CEUR-WS.org/Vol-4171/paper_66.pdf

C

CEUR

Workshop
Proceedings

A Situational Method to Enable Pattern-based

Requirement Specifications as Low-Code/No-Code
Software Models*

David Mosquera®?

!ZHAW Zurich University of Applied Sciences, Gertrudstrasse 15, Winterthur 8400, Switzerland

2PROS-VRAIN: Valencian Research Institute for Artificial Intelligence, Universitat Politécnica de Valéncia, Cami de Vera, s/n,
Valéncia 46022, Spain

Abstract

.Main problem. Requirement patterns have emerged as a means to support the reuse and systematic production
of requirement specifications, improving both efficiency and quality—typically in the form of textual documents.
In Low-Code/No-Code (LCNC) software development, however, requirements are represented as software models
rather than textual artefacts, still requiring effort to transform requirement specifications into software models.
Although several authors have proposed approaches to reduce the software modelling effort in LCNC tools—i.e.,
modelling assistance approaches—the end-to-end integration between pattern-based requirement specifications
and software modelling in LCNC software development remains overlooked. Solution. Therefore, this PhD
Thesis introduces MARPa: a Modelling Assistance and Requirements Pattern-based situational method for
LCNC software development. MARPa enables requirements engineers, stakeholders, and LCNC developers to
collaboratively develop software using LCNC tools, reusing requirement patterns and leveraging modelling
assistance—from pattern selection to software model creation and refinement. Following the Situational Method
Engineering approach, we enable MARPa to be tailored to specific organisations and software development
contexts. Validation. We validated MARPa through empirical studies aimed at evaluating MARPa’s technical and
social suitability, as well as their effects on subjects’ effectiveness, efficiency, and perceptions during requirement
specification using LCNC tools to analyze MARPa’s technology acceptance. Our results show that integrating
requirement patterns with modelling assistance following MARPa is technically feasible and holds the potential to
improve LCNC development based on efficiency and effectiveness results. Furthermore, we identified challenges
resulting from our empirical validations, providing a foundation for a research agenda.

Keywords
Situational Method, Modelling Assistance, Requirement Patterns, Model Driven Development, Low Code No
Code

1. Introduction

Requirements engineering—as a socio-technical, iterative process to elicit, document, and manage
the requirements of a system under development [1]—is the foundation of high-quality software [2].
Part of requirements engineering is the specification of software requirements. Software requirements
are capabilities—functional or non-functional—that must be met in order for the software to solve a
real-world problem [3]. Software requirements can be specified as documents, text descriptions, but
also as software models [1]. A software model is an abstract representation of an existing reality or a
reality to be created.

Software systems often interact and involve concepts of complex physical and virtual systems in
which it is executed. Thus, requirements engineers create software models to describe abstractly
how a software system should behave, react to certain events, and store data, among other software
functionalities. Unlike physical systems as metro lines for civil engineers, software models hold

PoEM2025: Companion Proceedings of the 18th IFIP Working Conference on the Practice of Enterprise Modeling: PoEM Forum,
Doctoral Consortium, Business Case and Tool Forum, Workshops, December 3-5, 2025, Geneva, Switzerland

i Supervised by: Prof. Dr. Marcela Ruiz and Prof. Dr. Oscar Pastor.

& mosq@zhaw.ch (D. Mosquera)

& https://www.linkedin.com/in/jdmosquerat (D. Mosquera)
@ 0000-0002-0552-7878 (D. Mosquera)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5

mailto:mosq@zhaw.ch
https://www.linkedin.com/in/jdmosquerat
https://orcid.org/0000-0002-0552-7878
https://creativecommons.org/licenses/by/4.0/deed.en

the potential to automatically generate the software systems they describe by using software model
transformations [4] implemented in Low-code/No-code (LCNC) tools—a.k.a. model-driven development
tools. LCNC is a paradigm for software development that relies on graphical/textual modelling languages
and configuration, rather than traditional coding [5]. For example, a software data model specifies the
data requirements of a system and can be automatically transformed into a database schema through an
LCNC tool, thus removing the need to manually define data tables, attributes, and relationships in SQL.

Nevertheless, requirements specification as well as software modelling, are often error-prone and
effort-intensive, which can threaten both the time-to-market and the overall quality of the software
system under development [6]. Thus, several techniques have been proposed to ease the requirements
specification and software modelling process, thereby speeding up and improving software development.
In this paper, we focus particularly on two techniques: requirement patterns and software modelling
assistance.

Requirements Patterns are reusable, experience-based specification that supports the
reuse of high-quality software requirements to specify new requirements, reducing the
time and effort required to produce new specifications [7]. Approaches in literature include
pattern catalogues, specification languages, and pattern templates, among others [8, 7, 9].
An example of a requirement pattern is shown in Figure 1, where the Authentication pattern
expresses the need to identify users and provides a template specifying the information to
be documented when creating a new requirement specification.

