Translating Cooperative Strategies for Robot Behavior

Florian Ruh and Frieder Stolzenburg

Hochschule Harz, Automation and Computer Sciences Depatt®-38855 Wernigerode
{fruh, fstol zenburg}@s- harz. de

Abstract. This paper presents a method for engineering and progragrmustti-
robot systems, based on a combination of statecharts amidi flaytiomata, which
are well-known in the fields of software engineering andfiaidil intelligence.
This formal specification method allows graphical presgmeof the whole mul-
tiagent system behavior. In addition, these specificattanse directly executed
on mobile robots. We describe the transformation process fihe specifica-
tion to executable code, after introducing the necessdigitiens. A translator
that automatically converts hybrid hierarchical statetshanto simple flat hy-
brid automata (i.e. without hierarchies) has been implaatenThe respective
tool allows the text-based input of hybrid hierarchicalcamata specifications of
multiagent system with synchronization. The translatidn flat automata is per-
formed by means of different plug-ins, leading e.g. to efetie code for Sony
Aibo robot dogs. The plug-in just mentioned has been suidsapplied in the
RoboCup four-legged league.

Key words: agent-oriented software engineering; multiagent syst&okoCup;
tools for intelligent systems.

1 Introduction

Robotic soccer provides many research challenges and dhenofis behavior control
including the subjects of team play, cooperation and flexiglick reaction. A soccer
team can be designed as a homogeneous multiagent systemtisrbehavior of mul-
tiagent systems and agents alone can be understood as hyiexternal events and
internal states, an efficient way to model such systems ate stansition diagrams,
which are well-established in software engineering. Theygaaphical representations
of finite state machines with hierarchically structuredestaand transitions which lead
from one state to another depending on the input or eventpu@uor actions can be
done during transitions or in states. State transitionrdiag have been applied success-
fully for multiagent systems in general and in the RoboCusginaulation of (human)
soccer with real or simulated robots (see e.qg. [2, 5, 19]).

However, state transition diagrams do not properly coMesgdects of multiagent
systems. Therefore, hybrid hierarchical automata (HHAhwimed synchronization
have been developed to take continuous processes in themmeént into account [7].
Moreover, they can consider time as an additional factosyachronization processes.
This formalism can help to model situations when two or mgrenas have to deal with
one resource. In the domain of soccer e.g., the agents haonsent that exactly one
player goes to the ball.

* This paper emerged from the master thesis of the first aull@dr [

Therefore, as a running

example, we consider a sce- [soccer makaay] teamplay f

nario influenced by the UEFA Pajerr) g Payer® 2]
champions league competition (kickott] : | I
2006/2007: theMakaay move choose-pass-sector | | stand

(see Fig. 1). Let there be one |

player of typeA and two play- ' ! Y

ers of typeB in the offensive oototal] REZET -
team. PlayerA performs the ¥ ‘ ¥

kick-off, while the p|ayers of pass-to-sector i : pass-to-sector1 J
type B are waiting in different i 5

sectors on the pitch, which is | [go-to-front-sector
divided into sectors (cf. [6]). — 1‘ |

Player A chooses a direction M } | r—
for passing (right or left mid- v \

field, sectors 3 or 5), then kicks ||/ shoot-goal : :

off and passes to one player —

of type B in the destination oot J } :

sector. PlayerA runs to sec- B |

tor 1 (middle offense) wherB kick-to-goal ‘ .

has passed the ball to. Finally, e iy

player A tries to shoot to the 1 1 N

goal directly. If it fails, A tries Y4 Ty

it again. MeanwhileBgoesto |l Coatr >

the ball if it is nearer to itB

then passes t@\ in sector 1
again.

Fig. 1. Statechart for Makaay move.

In the sequel, Sect. 2 covers the formal specification of idydtatecharts. Corre-
sponding description and target languages are defined andaged in Sect. 3. With
these foundations, we can create a concept for the tramsjatdcess. Sect. 4 then deals
with the design of the application and shows an example of kisally, we discuss
related works in Sect. 5 and conclude with Sect. 6.

