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Abstract
Organizations struggle to realize value from artificial intelligence investments, with 74-76% of companies failing to
achieve significant returns. This research addresses two critical questions: how to integrate data science initiatives
into enterprise architecture (EA) modeling to connect value realization, and how to assess data asset value in
a structured manner. The paper discusses a comprehensive framework that combines EA principles with data
science methodologies, incorporating TOGAF’s architectural layers with performance indicator ontologies. Using
predictive maintenance in smart manufacturing as a demonstration case, the framework links Key Performance
Indicators (KPIs) with data science model evaluation metrics through contingency table analysis. The approach
enables organizations to quantify data asset value by comparing model performance against baseline scenarios,
translating technical metrics like accuracy into business-relevant indicators such as maintenance costs. This
integration provides a systematic methodology for valuing data assets and demonstrating the business impact of
data science initiatives.
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1. Introduction

Research in the consulting business shows that 74% to 76% of companies do not get real value from
their investments in artificial intelligence (AI). Only 4% to 5% of these companies find significant value
from their AI efforts on a large scale [1]. On the other hand, companies that use AI successfully report
revenue growth that is 2 to 5 times higher than those that do not utilize AI effectively. They also achieve
profitability that is 40% to 60% greater than their peers. Additionally, they can see EBITDA gains of
up to 25% [1, 2]. Further, many companies that are slow to adopt AI are facing significant financial
challenges. Approximately 99% of these organizations are experiencing losses due to AI-related risks,
with an average loss of around $4.4 million each [3].

A report from McKinsey reveals that 78-79% of companies utilizing generative AI do not experience
a significant impact on their profits. This situation leads to what is referred to as the "gen AI paradox,"
where extensive adoption of this technology yields minimal returns. Only 8% of organizations are
effectively scaling their AI initiatives, and fewer than 10% of AI projects advance beyond the pilot
phase [4, 5]. Moreover, despite a sixfold increase in enterprise AI spending, only 27% of organizations
have fully integrated AI into their operations. This indicates that 73% of companies have struggled to
translate their investments into practical AI applications [6].

McKinsey indicates that companies waste 70% of their efforts on data cleansing, with more than
half of data lakes not being suitable for their intended purposes [7]. Boston Consulting Group (BCG)
highlights that only 38% of organizations have established a strong data-driven culture, and 74% face
ongoing challenges in effectively integrating big data into their operations. Most executives recognize
this issue, with 91% citing difficulties related to people and processes as their primary barriers, rather
than technology [8]. McKinsey also points out that the lack of a clear AI strategy is the main barrier to
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adoption. Only 17% of companies have successfully identified and mapped potential AI opportunities
within their organizations [9].

Former research reveals that an organization’s ability to adopt AI is influenced by its internal
capabilities, which are shaped by its enterprise architecture (EA). To achieve successful AI integration,
companies should ensure a strong alignment between their AI initiatives and business units. This
alignment is crucial to ensure that AI strategies support business goals and objectives while also
considering external factors such as market trends and competition [10].

Recent research from leading consulting firms emphasized that data is a crucial element in the
effective deployment of AI. AI is primarily associated with the use of large, pre-trained neural networks
designed for specific use cases. These advanced models are often part of extensive data science projects,
utilizing deep learning techniques to extract valuable insights and predictions from substantial datasets.
Furthermore, terms such as data science, data analytics, data mining, and machine learning are commonly
used interchangeably in the context of AI. Each of these domains plays an essential role in deriving
knowledge from data [11, 12]. Collectively, these fields contribute significantly to the progress and
application of AI technologies across diverse industries.

Valuing data is crucial for understanding and utilizing it effectively as an asset. This process aids
companies in making informed decisions regarding investments in technology, marketing, and research
[13]. As organizations collect increasing amounts of data, it is vital to comprehend its economic value to
guide their choices. By assessing data, businesses can allocate resources strategically and invest in areas
that yield the best returns. Data is increasingly recognized as an asset that can appear on a company’s
balance sheet. An accurate valuation of data can enhance the overall worth of the company. Moreover,
a clear understanding of data value enables companies to identify and mitigate risks associated with
data usage. This insight helps improve risk assessment and informs strategies for managing potential
impacts on the business [14, 15].

In this short paper, after introducing the research approach, we will first explain how to integrate
data science projects into enterprise architecture (EA) modeling. Next, we will introduce the concept
of ontology, which is important for managing key performance indicators (KPIs). We will show how
organizations use key performance indicators together with data science model evaluation to evaluate
and assess the value of data assets.