This form states the general need of having the
system functionality of identifying users, and
has extensions for detailing the type or
technology to be used. An extension for
requiring to not be necessary to create an
specific account for the system is present.
Application of extensions: Authentication
Comments Technology, Single Sign-on: may be applied at
most once each.

Version date |2009-03-20 00:00:00.0

Author GESSI-SSI

Requirement books from SSI
*
SOOI e :) Specialized literature

Description

lQuestion text |----
Fixed Part HF The system shall
orm text .
authenticate users
Question text |----
The authentication process
) Form text shall be based_on the
Requirement %authMechanism%
Form Extended Part authentication technology
Authentication|Authentication Parameter Metric
Technology authMechanism:
is an AuthenticationTechnology:
authentication AuthenticationTechnology =
software Domain(Windows login, ¢)
technology
lQuestion text |----

Figure 1: Authentication requirement pattern template from PABRE catalogue [10].

Software modelling assistance refers to strategies—such as tools, techniques, and
frameworks—that aim to ease the software modelling within LCNC tools, reducing soft-
ware modelling effort and improving model quality [11, 12]. For example, Figure 2 shows a
modelling assistant that suggests model elements and operations while modelling.

(]

Actor PackageDeclaration | | Step

Actor | PackageDeclaration | ‘ Step
name : EString name : EString
name - EString name : EString y e
—————
teps
r—— UseCase alAlterrnative
[UseCase
preConditions : EString
preConditions : EString name : EString
name : EString de r Fow
name : EString —_—
(a) Partial metamodel (b) Complete metamodel

Figure 2: Modelling assistance example: suggesting model elements [13].

Despite progress in research on modelling assistance frameworks and requirement patterns methods,
we have identified gaps in both literature and practice. Modelling assistance frameworks [11, 14] have
overlooked requirements engineering techniques, such as requirement patterns, focusing mainly on
specific tasks related to software modelling. On the other hand, requirement pattern methods [10, 15]
stop at the level of producing textual requirements specifications, overlooking the effort required to
transform such specifications into software models. The proposals that do focus on generating software
models from requirement patterns are tied to specific modelling languages (such as event and use case
diagrams [16, 17]), which restricts their integration with LCNC tools with different software modelling
languages.

In practice, LCNC tool providers have developed techniques that resemble the reuse of requirement
patterns and modelling assistance to create software models. For instance, solutions such as OutSystems
Forge and the Mendix Marketplace provide catalogues and wizards to reuse software models from
templates [18, 19, 20]. However, these solutions provide ad-hoc support for reuse and automation but
fail to provide method-level guidelines beyond their respective LCNC tool.

Therefore, in this Doctoral Consortium paper, we summarise the main technical research problem
(MTRP) of the PhD thesis as:

(MTRP) How to design a method that provides guidelines and tools for leveraging the
benefits of modelling assistance and requirement patterns in the context of LCNC
software development?

This paper is structured as follows: in Section 2, we introduce the research method; in Section 3,
we review related works and motivation for this thesis; in Section 4, we introduce MARPa design in
a nutshell; in Section 5, we overview the validation pipeline of the thesis; and in Section 6, we draw
conclusions, review limitations, and propose a research agenda.

2. Research Method

In Design Science, the object of study is an artefact in context [21]. In this PhD thesis, the MARPa
(Modelling Assistance and Requirement Pattern method for LCNC software development) and its
chunks are the artefacts we design and investigate in the context of LCNC software development. We
propose a set of research questions to address our MRTP, followed by a design cycle.

2.1. Research Questions

MARPa research questions are divided into technical research problems (TRP)—a.k.a., design problems—
and knowledge questions (KQ). Technical research problems aim to (re)design an artefact, contribut-

ing to achieving some goal [21]. Knowledge questions focus on learning about the world without
calling for an improvement [21]. We propose the following TRP and KQ for MARPa:

« RQ1. (KQ) What is the landscape of modelling assistance and requirement patterns? To
answer RQ1, we conduct research efforts to understand related works’ goals, strategies, limitations,
and users in LCNC software development, especially for modelling assistance and requirement
patterns literature and practice. We conducted a systematic literature review and focus groups to
answer RQ1, published in [12, 14].

« RQ2. (TRP) How to design the MARPa method and develop tools to support it? RQ2
contains the main TRP. To answer RQ2, we conduct Method Engineering efforts following the
Situational Method Engineering principles [22] and propose a set of chunks, a process map, a
metamodel, and a set of context criteria to tailor MARPa into specific contexts. Moreover, we
develop tools that extend and support MARPa chunks, allowing us to introduce the LEMON
framework [23, 24] and OntoTrace [25, 26].

« RQ3. (KQ) What are the effects of implementing MARPa in context? To answer RQ3, we
perform empirical efforts to validate MARPa and its chunks in context in terms of efficiency,
effectiveness, and satisfaction. Moreover, we collect data from experts about the potential technical
and social suitability of MARPa tailored into a specific software development context. The results
from validation are currently under review, in execution, and some have been published [27].