2 Hybrid Statecharts

2.1 States and Transitions

In a realistic physical environment, it is inevitable to s@er continuous actions in
addition to discrete changes. Hybrid automata extend ag@twhte transition diagrams
with methods that deal with those continuous actions. Tcetstend the characteris-
tics, we will introduce several definitions for hierarcHibgbrid automata with timed

synchronization now [7, 8] — called HHA.

Definition 1 (basic components).The basic components ofstate machinare the
following disjoint sets:

S: afinite set ofstatespartitioned into three disjoint Sets'sﬁnple Scomp and onc
— called simple, composite and concurrent states, comgiane designatestart
states) € ScompU Scong

X: a finite set of variables, partitioned into two disjoint se¥¢g5| and Xt — the
continuous/real-numbered and the integral/integer vilés, respectively; for each
x € X we introduce the variables for the conclusions of a discrete change;

T: afinite set of transitions with = Sx S.

Definition 2 (state hierarchy).Each state s is associated with zero, one or nioitél
stateso(s): a simple state has zero, a composite state exactly one, armheurrent
state more than one initial state. In the latter case, théahstates are calledegions
Moreover, each states S\ {sy} is associated to exactly one superior stts). There-
fore, it must hold3(s) € SoncU Somp A coNncurrent state must not directly contain other
concurrent ones. Furthermore, it is assumed that all trdoss ST € T keep to the
hierarchy, i. eB(s1) = B(s2). Furthermore, we write"(s) or "(s) for the n-fold appli-
cation ofa or B to s, in particular,a®(s) = B%(s) = s. Variables x X may be declared
locally in a certain statey(x) € S. A variable x¢ X is valid in all states s= S with
B"(s) = y(x) for some n> 0, unless another variable with the same name overwrites it
locally.

As said earlier, Fig. 1 depicts the statechart for our rugisioccer example. Here,
states are named after their affiliation to the players oatti®ns which are being done
at that moment. The states®ccermakaay(which is the start statey here),kickoff,
go-to-ball player-Aandplayer-Bare composite stateeamplayis a concurrent state
while all others are simple states. The oval synttall is a synchronization point and
will be discussed in Sect. 2.2,

Definition 3 (jump and state conditions). For each transition, there exists jamp
condition This is a predicate with free variables from the valid véliss of XU X'.
Additionally, each state s S contains a state condition which describes continuous
changes in s. Itis a predicate with free variables frora ¥ }.

Events are well-known in UML statecharts [12] and hybridoswata [8]. They can
easily be expressed by (binary) integer variables in oumédism. Therefore, we do not
introduce them explicitly in our definitions. But in conttas simple hybrid automata,
we introduce hierarchies. Fig. 2(a) shows an example stage which is induced by
the B-function. HereR is the root of the tree, and e.g. state 1 can be reached from 5,
i.e. 1=B3(5). Note that the value 8" is always uniquely determined due to the tree-
like (and not graph-like) structure of the state hieraréhythermore, let3(R) = 3. A
configuration (defined next) is the subset of the active statéhe state tree.

Definition 4 (configuration and completion). A configurationc is a rooted tree of
states with the root node as the topmost initial state of trezall state machine. When-
ever a state s is an immediate predecessof of s, it must hold3(s') = s. A config-
uration must becompletedoy applying the following procedure recursively as long as
possible to leaf nodes: if there is a leaf node in c labelethwistate s, then introduce
all a(s) as immediate successors of s.

The semantics of our automata can now be defined by altegnatiquences of
discrete and continuous steps. Following the synchronythgsis, we assume that
discrete state changes (via transitions whose annotateg gondition holds in the
current situation) happen in zero time, while continuoepst(within one state) may
last some time. Due to the lack of space, for details on theatos of HHA, the reader
is referred to [15].

Fig. 2(b) demonstrates the relationship between stats iad configurations. It
depicts several configurations that are created from the st in Fig. 2(a). A config-
uration itself can be connected to another one. The ori¢fiaasitiont, which was used
for the completion o0&, in ¢y, is used in a discrete step while its origin is changed from
s to ¢; and its target frons, to c;.

(a) State tree with syn- (b) Configurations with synchronization problem.
chronization poink.

Fig. 2. State tree and configurations of an automaton.

