to pimUML and from pimUML to
Mendix are shown in Tables 3 and 4, respectively. The execution semantics in the PIM are inferred in
such a way that they ensure that the business semantics are realized in a running system, primarily by
specifying CRUD operations. For example, it makes sure that a derived entity instantiation receives an

identical identifier value from the entity from which it was derived upon its creation.

Table 3
Mapping specification from the DEMO Fact Model to pimUML

ID DEMO FM pimUML

Al Value type - user-declared, categorical Enumeration (class diagram)

A2 Value type - user-declared, non-categorical ~ User-defined data type (class diagram)

A3 Declared entity type Class (class diagram); Logical identifier (integer) (class diagram); State machine
(state machine diagram)

A4 Derived entity type Class (class diagram); State machine (state machine diagram)

A5 Attribute type Property (class diagram)

A6 Event type Boolean attribute, default false (class diagram); Orthogonal region for corresponding
Boolean (state machine diagram); Initial node (state machine diagram); False state
and true state (for corresponding Boolean) (state machine diagram); Transition
from initial node to false state [t1] (state machine diagram); Transition from false
state to true state [t2] (state machine diagram); Trigger on t2 with Alf expression
for transition effect behavior activity (state machine diagram); Set<entity><event>
activity (activity diagram)

A7 Specialization of entity type with event Logical identifier for child class (class diagram) Directed association from child to

type parent with "parent” role (state machine diagram); Entry activity in corresponding
true state of the parent (state machine diagram); Create<child> activity (activity
diagram)

A8 Specialization of value type with event Association class (class diagram)

type; Property type
A9 Specialization of entity type with deriva- Identifier property for child class (class diagram)l Directed association from child
tion rule to parent with "parent” role (class diagram); OCL expression for derivation rule
(class diagram; Create<child> activity to create new instance of child class (activity
diagram)

A10 Generalization Abstract parent (class diagram); Generalization (class diagram)

A1l Aggregation Identifier property in whole class corresponding to each part class (class diagram);
Association with shared aggregation adornment (class diagram)

A12 Property type; Cardinality laws Association (class diagram); Multiplicities (class diagram)

4.4. Demonstration and evaluation

A paramount requirement of the PIM is that it must adequately capture the business semantics expressed
in the CIM. To evaluate this, the EU-Rent case [22] was used, of which the DEMO model is presented
n [23] (Rent-A-Car). After performing the necessary transformations, both the resulting pimUML and
Mendix models were assessed to determine whether each fact type in the CIM (DEMO) was preserved

Table 4
Mapping specification from pimUML to Mendix

ID pimUML Mendix
B1 Class Entity (domain model)
B2 Abstract Class Entity (domain model)
B3 Enumeration; EnumerationLiteral EnumerationAttributeType (domain model); Enumeration (domain model)
B4 User-defined data type Entity (domain model)
B5 Association Class Entity (domain model); Associations [domain and range] (domain model)
B6 Property (isID == true) Attribute Integer (domain model)
B7 Property (of Datatype) Attribute (domain model)
B8 Property (of Class) Attribute (domain model)
B9 Association Association (domain model)
B10 Generalization Generalization/Specialization (domain model)
B11 State Machine ACR Microflow (domain model + microflow)
B12 Region; Pseudostate (initial) Call Workflow activity (microflow); Workflow (workflow); Start element (workflow)
B13 Activity Microflow (microflow)
B14 InitialNode StartEvent (microflow)
B15 ActivityFinalNode EndEvent (microflow)
B16 Parameter; ActivityParameterNode Entity reference (microflow); Parameter (microflow)
B17 ValueSpecificationAction; Change Object (microflow)
AddStructuralFeatureValueAction
B18 AddStructuralFeatureValueAction ChangeObjectAction (microflow)
B19 CreateLinkAction ChangeObjectAction (microflow)
B20 CreateObjectAction CreateObjectAction (microflow)
B21 ReadStructuralFeatureAction CreateVariableAction (microflow)
B22 Control flow Sequence flow (microflow)
B23 Transition; Trigger CallMicroflowTask (workflow); WaitForNotificationActivity (workflow)
B24 State entry activity CallMicroflowTask (workflow)