2.2. Design Cycle

We perform three tasks (T) in a design cycle to answer the proposed research questions: i) (T1) problem
investigation; ii) (T2) treatment design; and iii) (T3) treatment validation. In Figure 3, we present our
Design Science Cycle detailing activities conducted for each T1, T2, and T3 tasks.

T1. PROBLEM INVESTIGATION (RQ1)
- Define goals and motivation
- Define criteria to Judge solution success
- Investigate the gap for a method combining modelling assistance and
requirements patterns for LCNC software development:
- Modelling assistance in LCNC software development
- Requirement pattern-based methods and tools
- Modelling assistance and Requirement patterns in LCNC practice
- Establish a conceptual framework

T2. TREATMENT DESIGN (RQ2)

- Analyse intentions for MARPa

- Explore strategies to achieve intentions

- Select requirement pattern templates

- Populate requirement pattern templates

- Create software models

- Refine software models

- Propose context criteria, a process map, and a

T3. TREATMENT VALIDATION (RQ3)

- Validate the LEMON framework interpreter and assistant
- Evaluate software modelling efficiency with LEMON
- Evaluate software modelling effectiveness with LEMON
- Evaluate software modelling satisfaction with LEMON

- Validate OntoTrace
- Evaluate recommendation accuracy

MARPa
METHOD

- Evaluate recommendation efficiency metamodel for MARPa

- Evaluate satisfaction - Tailor MARPa into a LCNC software development
- Validate MARPa method context

- Evaluate MARPa technical suitability - Develop tools to support MARPa tailored mtehod:

- Evaluate MARPa social suitability - The LEMON Framework:
- Discuss findings, conclusions, future work, and research - The LEMON Specification Language
directions - The LEMON Catalogue

- The LEMON Interpreter
- The LEMON Assistant + OntoTrace

Figure 3: Design cycle for designing the MARPa method.

For the sake of brevity, we do not present each individual design cycle in detail. Instead, we describe
the design cycle that guides this PhD thesis, as it reflects the overall research method. Nevertheless,
each contribution consists of smaller and more atomic design cycles. Although this may appear similar
to a waterfall approach, the research was conducted in an agile manner: tasks T1, T2, and T3 were
revisited whenever clarification of value, refinement of requirements, or additional artefact evaluation
was needed.

3. Problem Investigation: The Landscape of Modelling Assistance and
Requirement Patterns

In literature, several authors have proposed modelling assistance and requirement pattern approaches,
as highlighted in secondary studies such as systematic reviews [12, 28, 8, 7]. On one hand, modelling
assistance proposals aim to provide support for model creation, refinement, consistency checking, and
testing—ranging from Al-driven recommenders [29, 13, 30, 31, 32, 33, 34] to validation and consistency
checking tools [35, 36, 37, 38, 39, 40, 41]. Frameworks such as RF-IMA (Reference Framework for
Intelligent Modelling Assistance) [42] and the emerging modelling assistance framework [14] clarify
how assistants gather context and interact with users. However, these frameworks and tools overlook
earlier requirements tasks and focus on easing modelling, missing the benefits of using requirement-
centred techniques, such as requirement patterns.

On the other hand, requirement pattern research has introduced languages, templates, and catalogues
[17, 43, 44, 45, 46, 47] as well as methods such as PABRE [10, 48] and CaRePa [15] to guide specification,
selection, and reuse during elicitation. While effective for specifying text-based requirements, these
methods overlook the effort of software modelling in LCNC tools. In practice, LCNC tools (e.g.,
OutSystems Forge [49], Mendix Marketplace [18], Oracle APEX [20]) partially combine (requirement
pattern) templates and modelling assistance with marketplaces, wizards, and forges, but remain tool-
specific and ad-hoc approaches.

Finally, recent LCNC development methods such as the Low Code Development Cycle (LCDC) [5],
MSDeveloper [50], EasInnova [51], and situational methods for manufacturing companies [52] improve
process guidance and stakeholder involvement. Yet, they do not explicitly integrate requirement patterns
with modelling assistance.

Taken together, these findings highlight a research gap (and answer RQ1): to the best of our knowledge,
there is no method that integrates requirement pattern reuse with modelling assistance to support an
end-to-end transition from requirements elicitation/specification to model creation in LCNC software
development. This gap motivates the design of MARPa (see Table 1), and thus, this PhD thesis.

PhD Industry-relevant project context. This PhD thesis was conducted in the context of the SHIFT
project [53]—Smart Hospital: Integrated Frameworks, Tools, and Solutions—in which it contributes to
the Patient and Staff Empowerment pillar. Within this pillar, one of the central questions concerns how
to empower practitioners, patients, and other stakeholders to create digital health software automatically.
Together with the industry partner Whatscount, we proposed to address this challenge. Whatscount is a
young Swiss company that develops digital health software using its own proprietary LCNC tool, Posity
Design Studio [54]. As part of their internal analysis, Whatscount observed that stakeholders often
requested similar types of requirements—for instance, different clients frequently asked for visualisations
of patient test data. Although the specific data types varied, the underlying requirement was essentially
the same, exposing recurring LCNC model structures and patterns. Nevertheless, existing industry-tool-
dependent solutions were not viable, since Whatscount relies on its own LCNC tool. At the same time,
adopting modelling assistance techniques from the literature would not resolve the issue of recurring
requirements, while introducing requirements patterns in isolation would generate overhead in their
LCNC development process, because they use LCNC models themselves as requirement specifications,
rather than traditional requirements documents. The case of Whatscount served as an industry-relevant
case were the gap we highlighted in Table 1 is materialized.