2.2 Synchronization

Synchronization is significant for modeling multiagentteyss. Usually, a system deals
with limited resources. The interaction with them can taket j several states. Espe-
cially when reacting to events from the environment, thetiea process takes some
time 1 > 0. For this, asynchronizatiortakes care of the common resources defined at
a synchronization pointWhile synchronization is associated with transitionsplien
mented via labels in original hybrid automata [8], synclization is associated with
states in HHA, i.e. actions which last some certain time.dntrast to this, the syn-
chrony hypothesis states (for discrete steps), that arayistafinitely fast and therefore
can react immediately within zero seconds, i.e., a tramsithkkes zero time.

Definition 5. A synchronization point is identified by a variable=xXXsync C X with
a maximum capacity &) > 0. Each state connected to the synchronization point is

classified by one of the following relations, R Sx Xsync0r R— C Xsyncx S. If a state
increases the capacity, it will be classified by Bnd otherwise by R, if it decreases

it (or resets the resource). In general, each connectionjnUR_ is annotated with a
number m wittD < m < C(x) which identifies the volume to be increased or decreased
from the synchronization point, respectively.

Synchronization may take some time, since they are conthéotécontinuous)
states and not to discrete transitions. Thus, the synchation process can theoreti-
cally be interfered by other actions or concurrent stateésiélso try to share the same
synchronization point. To avoid side effects that may lesiti¢onsistency or even sys-
tem failure, the process is separated into allocation artdré) occupation of resources.
For this, the allocation variables andx_ register the request for occupation or release
for each synchronization poirt Thereforex; andx_ must be added tX.

In this case (synchronization poxand connected stas ;T is calledincoming
transitionfor siff a"(s;) = sfor somen > 0, initializing transitioniff it is an incoming
one witha"(s) = y(x), outgoing transitioniff s; = "(s) for somen > 0 wheres; occurs
in the current configuration ands valid in s, successful outgoing transitidfi it is an
outgoing transition withs; = s andfailed outgoing transitionff it is not a successful
outgoing transition. Note that outgoing transitions careocharacterized statically but
only dynamically by investigating the configuration tre€kis is an important issue for
the revoking of the allocation (see Sect. 4.2). At a syncization pointx, additional
constraints must be defined which affect the transitionsataincident with all states
s connected tx. Due to the lack of space, for details on the synchronizatamctept,
the reader is referred to [7].

The synchronization poirttall in Fig. 1 has a capacity of 1. Thus, it can be in-
terpreted as a Boolean value as there is only one ball in a&esocatch. Both states
go-to-ball occupy the synchronization poibtll. Hence, they belong to the relation
R, . The state&ick-to-goalandpass-to-sectorelease it and therefore belongRo.

The example in Fig. 2(a) also makes use of a synchronization.pAs seen in the
tree, the statdR introduces the synchronization poxtwhile 4 is somehow using it
here. The definition is marked with the dashed arrow poiraing However, for some
multiagent systems, the synchronization must be convértedrdinary variables if a
target platform does not provide synchronization intexfac

3 Specification Languages

After having defined basic concepts, let us now consider red@danguages for pro-
gramming multiagent systems with HHA. Therefore, we wiliaiss two languages
briefly in the sequel: HAL and XABSL.

The project goals of HAL [3] were the definition of an ASClIkfoatted specifi-
cation language for hybrid automata with timed-synchration and, furthermore, its
transformation into an input format for model checkers sashlyTech[8]. HAL is
at the same time the name of the project and the name for thoifispgon language
(Hybrid Automaton LanguageThis corresponds to the definitions introduced in the
previous section. A HAL specification is usually writtenargn ASCII formatted file.