in the PIM (pimUML) and the PSM (Mendix). The results are shown in Table 5. The only fact statement
that was deemed to have not been sufficiently preserved is aggregate entity type car group * year exists
at the PSM level. This is due to the fact that Mendix does not have specific construct in its metamodel
to denote entities which are composed of other entities, thus constituting an aggregate entity. Instead,
the aggregate entity type {CAR GROUP} * {YEAR} can be traced from the EU-Rent DEMO fact model
to being implemented as a regular entity (with associations) in Mendix.

To compare results with the original (direct) mapping from the DEMO Fact Model to Mendix, the
same analysis is performed after executing the transformations as described in [6] for the same case.

Table 5
Semantic preservation, expressed as the nr of facts, of the approach through pimUML compared to the original
direct transformation [6] from the DEMO Fact Model to Mendix for the EU-Rent case.

through pimUML direct
Concept from DEMO Fact Model CIM | PIM (pimUML) ‘ PSM (Mendix) | Mendix
Entity Types 12 12 1 7
Value Types 3 3 3 3
Event Types (incl. concern link) 14 14 14 14
Attribute Types (incl. domain and range) | 42 42 42 36
Property Types (incl. domain and range) 42 42 42 33

The results (see right most column of Table 5) show that an improvement was made, mainly because the
original approach was not able to deal with the specializations that were present in the EU-Rent case.

5. Conclusion

This research aimed to improve the extensibility of the existing DEMO to Mendix transformation to other
IT-platforms while, “opening up” for other (complementary) CIMs besides DEMO models. Following
the MDA approach, pimUML was developed as a neutral intermediate language in the transformation
from DEMO to Mendix. This newly defined UML profile captures both business semantics and adds
execution semantics, while it remains (IT) platform independent. The demonstration and evaluation
showed that the semantic loss was very low and that pimUML is capable of retaining a high degree of
business semantics, while it is aimed at software design — as opposed to the CIM level that is focused on
capturing business semantics, requirements, and processes. As such, pimUML serves multiple purposes:
code generation, stakeholder communication, reducing technology lock-in, and increasing enterprise
agility. We end our conclusions with a discussion on the potential use of (generative) Al and some
topics for future research.

The rise of generative Al (GenAlI) technologies, Al-assisted software development, and Al agents,
enables new ways to quickly create enterprise applications, and may put research into model-driven
software engineering in the shade. However, such Al-based approaches have to be considered non-
deterministic (closed) boxes [58], that are not able (yet) to provide the rationale for design choices [59, 60].
As pimUML uses a restrictive subset of UML, limiting the design choices, pimUML has the potential to
serve as a means to add a degree of explainability and determinism, allowing software engineers to
understand what is “under the hood” of software designs generated by Al technologies.

We see opportunities in using Al to quickly generate enterprise models from enterprise (process) data,
or to improve upon those models. Only by adopting known and mathematically sound transformation
mappings, one can ensure repeatability and transparency in generating enterprise software from
higher-level (enterprise) models.

Finally, we see five key directions for further research:

Extending pimUML - By including the other DEMO aspect models at the CIM level, pimUML could be
enhanced. For example, the DEMO Process Model and Action Model can be used to specify the business
processes and rules respectively. Moreover, additional implementation choices [61] can be defined and
included, such as whether a task is performed by a human or by a piece of software. This may require
pimUML to capture additional constructs and/or views.

Targeting different platforms — To account for complexity induced by variety on both the business and
its supporting IT (platforms), a PIM should be able to handle as large a variety of input, and produce as
large a variety of desired output as possible. To truly test the (IT) platform independence of pimUML,
the ability of pimUML to be mapped to different IT platforms or technologies — ranging from high code
to low code to no code — should be further explored.