Table 1
Related works vs MARPa.

Include Include
Include
Categor Ref Name Type Requirement Software Software
gory yp qatterns Models Modelling
p in LCNC | Assistance
29,13, 30, 31
%33 34,32 35% Approaches
Modelling o for Modelling Tool NO YES YES
. [36, 37, 40, 41] .
assistance 38, 39] Assistance
in LCNC software 757 RF-IMA Framework NO YES YES
development -
Emerging
framework for
[14] Modelling Framework NO YES YES
Assistance
Ad-hoc
Requirement
[49, 18, 20] Pattern-based Tool YES YES YES
Modelling
Assistants
Approaches
Requirement [17, 43, 44, 45, 46, 47] | TOF requirement Tool YES YES NO
pattern specification
pattern-based .
thods and tools selection, reuse
me 10, 48] PABRE Method YES NO NO
[15] CaRePa Method YES NO NO
Low Code
LCNC [5] Development Method NO YES NO
Software Cycle (LCDC)
Development [50] MSDeveloper Method NO YES NO
Methods [51] Easlnnova Method NO YES NO
Situational Method
[52] for LCNC Method NO YES NO
manufacturing
development
(This Phd Thesis)
Modelling assistance and requirement
MARPa Method YES YES YES
pattern-based method
for LCNC Software Development

4. MARPa Design in a Nutshell

We conceive MARPa as a Situational Method based on the Situational Method Engineering (SME)
[22, 55] approach. SME supports the definition of new methods as a composition of method chunks,
where each method chunk enables the satisfaction of a method intention in a specific way. Method
chunks are black boxes composed of a process and a metamodel that act as a transformation engine
to change a set of inputs into an output. This allows us to build MARPa in an agile and incremental
manner, adding new intentions and strategies, and thereby chaining demand to satisfy various specific
development contexts. Method chunks are the result of combining a strategy to achieve an intention.

MARPa covers four intentions: i) selecting a requirement pattern template, ii) populating a requirement
pattern template, iii) creating a software model, and iv) refining a software model. By analysing such
intentions, we provide MARPa with a catalogue of method chunks, a metamodel, a process map to
assemble chunks into a tailorable method, and a set of context criteria for situation-specific method
tailoring. In the following paragraphs, we provide a brief description of each intention from MARPa.

Select a Requirement Pattern Template. MARPa begins with the selection of a requirement
pattern template—an instance of a pattern that can be later populated to specify a new requirement.
With this intention, requirements engineers aim to find the requirement pattern template that best fits
the software requirement under development.

Populate a Requirement Pattern Template. Having selected a requirement pattern template, the
next intention comprises populating it. This allows the stakeholders to provide the requirement pattern
template with their input—e.g., expressing how data should be displayed, how data should be stored, or

how the process should be orchestrated, among others. As a result, the requirements engineer receives
a populated requirement pattern template containing the customisations from stakeholders.

Create Software Model. Having the populated requirement pattern template, the next intention
aims to create the software model (or models). LCNC developers represent the new requirement with
the software model from the populated requirement pattern template. After creating the software
model, if it is ready and does not require further refinement, the LCNC developer can use the LCNC
tool to generate the software.

Refine software Model. If the previous intention produces a software model that is not ready for
software transformation, it requires refinement. Through software model refinement, LCNC developers
strive to enhance the quality of the resulting software models, thereby meeting the requirements that are
being developed. When the refinement is finished, the LCNC developer can use the LCNC to generate
the software.

MARPa tool support. We tailor and provide tool support for MARPa chunks tailored into the
industry-relevant context of this PhD Thesis: Whatscount. As a result, we proposed the LEMON
framework [23, 24], which consists of a domain-specific language for specifying software requirement
patterns (M1), a requirement pattern catalogue (M2), an interpreter (M3), and an assistant (M4). To
support the assistance, we designed and implemented a recommendation system named OntoTrace
[25, 26], which provides recommendations based on the similarity of trace links between software
requirements and software models.

5. MARPa Effect in Context: Validation Pipeline

The validation of this PhD thesis focused on the industry-tailored MARPa chunks, examining their effects
within LCNC software development, thus addressing RQ3. Three complementary empirical efforts were
conducted to assess: (i) the technical and social suitability of MARPa (Under review); (ii) the effects of
the LEMON framework on effectiveness, efficiency, and satisfaction when specifying requirements as
software models in LCNC tools (Under review); and (iii) the effects of OntoTrace recommendations
on effectiveness, efficiency, and satisfaction during the tracing of software requirements within LCNC
models (Published [27]). Although these evaluations are currently under publication and journal review,
preliminary results suggest that MARPa is both technically and socially suitable, and that its chunks
and tools hold the potential to enhance effectiveness, efficiency, and satisfaction in LCNC software
development. Nevertheless, areas for improvement have been identified as a result of those validation
efforts, leading to new research challenges and future work. We present the validation pipeline and
timeline in Figure 4, which illustrates the number of quasi-experiments, focus groups, and interviews
conducted during the validation cycle from 2023 to 2026.