According to the syntax, it consists of a global frame whidhsirbe a composite au-
tomaton. It may include several other automata followirgyriles of hybrid automata
with timed synchronization. Even though the terms of inta@ce, polymorphism are
not defined in HAL syntax, modularization is actually knowie namespace of two
parallel automata cannot collide while subsequent auteat access variables of their
superiors. An example is shown in the listing (Fig. 3).

composite makaay {
start (teamplay);
concurrent teamplay {
syncpoint(ball, 1);
region player. A {
cardinality := 1;
start (kickoff);
composite kickoff {
start(choosepasssector);
var passsector := 0;
var random05.3_.5 = 0;
simple choosepasssector {

flow = passsector”™ = random05.3.5;

invariant := passsector != 3 & passsector != 5;

trans := (go_to_ball, passsector == 3|
passsector == 5);

} % choosepasssector
simple go_to_ball {
sync(ball, 1);
flow := go_to_ball_without_.turning_-maxspeed120;
invariant ball_seendistance >= 70;
trans (passto_sector, ballseendistance< 70
)
} % go-to_ball
% (...)
invariant := ball_sector == 4;
trans := (go_to_sectorl, ballsector !'= 4);
} % kickoff
% (..)
} % player A
% (...)
} % teamplay
} % makaay

Fig. 3. HAL specification.

Another successful approach of modeling agent behavi®tABSL (Extensible
Agent Behavior Specification Language) [11]. It was devetbpnd integrated into
the code basis of th@ermanTeamseveral times world and German champion in the

RoboCup four-legged league, as a language for behavioneegdng. The specifica-
tions can be transformed automatically into intermediatgecwhich has to be inter-
preted on the target platform by tb@bslEngine The XABSL package also provides
functionalities for visualization, debugging and documtag¢ion. Theoptiondivision in
XABSL specifications includes a global symbol file to get ast® the environment. It
consists of one initial and several other states with their decision trees. Thaction
division specifies all assignments that are executed theseibsequent option call is
also possible.

4 The Translator Tool

The HAL converter provides a window-based flattening meidmarior state machine
specifications, a batch mode for quick processing, and ability. Additionally, there
should be a graphical editor to easily create source code lfrgbrid statecharts. Al-
ready created files (or files that are created manually) doevedl to be used as an
input for the application. Hence, a lexer and a parser pmthé conformity with the
HAL syntax. With this design, it is possible to create a hgltmitomaton which can be
used later as input for the flattening algorithm (see bel@ug translator from HAL
to XABSL shall cover all features of synchronized hybridtisteachines that can be
transferred to XABSL.

4.1 Flattening Algorithm

For the translation process, there is no simple one-to-tsaetaral mapping between
HHA and XABSL. As XABSL and also standard verification tooftem are not able
to cope with hierarchies, it is required to flatten the autimmai.e., all states except
the initial one are transformed into simple ones. As thedlator shall be feasible of
creating processable output for those tools, this giveshother reason to flatten the
hierarchical structure. Though this transformation magleo state explosion, it could
be avoided, nevertheless, if hierarchical configuratianddtbe processed as directly
as in some logic-based implementations [7, 15].

In the implementation, configurations are used to clarifyolvlagent currently is in
which state. The flattening algorithm processes an inpté gt and converts it to a set
of configurations. In particular, the output can be usedrpéfy the agent’s behavior
structure and to gain performance due to less complexityttis, the algorithm is
divided into four major parts.

1. Copy regions
Expand the regions in the tree according to their cardinaliigiven in the upper
right corner of a region). Modify each region to a composittes copy itc-times
and replace the original with the copies.

2. Globalize variables and constants
Each state may introduce variables and constants. Eachdefiaition must be
globalized as it will be used in the configuration flows andisiions later on. The
global definitions must be uniquely named to avoid namespaltisions.

3. Convert synchronizations
If a state uses a synchronization point to interact with osftates, these synchro-
nizations must be resolved. Due to their complexity, a nedft extensive inspec-
tion is required which is explained in detail in Sect. 2.2 a@#. Although the
resulting additions to transition guards reduce readspilie even more complex
process of inter-state synchronization could be elimihatepractical approach for
the detection of the correct place to revoke an allocati@ivisn below.

4. Create configurations
Each state tree possesses an initial configuratjorhis contains all the initial
states that can be reached in the tree beginning at the roobréing to the com-
pletion algorithm (Def. 4), the configurations are creattlrsively beginning at
co. Already existing configurations will be recognized anddugdransitions lead
to them. These newly created transitions form the disctefesof the system.