Discerning different levels of (IT) platform independence — There is likely to be a need for more nuance
regarding IT platform independence. Consider, for example, the development of different human-
computer interfacing technologies. The “modality” of the interface, be it, e.g., a traditional screen or
forms based interface, a voice based interface, or a virtual reality based interface, will have a profound
impact on the way business processes can be supported using IT. As a consequence, creating a PIM for a
given CIM, may need a decision regarding the “modality” of the computer interfacing to be used, de facto
reducing the platform independence of the resulting PIM. This certainly requires further investigation,
to clarify different dimensions and levels of platform independence.

Targeting different enterprise modeling languages — As with the aim to “open the door” to other or
complementary CIMs, it is wise to look at other enterprise modeling languages, such as 4EM, BPMN;,
EAML, MEMO, SBVR, and SysML. Such modeling languages could either be used in addition or as an

alternative to DEMO where needed, depending on, e.g., its expressiveness or familiarity to a given
(modeling) community.

Automating the transformations — While the transformation mappings designed in this study were
demonstrated and evaluated manually, automating these transformations would facilitate a more
effective evaluation of pimUML. Moreover, once the transformations to and from pimUML are automated,
tested, and refined accordingly, tool support can be developed, allowing pimUML to be used in real-world
projects to assist enterprises in improving business-IT alignment.

Declaration on Generative Al

The author(s) have not employed any Generative Al tools.

References

[1] D. L. Olson, S. Kesharwani, Enterprise information system trends, in: J. Filipe, J. Cordeiro (Eds.),
Enterprise Information Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 3-14.

[2] S. Mithas, F. W. McFarlan, What is digital intelligence?, IT Professional 19 (2017) 3-6.

[3] R. Dove, Agile enterprise cornerstones: Knowledge, values, and response ability, in: R. L.
Baskerville, L. Mathiassen, J. Pries-Heje, J. I. DeGross (Eds.), Business Agility and Information
Technology Diffusion, Springer US, Boston, MA, 2005, pp. 313-330.

[4] Gartner, Taming the Digital Dragon: The 2014 CIO Agenda, Technical Report, Gartner Executive
Programs, 2014. URL: https://www.gartner.com/imagesrv/cio/pdf/cio_agenda_insights2014.pdf.

[5] K. Hinkelmann, A. Gerber, D. Karagiannis, B. Thoenssen, A. van der Merwe, R. Woitsch, A new
paradigm for the continuous alignment of business and IT: Combining enterprise architecture
modelling and enterprise ontology, Computers in Industry 79 (2016) 77-86.

[6] M.R. Krouwel, M. Op ’t Land, H. A. Proper, From Enterprise Models to Low-Code Applications:
Mapping DEMO to Mendix, illustrated in the Social Housing domain, International Journal on
Software and Systems Modeling 23 (2024) 837-864.

[7] Z.Hemel, L. Kats, D. Groenewegen, E. Visser, Code generation by model transformation: A case
study in transformation modularity, SoSyM 9 (2009) 375-402.

[8] A. W. Wymore, Model-Based Systems Engineering, first ed., CRC Press, 1993.

[9] S. Beydeda, M. Book, V. Gruhn (Eds.), Model-Driven Software Development, Springer Berlin,
Heidelberg, 2005.

[10] M. Volter, T. Stahl, J. Bettin, A. Haase, S. Helsen, K. Czarnecki, B. von Stockfleth, Model-Driven
Software Development: Technology, Engineering, Management, Wiley Software Patterns Series,
Wiley, 2013.

[11] D. DiRuscio, D. Kolovos, J. Lara, A. Pierantonio, M. Tisi, M. Wimmer, Low-code development and
model-driven engineering: Two sides of the same coin?, SoSyM 21 (2022) 437-446.

[12] Object Management Group, MDA guide rev. 2.0, 2014. URL: https://www.omg.org/cgi-bin/doc?
ormsc/14-06-01, last visited 5-Jul-2025.