Limitations and threats to validity. Throughout this PhD thesis, we have identified limitations
and threats to validity. Firstly, by choosing validation efforts that relied on human participants, we
encountered human-related factors that limited the generalizability of our findings; i.e., the experiments
conducted were dependent on the characteristics and backgrounds of the participants involved. We
decided to focus on human subjects as we were researching on how to assist LCNC users into creating
software models. This motivates further industry-involved empirical efforts once MARPa is in place
in this to understand their interaction and needs of other variety of backgrounds, allowing to provide
a more generalizable sample of subjects. Moreover, both LEMON and OntoTrace were evaluated in
specific contextual settings. Although these tools provide a general framework and a recommendation
system applicable across domains, their assessment within Experimental Objects that fit a short session
with human participants may differ from real-world scenarios. As an alternative, we could consider a
data-driven experimental approach—such as the creation of a ground truth—instead of human-related
experimentation. This could have further strengthened the evaluation and represents a promising
direction for future work. This thesis and future work would benefit from creating such ground truths,
breaking the human-factor dependency, and working towards a benchmark-oriented research approach.

Effects of OntoTrace recommendations on
effectiveness, efficiency, and satisfaction
during trace link discovery among
software requirements and LCNC software models

A A 4 A 1

Second First Focus Second Third

Assessment of MARPa
pontential technical and
social suitability in practice

First quasi Third quasi

- quasi . Group with || Focus Group||Focus Group
experiment || ayperiment experiment experts with experts || with experts
May 2023 || ‘Nov 2093) | May 2024 P o k

[Apr OntoTrace validation Jun] [Sep MARPa Validation Jan]

2023 2024 2024 2025
[1 1 1
2023 .I .I 2026
Aug LEMON Framework Validation Dec
2023 2025
) I
Interv?:vl\jsztf)zgesign Oct 2024 Nov 2025
. First quasi- Second quasi
assistance ; -
experiment experiment

___interaction

r
Effects of the LEMON Framework on effectiveness, efficiency,
and satisfaction when specifiying requirements
as software models in LCNC tools

_

Figure 4: Validation pipeline and timeline for MARPa and its chunks.

6. Lessons Learned and Research Agenda

This PhD thesis devised the first situational method to integrate requirement patterns and modelling
assistance in LCNC software development, grounded in a catalogue of method chunks and validated
through quasi-experiments and focus groups. This research journey has provided several lessons on
designing, implementing, and evaluating MARPa. A key lesson is that technical feasibility alone is
not sufficient: while MARPa chunks operationalised in the LEMON framework and OntoTrace proved
effective and efficient in controlled experiments, adoption in practice requires addressing both technical
refinements (e.g., catalogue growth, interaction, precision, recall, traceability) and social factors (e.g.,
stakeholder engagement, role displacement concerns). Another lesson is the importance of tailoring.
The industry-relevant case study demonstrated that selecting and adapting the relevant MARPa chunks
was crucial for aligning with industry needs, underscoring the value of situational method engineering
as a foundation for method design in LCNC contexts. Future work builds on these insights; we propose
a research agenda in Figure 5 to facilitate the full adoption of MARPa and its chunks.

Discussions and reflections. During execution of this PhD thesis, design decisions were made
that influence how the results should be interpreted and delimit the scope of the contributions. Beyond
our research agenda, there are reflections and open questions that point toward meaningful next steps:

« Gen Al In this thesis, we used Al techniques that do not rely on training data—specifically,
ontology-based recommendation systems—to avoid model dependency. However, given the
outbreak of GenAl, this new technology could fundamentally change how requirement patterns
are specified and how software models are created from them. Recent advances in GenAl
for requirements pattern engineering [48] and for assisting LCNC development [56] show the
relevance of this new technology. GenAlI could support the creation, retrieval, and population of
requirement pattern templates, or even replace some MARPa intentions by directly generating

Improving
recommendations
to boost
human achievable
precision and recall

Establish a broader
evaluation agenda:
empirical studies
and industry case

studies

Assess and improve
the requirement
pattern specification
for the LEMON

Framework

Broader
LCNC Tool
Integration

2026 2030
Goal:
- - Full Adoption for
Lljglsrrz\;ln(grit:r?ise Build a Building Pattern-based Modelling
regardingpperceived cor:;{;r;f;zrr\j;\/ti/: e T co r_nmlIJDnitiet_s anc: LCNca:its‘ffar:ceeég%i,npmem
raining Practices for

efficiency and
interaction

requirement pat-

tern catalogue for
LCNC software

development

MARPa Method and
Chunks
Adoption

Figure 5: Research Agenda for MARPa and its chunks

pattern instances or LCNC models. This potential improvements can be driven by our research
around MARPa, as a solid foundation for evaluating whether generative Al is necessary, what
value it may bring, and how it could reshape the method and its intentions.