The synchronization conversion in the third step is a ratherplex process. At first,
all synchronization points in the automaton are collecidtér this, the automaton will
be traversed, and the occupation, the release, as well @dldlcation, and its revoke
are added for each synchronization found in the state tfee synchronization point
itself, its maximum capacit€(x), and its allocation variables. andx_ are converted
into global variables. For each transition type, differexpressions must be added to
the guards and the discrete expressions. However, flégr each synchronization
pointx is introduced indicating its current statusxlis occupied thew; := —1. If xis
allocated but not occupied yet the&p:= 1. Otherwisex; := 0. For all not initializing
incoming transitionsys := 1 will be added to their discrete expressioxs,= 0 will be
added for all initializing incoming transitiong; := —1 will be added for all successful
outgoing transitions. For each not successful outgointgttian, it must be checked if
xis already allocated but not occupied by this synchrorirail herefore, the transition
must be duplicated. The comparison= 1 is added to the guard of the first transition,
X; # 1is added to the second one. The revocation of the allocegtiatided only to the
discrete expression of the first one. Finally, all synchzatibn points can be erased as
they are now properly converted into ordinary variables.

4.2 Allocation in Synchronizations

During the development of the theoretical model of hybritbanata with timed syn-
chronization, a problem concerning not successfully oatgtransitions occurs. The
correct situation has to be found, when the allocation dbaltevoked, since it must
actually be done only once per occupation. For this purpsisae definitions have to
be introduced.

Let &(s) return all variables used in the statéut not defined there. Furthermore,
we introduce a mappingwhich returns all state successorsdiiat usex and are part
of the configuratiore:

{(s,x,c)={s |B"(s) =sAxed(s)As € S(c),n> 0}

Fig. 2(a) depicts a simple example for that synchronizapioblem. The dashed
arrows indicate the definition and the usage of the synchatioin poinix. The state tree

shows — among others — a transition from state 2 to 7. Fig.st{(bls the appropriate
configurations witlcy being the initial one. In this case, the synchronizatiompois
defined in the stat® while only 4 is usingx. In fact, R must be a concurrent state as
it defines a synchronization point. Though concurrent stageially have two or more
regions, this example reduces complexity and actually asisone.

Let us now have a closer look on what is happeningjiwhen the process has
activated state 5. State 4 is also active as it is the immegdigdecessor of state 5 in the
tree. The transition from 2 to 7 is a not successful outgaiagdition for 4 as 2= f"(4)
withn=1>0.

Now, to collect all states that may have allocaxduefore the transitiohinduces a
discrete step tay, the mappind, can be applied. Heré, is used with the parameter 2
as this state is the origin of the transition. In the configiorec; this is a set containing
one single state(2,x,c1) = {4}. That statement confirms that (only) 4 has allocated
the synchronization point in this situation. There has no occupation been done yet.
So for the transition, the allocation has to be revoked and further actions carobe d
during the process. On the contrary, the configuratipdoes not have an active allo-
cation or occupation sindg2,x, cz) = 0. Therefore, the synchronization point remains
unchanged for the transitidn

4.3 User Interface B AL converter EE

Datei | Plug-ns | Einstellungen Hilfe
From a shell the user can stant™ ==

the Java application in console of “* === L=
window mode with several mandaj " ::::‘m:‘w : %
tory and optional parameters. A3 —

shown in Fig. 4, all configurations| cus rarim s exsoss i ot s

can be set intuitively in the win-

dow mode. The required input filg
can either be typed into the text
field on the top of the main conten
pane or it can be chosen by usingsse

a file dialog window. The tempo-| cesm:swme eetep: 215K s Threats)
rary and the target output file are

named accordingly. However, theytjg 4 HAL screen-shot before starting the trans-
can be defined individually, too. |ation.

4.4 XabslFish

The XabslFish plug-in defines constraints which check thmutrautomaton for the
proper structure. For this, the flattener algorithm musehawcessed the automaton.
The regions must be copied according to their capacitiesydhiables must be global-
ized to provide an efficient handling of the XABSL symbol filedethe synchronizations
must be converted into ordinary variables. The variablestmat be renamed during
their globalization as they will later be translated by ukthe configuration file.