2. Research Approach

As EA plays a pivotal role, the first aim of this research is to examine in the integration of data science
initiatives into EA. It focuses on developing a comprehensive modeling approach that is closely aligned
with EA principles. In this framework, data is regarded not only as a fundamental asset but also as a vital
driver of value for organizations. The design and structure of statistical and machine learning models
are significantly shaped by the quality and characteristics of the data involved. As a result, the success
and value derived from data science initiatives are inherently tied to the quality and assessment of the
data used. To explore this essential relationship, the research will investigate various methodologies for
valuing data assets within the context of data science.

The following research questions are addressed:

• RQ1: How can data science initiatives be integrated into EA modeling to connect the value
realization from these initiatives in organizations?

• RQ2: How can the value of data assets related to data science initiatives be assessed in a structured
manner?

2.1. Methodology

We are employing a design science research methodology, which prioritizes the systematic development
and evaluation of innovative artifacts to address intricate challenges within the domain [16, 17, 18]. At
this juncture, we have delineated the objectives of our proposed solution, articulating specific aims that



we seek to accomplish through this research endeavor. Additionally, we have constructed an initial
conceptual framework that encapsulates our approach and serves as a foundational basis for further
investigation and iterative refinement of the solution (see Section 3).
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Figure 1: Design Science Research Approach according to [18].

3. Current Research Work

Data science can be viewed as a systematic and structured approach aimed at extracting meaning-
ful information from various datasets, ultimately facilitating the discovery of valuable insights and
knowledge [19, 11]. Within this field, terms such as data analytics, data mining, machine learning, and
artificial intelligence frequently emerge. While these terms can sometimes be used interchangeably,
they also represent distinct components of the broader discipline of data science.

The applications of data science can be categorized into three main types: descriptive, predictive,
and prescriptive [20]. Descriptive applications primarily focus on uncovering trends and patterns
within data. This includes methodologies like clustering, which groups similar data points, as well
as pattern recognition projects that seek to identify significant relationships or anomalies within
datasets. Predictive applications leverage statistical techniques and algorithms to forecast future
outcomes based on historical data. This category can be further subdivided into classification approaches,
which assign data to predefined categories, and regression approaches, which model the relationships
between variables to predict continuous outcomes. Finally, prescriptive applications utilize advanced
methodologies, such as simulation studies and optimization techniques. They provide actionable
recommendations and strategies to guide decision-making, enabling organizations to achieve their
goals effectively and efficiently.

The research at hand focuses on the dynamics of decision-making in business processes, emphasizing
the role of classification and optimization methodologies.

3.1. Holistic View on Integrated Data Science Processes in EA

In our initial research, we conducted a thorough literature review on the integration of data science
projects within EA. The analysis of existing studies on incorporating DS processes into EA reveals
a notable deficiency in providing a comprehensive perspective on the implications of DA. Currently
available methodologies tend to focus either on the business architecture layer [21, 22, 23, 24, 25, 26],
which includes conceptual data science processes, or adopt a high-level viewpoint that fails to account
for the specific details of DS processes and infrastructure [27, 28, 29].

In light of the findings, we propose a combined approach. This framework seeks to integrate the
various layers of architecture as delineated in established EA frameworks, such as The Open Group
Architecture Framework (TOGAF) [30], with pertinent data science methodologies [19]. The objective
is to develop a cohesive understanding of how DS can be effectively incorporated into the overall
architecture, thereby ensuring alignment between both strategic and operational elements (see Figure
2).



The comprehensive architectural approach can be articulated with precision as follows: Within
the framework of TOGAF, enterprise design is organized into three primary layers. The Business
Architecture layer delineates the fundamental business processes, while the Technology Architecture
encompasses the hardware and software technologies essential for supporting enterprise operations,
thereby providing the requisite infrastructure for effective business and systems integration. Importantly,
the Information Systems layer is further subdivided into two critical components: Data Architecture and
Application Architecture. Data Architecture centers on the systematic organization and management
of data assets to facilitate business processes and informed decision-making. Conversely, Application
Architecture pertains to the design and interrelation of software applications within the enterprise,
with a focus on their alignment with organizational objectives and their seamless integration.