[13] P. Barbosa, F. Ramalho, J. Figueiredo, A. J 'unior, A. Costa, L. Gomes, Checking semantics
equivalence of mda transformations in concurrent systems, Journal of Universal Computer
Science 15 (2009) 2196-2224.

[14] M. Kardos, M. Drozdova, Analytical method of CIM to PIM transformation in model driven
architecture (MDA), Journal of Information and Organizational Sciences 34 (2010).

[15] M. R. Krouwel, M. Op 't Land, H. A. Proper, Generating Low-Code Applications from Enterprise
Ontology, in: B. S. Barn, K. Sandkuhl (Eds.), POEM 2022: The Practice of Enterprise Modeling,
volume 456 of Lecture Notes in Business Information Processing, Springer Nature Switzerland AG,
2022, pp. 19-32.

[16] I Alfonso, A. Conrardy, J. Cabot, Towards the interoperability of low-code platforms, in: L. Pu-

https://www.gartner.com/imagesrv/cio/pdf/cio_agenda_insights2014.pdf
https://www.omg.org/cgi-bin/doc?ormsc/14-06-01
https://www.omg.org/cgi-bin/doc?ormsc/14-06-01

[17]

[18]

[19]

[22]
[23]
[24]
[25]
[26]
[27]
[28]

[29]

[33]
[34]

[35]

fahl, K. Rosenthal, S. Espafia, S. Nurcan (Eds.), Intelligent Information Systems, Springer Nature
Switzerland, Cham, 2025, pp. 3-11.

L. Alfonso, A. Conrardy, A. Sulejmani, A. Nirumand, F. Ul Haq, M. Gomez-Vazquez, J.-S. Sottet,
J. Cabot, Building BESSER: An open-source low-code platform, in: H. van der Aa, D. Bork,
R. Schmidt, A. Sturm (Eds.), Enterprise, Business-Process and Information Systems Modeling,
Springer Nature Switzerland, Cham, 2024, pp. 203-212.

V. Freitas, D. Pinto, V. Caires, L. Tadeu, D. Aveiro, The DISME low-code platform - from simple
diagram creation to system execution, Proceedings of the 22nd CIAO! DC and EEWC (2022). URL:
https://ceur-ws.org/Vol-3388/.

K. Conboy, R. Gleasure, E. Cullina, Agile design science research, in: B. Donnellan, M. Helfert,
J. Kenneally, D. VanderMeer, M. Rothenberger, R. Winter (Eds.), New Horizons in Design Science:
Broadening the Research Agenda, Springer International Publishing, 2015, pp. 168—180.

N. A. Bzowski, A Model Driven Architecture Transformation from Ontological Enterprise Models
to Low-Code, Diploma thesis, Technische Universitat Wien, 2025. ReposiTUm.

E. Dominguez, M. A. Zapata, Mappings and interoperability: A meta-modelling approach, in:
Proceedings of the First International Conference on Advances in Information Systems, ADVIS
’00, Springer-Verlag, Berlin, Heidelberg, 2000, p. 352-362.

M. Schacher, Mini EU-Rent: Business Model, Technical Report, KnowGravity, 2008. URL: http:
//www.knowgravity.com/pdf-e/Mini%20EU-Rent%20BU.pdf.

J. L. G. Dietz, J. B. F. Mulder, Enterprise Ontology — A Human-Centric Approach to Understanding
the Essence of Organisation, The Enterprise Engineering Series, Springer, Cham, 2024.

K. Lano, S. Kolahdouz Rahimi, I. Poernomo, Comparative evaluation of model transformation
specification approaches, Int] Software Informatics 6 (2012) 233-269.

J. Krogstie, A. Selvberg, Information Systems Engineering: Conceptual Modeling in a quality
perspective, The Norwegian University of Science and Technology, 2001.

M. R. Krouwel, On the Design of Enterprise Ontology-Driven Software Development, Ph.D. thesis,
Maastricht University, 2023.

Object Management Group, Model Driven Architecture (MDA) Guide, Technical Report, Object
Management Group, 2014. URL: https://www.omg.org/cgi-bin/doc?ormsc/14-06-01, rev. 2.0.