« Integrability and scalability: MARPa is a situational method, meaning it can grow by adding
new chunks, intentions, and strategies that can later be tailored. Still, scalability remains an open
question: How can the MARPa tools be extended to new domains while remaining aligned with
the method? Tools such as LEMON and OntoTrace provide a basis for this interoperability, but
further work is needed to support large-scale use. This challenge points to creating protocols
or mechanisms for seamless integration between assistants, LCNC tools, and other modelling
environments.

+ Requirement pattern life cycle: In this thesis, we proposed tools and a method that allow to
specify, select, (re)use and transform requirement pattern templates as LCNC software models.
Once a template has been (re)used and its software model deployed, both the model and the
underlying pattern may evolve with the time, introducing a new open point: the requirement
pattern template and model life cycle. Managing this life cycle introduces an extra complex-
ity: How should LCNC tools based on requirement patterns handle changes in requirements,
templates, or generated models over time? How can traceability be maintained—possibly even
bidirectionally (round-trip)? In this thesis, traceability was used to guide recommendations during
pattern construction. This can serve as a foundation for more precise lifecycle-aware traceability
mechanisms that link template evolution with model evolution.

We belive these discussions and reflections will guide future work, and novel progress in requirement
pattern and modelling assistance research.

Declaration on Generative Al

During the preparation of this work, the author used ChatGPT and Grammarly in order to: Grammar
and spelling check, Paraphrase and reword. After using this tool/service, the author reviewed and
edited the content as needed and takes full responsibility for the publication’s content.

References

[1] M. Glinz, A Glossary of Requirements Engineering Terminology, International Requirements
Engineering Board (IREB), 2014.

(2]

(6]

[12]

[13]
[14]
[15]

[16]

M. Ochodek, S. Kopczynska, Perceived importance of agile requirements engineering practices —
a survey, Journal of Systems and Software 143 (2018) 29-43.

P. Bourque, R. E. Fairley, I. C. Society, Guide to the Software Engineering Body of Knowledge
(SWEBOK(R)): Version 3.0, IEEE Computer Society Press, 2014.

S. Sendall, W. Kozaczynski, Model transformation: the heart and soul of model-driven software
development, IEEE Software 20 (2003) 42-45.

M. Pankowska, Low code development cycle investigation, in: Proceedings of Ninth International
Congress on Information and Communication Technology, 2024, pp. 265-275. URL: https://link.
springer.com/10.1007/978-981-97-4581-4_19.

A. Gupta, G. Poels, P. Bera, Using conceptual models in agile software development: A possible
solution to requirements engineering challenges in agile projects, IEEE Access 10 (2022) 119745-
119766.

P. Mahendra, A. Ghazarian, Patterns in the requirements engineering: A survey and analysis
study, in: WSEAS Transactions on Information Science and Applications, 2014, pp. 214-230.

T. N. Kudo, R. F. Bulcdo-Neto, A. M. Vincenzi, Requirement patterns: a tertiary study and a
research agenda, IET Software 14 (2020) 18-26.

C. Palomares, C. Quer, X. Franch, Requirements reuse and requirement patterns: a state of the
practice survey, Empirical Software Engineering 22 (2017) 2719-2762.

S. Renault, O. Mendez-Bonilla, X. Franch, C. Quer, Pabre: Pattern-based requirements elicitation,
in: 2009 Third International Conference on Research Challenges in Information Science, 2009, pp.
81-92.

G. Mussbacher, B. Combemale, J. Kienzle, S. Abrahio, H. Ali, N. Bencomo, M. Bur, L. Burguefio,
G. Engels, P. Jeanjean, J.-M. Jézéquel, T. Kihn, S. Mosser, H. Sahraoui, E. Syriani, D. Varrb,
M. Weyssow, Opportunities in intelligent modeling assistance, Software and Systems Modeling
19 (2020) 1045-1053.

D. Mosquera, M. Ruiz, O. Pastor, J. Spielberger, Understanding the landscape of software modelling
assistants for mdse tools: A systematic mapping, Information and Software Technology 173 (2024)
107492.

C. Di Sipio, J. Di Rocco, D. Di Ruscio, P. T. Nguyen, Morgan: a modeling recommender system
based on graph kernel, Software and Systems Modeling 22 (2023) 1427-1449.

D. Mosquera, M. Ruiz, O. Pastor, J. Spielberger, Assisted-modeling requirements for model-driven
development tools, in: Research Challenges in Information Science (RCIS 2022), 2022, pp. 458-474.
K. Kumar, R. K. Saravanaguru, Context aware requirement patterns (carepa) methodology and its
evaluation, Far East Journal of Electronics and Communications 16 (2016) 101-117.
A.R.daSilva, D. Savi¢, S. V1aji¢, I. Antovié, S. Lazarevic, V. Stanojevi¢, M. Mili¢, A pattern language
for use cases specification, in: Proceedings of the 20th European Conference on Pattern Languages
of Programs, 2015, pp. 1-18.