The Business Architecture is presented through a detailed diagram that consists of two main com-
ponents. The left side illustrates a typical structure of business processes, including an event-driven
diagram and a business unit diagram [30]. This section highlights a central business process essential
for enterprise operations, supported by functions and services that facilitate effective execution and
alignment with the organization’s objectives. The business process serves as a mechanism for trans-
forming an input, typically a product or service, into a valuable output. This transformation is initiated
by an actor responding to a specific business event, which triggers the process workflow. Each business
process is managed by an internal actor usually associated with a specific business division. On the right
side of the architecture, a foundational model of a DS service is depicted, overseen by a Data Scientist
within either the IT or DS division. This service demonstrates how DS can enhance decision-making and
operational efficiency across the organization. The success of a DS service often relies on a framework
of multiple DS business processes. These processes are guided by established DS methodologies, which
provide a systematic approach to data analysis and interpretation. By following these methodologies,
organizations can ensure that their DS initiatives are effective and aligned with broader business goals,
ultimately leading to valuable insights and innovative solutions (see [21, 22, 23, 24, 25, 26]).

Figure 2: Holistic View on Integrated DS Processes in EA.



3.2. Ontology of Performance Indicators

In the realm of performance measurement, various concepts are employed to model the intricate
interactions among Performance Indicators [31, 32]. A notable model within this field is KPIOnto, which
articulates indicators as mathematical expressions that integrate input parameters and an aggregation
function [33, 34, 35]. These indicators are intentionally aligned with specific business objectives
to ensure they contribute to the overarching success of the organization. Furthermore, they are
interconnected with various dimensions, including business processes, product characteristics, and
temporal elements (see Figure 3). Although there have been initiatives to implement ontological
frameworks for performance indicators within the manufacturing sector, such efforts remain limited
in their widespread acceptance [36]. The potential advantages of employing such ontologies include
the standardization of terminology and the enhancement of communication regarding performance
metrics. However, further validation is imperative to evaluate their effectiveness comprehensively.

Figure 3: Excerpt of KPI Ontology according to [32].

3.3. Conceptual Valuation Model

According to Decision Theory [37], we can effectively map how data science applications integrate into
the decision-making processes within business environments. By examining a range of possible actions,
denoted as 𝑎 ∈ 𝐴, alongside various decision states represented by 𝑥 ∈ 𝑋 , we can clearly define a
specific decision problem, referred to as 𝐷 =< 𝐴,𝑋 >

These concepts are further reinforced by an information structure, denoted as 𝐼 = {𝑌, 𝑝(𝑥, 𝑦)}. The
information structure encapsulates the outcomes generated by data science applications (𝑦 ∈ 𝑌 ) and a
probabilistic relationship between the states and the data (𝑝(𝑥, 𝑦)). When we consider classification
applications as fundamental tools for decision support, we recognize a direct equivalence to the decision
problem outlined in Decision Theory.

The anticipated payoff associated with a specific decision-making problem in the absence of prior
knowledge is defined as the expected value of a designated measure function (𝜋).

Within the use of data science applications, the optimal outcome is characterized by maximizing
the expected value across all conceivable sets of actions. Moreover, when assessing the collective
influence of posterior information obtained from data science applications, one can ascertain its value
by examining the difference in expected payoffs.

𝑉 (𝐼) = 𝐸𝑌 𝐸𝑌 |𝑋(𝜋(𝑥, 𝑎𝑦))− 𝐸𝑋(𝜋(𝑥, 𝑎)) (1)

The theoretical implications of this consideration prompt an examination of the complexities involved
in measuring decision-making processes. In this context, performance indicators play a pivotal role,
acting as economic benchmarks that quantify actions in relation to specific decision problems. By
assessing these measured actions against the results obtained from data science applications, we can
determine the true value of the information. This is achieved by comparing actions taken under informed
conditions with those made without prior knowledge, thereby illustrating the significant influence that
data-driven insights can exert on decision outcomes.



4. Discussion & Challenges

It is essential to recognize that the overall value derived from data assets can be significantly enhanced
by integrating multiple data science use cases. Hence, it is imperative to expand the framework to
accommodate additional use case integration.

To support this expansion, we have developed a use case catalog that serves as a foundational resource,
establishing the groundwork for exploring and incorporating new use cases that more effectively
leverage existing data assets [38].

However, the intersection of Enterprise Architecture (EA) modeling and KPI ontology introduces
considerable complexity. This situation raises essential questions about whether a straightforward
mapping or a referencing approach will suffice in creating connections between these two domains.
Moreover, we need to assess whether an evaluation of the EA modeling is necessary, leading to inquiries
regarding whether this should be treated as an artifact. The question of whether a meta-model is
required also arises as a key point of exploration.

Additionally, the valuation step in this framework becomes increasingly complex, as it must address
various data science use cases and models. The reliance on a well-defined ontology becomes crucial
in navigating this complexity, as it fundamentally impacts the valuation process. Consequently, the
complexities involved in evaluating these diverse data science applications are currently under thorough
investigation to ensure a robust and effective valuation methodology.
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