N. M. J. Basha, S. A. Moiz, M. Rizwanullah, Model Based Software Development: Issues &
Challenges, International Journal of Computer Science and Informatics 3 (2013).

C. Heitmeyer, S. Shukla, M. Archer, E. Leonard, On Model-Based Software Development, in:
J. Miinch, K. Schmid (Eds.), Perspectives on the Future of Software Engineering, Springer, 2013, pp.
49-60.

M. Brambilla, J. Cabot, M. Wimmer, Model-Driven Software Engineering in Practice, Synthesis
Lectures on Software Engineering, second ed., Morgan & Claypool Publishers, 2017.

N. Aizenbud-Reshef, B. T. Nolan, J. Rubin, Y. Shaham-Gafni, Model traceability, IBM Systems
Journal 45 (2006) 515-526.

L. Santiago, A.Jiménez, J. M. Vara, V. de Castro, V. A. Bollati, E. Marcos, Model-Driven Engineering
as a new landscape for traceability management: A systematic literature review, Information and
Software Technology 54 (2012) 1340-1356.

M. Argaiiaraz, A. Funes, A. Dasso, An MDA approach to business process model transformations,
SADIO Electronic Journal of Informatics andOperations Research 9 (2010) 24-48.

V. De Castro, E. Marcos, J. M. Vara, Applying CIM-to-PIM model transformations for the service-
oriented development of information systems, Inf. Softw. Technol. 53 (2011) 87-105.

A. Bozzon, M. Brambilla, P. Fraternali, Conceptual modeling of multimedia search applications
using rich process models, in: Proceedings of ICWE °9, Springer-Verlag, Berlin, Heidelberg, 2009,
pp. 315-329.

J. L. G. Dietz, J. A. P. Hoogervorst, A. Albani, D. Aveiro, E. Babkin, J. Barjis, A. Caetano, P. Huys-
mans, J. lijima, S. van Kervel, H. Mulder, M. Op ‘t Land, H. A. Proper, J. Sanz, L. Terlouw, J. Tribolet,
J. Verelst, R. Winter, The discipline of enterprise engineering, International Journal of Organisa-
tional Design and Engineering 3 (2013) 86-114.

https://ceur-ws.org/Vol-3388/
http://www.knowgravity.com/pdf-e/Mini%20EU-Rent%20BU.pdf
http://www.knowgravity.com/pdf-e/Mini%20EU-Rent%20BU.pdf
https://www.omg.org/cgi-bin/doc?ormsc/14-06-01

[37]

R. E. Giachetti, Design of Enterprise Systems: Theory, Architecture, and Methods, first ed., CRC
Press, 2010.

J. L. Austin, How to do things with words, William James Lectures, Oxford University Press, 1962.
J. Habermas, The theory of communicative action, Cambridge: Polity Press, 1986.

J. R. Searle, Speech Acts: An Essay in the Philosophy of Language, Cambridge University Press,
Cambridge, London, 1969.

H. Weigand, Two decades of language/action perspective, NLE 49 (2006) 45-46.

V. E. van Reijswoud, J. B. F. Mulder, J. L. G. Dietz, Communicative Action Based Business Process
and Information Modelling with DEMO, The Information Systems Journal 9 (1999) 117-138.

J. L. G. Dietz, DEMO Specification Language 4.9.1, 2024. URL: https://ee-institute.org/download/
demo-specification-language-4-9-1/.

Object Management Group, MDA specifications, 2025. URL: https://www.omg.org/mda/specs.htm,
last visited 5-Jul-2025.

H. Storrle, How are conceptual models used in industrial software development? A descriptive
survey, in: Proceedings of the 21st International Conference on Evaluation and Assessment in
Software Engineering, EASE *17, ACM, New York, USA, 2017, pp. 160--169.

Object Management Group, Unified Modeling Language: Version 2.5.1, 2017. URL: https://www.
omg.org/spec/UML/2.5.1/, last visited 5-Jul-2025.