S. Robertson, Requirements patterns via events/use cases, in: PLoP, 1996, pp. 1-16.

Mendix, Mendix marketplace - industry templates, 2025. URL: https://marketplace.mendix.com/
link/contenttype/106, [Accessed 02-05-2025].

OutSystems, Search Forge assets from OutSystems, 2025. URL: https://www.outsystems.com/forge/
list, [Accessed 02-05-2025].

Oracle, Oracle appex: Using the create application wizard, 2024. URL: https://docs.oracle.com/
database/apex-5.1/HTMDB/using-the-create-application-wizard. htm#HTMDB29252, [Accessed
01-12-2024].

R.J. Wieringa, Design Science Methodology: For Information Systems and Software Engineering,
Springer Berlin Heidelberg, 2014.

B. Henderson-Sellers, J. Ralyté, P. J. Agerfalk, M. Rossi, Situational Method Engineering, Springer
Berlin Heidelberg, 2014.

D. Mosquera, O. Pastor, J. Spielberger, Lemon: A tool for enhancing software requirements
communication through requirements pattern-based modelling assistance, in: REFSQ2024 Posters
and Demos Track, 2024, pp. 1-7.

https://link.springer.com/10.1007/978-981-97-4581-4_19
https://link.springer.com/10.1007/978-981-97-4581-4_19
https://marketplace.mendix.com/link/contenttype/106
https://marketplace.mendix.com/link/contenttype/106
https://www.outsystems.com/forge/list
https://www.outsystems.com/forge/list
https://docs.oracle.com/database/apex-5.1/HTMDB/using-the-create-application-wizard.htm#HTMDB29252
https://docs.oracle.com/database/apex-5.1/HTMDB/using-the-create-application-wizard.htm#HTMDB29252

[24]

[25]

[30]

[31]

[39]

[40]
[41]

[42]

[43]

[44]

D. Mosquera, M. Ruiz, A. Martakos, A domain-specific language for specifying requirement
patterns for model-driven software development, in: 15th Model-Driven Requirements Engineering
Workshop (MoDRE), 2025, pp. 1-10.

D. Mosquera, M. Ruiz, O. Pastor, J. Spielberger, L. Fievet, Ontotrace: A tool for supporting trace
generation in software development by using ontology-based automatic reasoning, in: CAiSE2022:
Forum, 2022, pp. 73-81.

D. Mosquera, M. Ruiz, O. Pastor, J. Spielberger, Ontology-based automatic reasoning and nlp
for tracing software requirements into models with the ontotrace tool, in: REFSQ2023, 2023, pp.
140-158.

D. Mosquera, M. Ruiz, O. Pastor, Ontology-based nlp tool for tracing software requirements and
conceptual models: an empirical study, Requirements Engineering 30 (2025) 341-369.

M. Savary-Leblanc, X. Le Pallec, S. Gérard, Understanding the need for assistance in software
modeling: interviews with experts, Software and Systems Modeling 23 (2023) 103-135.

M. Savary-Leblanc, Improving mbse tools ux with ai-empowered software assistants, in: ACM/IEEE
22nd International Conference on Model Driven Engineering Languages and Systems Companion,
2019, pp. 648-652.

B. Adhikari, E. J. Rapos, M. Stephan, Simima: a virtual simulink intelligent modeling assistant,
Software and Systems Modeling 23 (2023) 29-56.

J. D. Rocco, C. D. Sipio, P. T. Nguyen, D. D. Ruscio, A. Pierantonio, Finding with nemo: a
recommender system to forecast the next modeling operations, in: Proceedings of the 25th
International Conference on Model Driven Engineering Languages and Systems, 2022, pp. 154—
164.

L. Burguerio, R. Clarisé, S. Gérard, S. Li, J. Cabot, An nlp-based architecture for the autocompletion
of partial domain models, Lecture Notes in Computer Science 12751 LNCS (2021) 91-106.

S. Salemi, A. Selamat, Enhancement approachof object constraint language generation, Journal of
Physics: Conference Series 933 (2018) 1-12.

H. Agt-Rickauer, R.-D. Kutsche, H. Sack, Automated recommendation of related model elements
for domain models, Communications in Computer and Information Science 991 (2019) 134-158.
D. Ilic, E. Troubitsyna, L. Laibinis, S. Leppanen, Formal verification of consistency in model-driven
development of distributed communicating systems and communication protocols, in: ISOLA
2006, 2006, p. 425-432.

R. Sajjad, N. Sarwar, Nlp based verification of a uml class model, in: 2016 Sixth International
Conference on Innovative Computing Technology (INTECH), 2016, p. 30-35.