S. J. Mellor, M. Balcer, Executable UML: A Foundation for Model-Driven Architecture, Addison-
Wesley, 2002.

Object Management Group, Semantics of a foundational subset for executable UML models, 2021.
URL: https://www.omg.org/spec/FUML/1.5, last visited 5-Jul-2024.

A. C. Bock, U. Frank, Low-code platform, Business & Information Systems Engineering 63 (2021)
733-740.

Y. Luo, P. Liang, C. Wang, M. Shahin, J. Zhan, Characteristics and challenges of low-code devel-
opment: The practitioners’ perspective, in: Proceedings of the 15th ACM / IEEE International
Symposium on Empirical Software Engineering and Measurement, New York, USA, 2021, pp. 1-11.
IBM, What is low-code?, 2024. URL: https://www.ibm.com/topics/low-code.

J. Sijtstra, Quantifying the effectiveness of low-code development platforms in the Dutch public
sector, Master’s thesis, LIACS, Leiden University, 2022. URL: https://theses.liacs.nl/2221.

K. Rokis, M. Kirikova, Challenges of low-code/no-code software development: A literature review,
in: E. Nazaruka, K. Sandkuhl, U. Seigerroth (Eds.), Perspectives in Business Informatics Research,
Springer International Publishing, Cham, 2022, pp. 3-17.

J. E. Chukwuere, Theoretical and conceptual framework: A critical part of information systems
research process and writing, Review of International Geographical Education 11 (2021) 2678-2683.
A. Olivé, Conceptual schema-centric development: A grand challenge for information systems
research, in: O. Pastor, J. Falcdo e Cunha (Eds.), Advanced Information Systems Engineering,
volume 3520, Springer Berlin Heidelberg, 2005, pp. 1-15.

M. Fowler, Patterns of Enterprise Application Architecture, Addison-Wesley Longman Publishing
Co., Inc., USA, 2002.

M. Brambilla, J. Cabot, M. Wimmer, Model-driven software engineering in practice, Synthesis
lectures on software engineering, second ed., Morgan & Claypool Publishers, 2017.

S. Ouyang, J. M. Zhang, M. Harman, M. Wang, An empirical study of the non-determinism of
ChatGPT in code generation, ACM Trans. Softw. Eng. Methodol. 34 (2025).

Y. Liu, C. Tantithamthavorn, Y. Liu, L. Li, On the reliability and explainability of language models
for program generation, ACM Trans. Softw. Eng. Methodol. 33 (2024).

J. Sun, Q. V. Liao, M. Muller, M. Agarwal, S. Houde, K. Talamadupula, J. D. Weisz, Investigating
explainability of generative Al for code through scenario-based design, in: Proceedings of the 27th
International Conference on Intelligent User Interfaces, ACM, New York, USA, 2022, p. 212-228.
M. R. Krouwel, M. Op ’t Land, T. Offerman, Formalizing Organization Implementation, in:
D. Aveiro, R. Pergl, D. Gouveia (Eds.), EEWC 2016: Advances in Enterprise Engineering X, volume
252 of LNBIP, Springer, Funchal, Madeira Island, Portugal, 2016, pp. 3-18.

https://ee-institute.org/download/demo-specification-language-4-9-1/
https://ee-institute.org/download/demo-specification-language-4-9-1/
https://www.omg.org/mda/specs.htm
https://www.omg.org/spec/UML/2.5.1/
https://www.omg.org/spec/UML/2.5.1/
https://www.omg.org/spec/FUML/1.5
https://www.ibm.com/topics/low-code
https://theses.liacs.nl/2221

	1 Introduction
	2 Research Approach
	3 Theoretical Background
	3.1 Model Driven Architecture
	3.2 CIM level: DEMO
	3.3 PIM level: UML
	3.4 PSM level: Mendix (low code)

	4 Results
	4.1 Metadesign
	4.2 pimUML
	4.3 Transformation mappings
	4.4 Demonstration and evaluation

	5 Conclusion