A.Paz, G. E. Boussaidi, H. Mili, checsdm: A method for ensuring consistency in heterogeneous
safety-critical system design, IEEE Transactions on Software Engineering 47 (2021) 2713-2739.
M. Ohrndorf, C. Pietsch, U. Kelter, T. Kehrer, Revision: a tool for history-based model repair
recommendations, in: Proceedings of the 40th International Conference on Software Engineering:
Companion Proceeedings, 2018, pp. 105-108.

J. Burger, J. Jurjens, S. Wenzel, Restoring security of evolving software models using graph
transformation, International Journal on Software Tools for Technology Transfer 17 (2014)
267-289.

N. Almasri, B. Korel, L. Tahat, Verification approach for refactoring transformation rules of
state-based models, IEEE Transactions on Software Engineering 48 (2022) 3833-3861.

M. Babaei, J. Dingel, Efficient regression testing of distributed real-time reactive systems in the
context of model-driven development, Software and Systems Modeling 22 (2023) 1565-1587.

G. Mussbacher, B. Combemale, S. Abrahdo, N. Bencomo, L. Burguefio, G. Engels,]J. Kienzle,
T. Kithn, S. Mosser, H. Sahraoui, M. Weyssow, Towards an assessment grid for intelligent modeling
assistance, in: Proceedings of the 23rd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems: Companion Proceedings, 2020, pp. 1-10.

S. Srivastava, A repository of software requirement patterns for online examination system,
International Journal of Computer Science 10 (2013) 247-255.

A. Sleimi, M. Ceci, M. Sabetzadeh, L. C. Briand, J. Dann, Automated recommendation of templates

[45]

[46]

[47]

[48]

[49]
[50]

[51]

for legal requirements, in: 2020 IEEE 28th International Requirements Engineering Conference
(RE), 2020, pp. 158-168.

L. Sardi, A. Idri, L. Redman, H. Alami, J. Fernandez-Aleméan, A reusable catalog of requirements
for gamified mobile health applications, in: Proceedings of the 17th International Conference on
Evaluation of Novel Approaches to Software Engineering, 2022, pp. 435-442.

R. Wahono, J. Cheng, Extensible requirements patterns of web application for efficient web
application development, in: First International Symposium on Cyber Worlds, 2002. Proceedings.,
2002, pp. 412-418.

L. Darif, G. El Boussaidi, S. Kpodjedo, A. Paz, Utl: A unified language for requirements templates,
in: Proceedings of the 40th ACM/SIGAPP Symposium on Applied Computing, ACM, 2025, p.
1489-1506.

X. Franch, S. Gnesi, F. Paccosi, C. Quer, L. Semini, Leveraging Requirements Elicitation through
Software Requirement Patterns and LLMs, Springer Nature Switzerland, 2025, p. 261-276. URL:
http://dx.doi.org/10.1007/978-3-031-88531-0_19. doi:10.1007/978-3-031-88531-0_19.
OutSystems, Outsystems: Application templates, 2024. URL: https://success.outsystems.com/
documentation/11/building_apps/application_templates/, [Accessed 01-12-2024].

B. K. Dolu, A. Cetinkaya, M. C. Kaya, S. Nazlioglu, A. H. Dogru, Msdeveloper: A variability-guided
methodology for microservice-based development, Applied Sciences 12 (2022) 11439.

M. Missikoff, A simple methodology for model-driven business innovation and low code imple-
mentation, Arxive (2020).

[52] J. Kirchhoff, N. Weidmann, S. Sauer, G. Engels, Situational development of low-code applications

[53]
[54]

[55]

in manufacturing companies, in: Proceedings of the 25th International Conference on Model
Driven Engineering Languages and Systems: Companion Proceedings, 2022, pp. 816-825.
SHIFT, Blueprint for health care digitization - SHIFT | Smart Hospital; Intelligent Framework,
Tools and Solutions, 2025. URL: https://future.hospital/en, [Accessed 17-11-2025].

Posity, Posity AG and posity design studio, 2025. URL: https://posity.ch/EN/index.html, [Accessed
02-05-2025].

I. Mirbel, J. Ralyté, Situational method engineering: combining assembly-based and roadmap-
driven approaches, Requirements Engineering 11 (2006) 58-78.

Mendix, Maia: Al-Assisted Development, 2025. URL: https://www.mendix.com/platform/ai/aiad/,
[Accessed 02-05-2025].

http://dx.doi.org/10.1007/978-3-031-88531-0_19
http://dx.doi.org/10.1007/978-3-031-88531-0_19
https://success.outsystems.com/documentation/11/building_apps/application_templates/
https://success.outsystems.com/documentation/11/building_apps/application_templates/
https://future.hospital/en
https://posity.ch/EN/index.html
https://www.mendix.com/platform/ai/aiad/

	1 Introduction
	2 Research Method
	2.1 Research Questions
	2.2 Design Cycle

	3 Problem Investigation: The Landscape of Modelling Assistance and Requirement Patterns
	4 MARPa Design in a Nutshell
	5 MARPa Effect in Context: Validation Pipeline
	6 Lessons Learned and Research Agenda