The conversion of the flattened automaton starts with regitie appropriate con-
figuration file. This is used to transform HAL variables to eegsions, to basic behavior

calls or for their declaration in the output symbol file. Iretbecond step of the trans-
lation, the symbol file is generated. A Boolean flag indicét@gy symbol has to be
written at all. In case that there is no symbol to write, the\iill not be created. In con-
sequence of that it can be decided if the future options wndlude this file or not. The
third step is the major part of the translation. Here, th@wrnatton tree is traversed and
each node will be converted into an option. The subsequéeatreaia become accessi-
ble via internal states while initial subsequent statepkbeir status. Each transition
from a successor to another automaton is implemented iatstétte decision tree where
discrete expressions are converted into actions in thettatgte. If all successor nodes
are completed the own flow expressions of the current autumvaitl be converted into
actions. This algorithm is processed recursively for eatbraaton.

4.5 An Example of Use

Let us now come back to our running example (Fig. 1). For psepaf clarity, the
transition labels with the jump conditions and the discestpressions are omitted as
well as the flow expressions and invariants in the states.adewwithin this example
there are several main features of synchronized hybridnaaifm covered. The soccer
team has at least three players: one of typaéwo of typeB. Furthermore, there is
exactly one ball on the field which can be interpreted as auresavith the maximum
capacity 1. Due to the lack of space, for further details eritfiplementation, the reader
is referred to [16].

5 Related Work

There are many related works on the specification of multiaggstems and also on
software engineering of multiagent systems (see e.g.if&jljding Agent UML [13],
where UML statecharts for modeling agent behavior are adssidered, but not in the
main focus of interest, however. We will therefore only Byieliscuss some work on
multi-robot coordination architecture, coordination agisms, and on formal speci-
fication of multi-robot systems.

As proposed by [17], multiagent systems have to deal witication and synchro-
nization of tasks and concurrent subtasks. There are mbhdsstd approaches which
support the coordination of the robot teams while each riabpéid revenue for each
accomplished subtask and otherwise incurs cost for allagaéam resources. AL-
LIANCE [14] is the name of an architecture for fault toleramtilti-robot cooperation.
With this, it is possible to create multiagent systems tlzat deal with failures and
uncertainties in the selection and execution of actionsdymémically changing envi-
ronment.

In [10], coordination mechanisms are introduced in a caecneulti-robot archi-
tecture. The scenario description language Q in [9] comatag on social agents that
interact with humans. However, these articles deal wititeark behaviors and inter-
action rather than translating a formalism to a specific Wward platform. Nevertheless,
modeling and implementing multiagent systems is proposd@,i5]. Though this is

based on UML statecharts, yet, we use hybrid automata witadisynchronization in
addition, in order to construct those systems.

The paper [1] presents a case study in multi-robot cooridinaémploying linear
hybrid automata. By a rectangular approximation of the ayenvironment, the geo-
metric regions in which a robot reaches a given goal fastértive help of communica-
tion, can be computed. [19] employs Petri nets for the spatifin of multiagent plans.
Here, synchronization also can be expressed quite natuveliin the Petri net frame-
work. The MABLE language [18] is based on BDI agents, desttitextually, and a
tool for modeling and verifying multiagent systems. Howetke focus in the papers
just mentioned is on verification or analysis and not on im@atation and generat-
ing executable code on mobile robots, whereas we apply atdrsdftware engineering
methods to real robots in this paper.

6 Discussion and Conclusions

XabslFishallows the behavior control of Aibo robots (or any other XAB8riven
robots) to be designed as a multiagent system with formahodst Therefore, the
performance of the robot is enhanced. The safety of a cdvedwvior control is based
upon the fact that the translation from HAL to XABSL can pesty be adjusted man-
ually for each input automaton. The applicati¥abslFishsupports the modeling of
hybrid automata with timed synchronization and translétesspecification to an un-
derstandable format for the target platform. The socceraloiis used as an example
for multiagent systems, which have to act autonomously ipreachic environment.

XabslFishtranslates multiagent system specifications from the dydutomaton
languageHAL to XABSL It is designed as a plug-in for the application, th&L con-
verter, that deals with hybrid automata. Even though it candiate the major part of a
state machine automatically, some individual mappings toeslefined in a configura-
tion file. In summary, this paper exemplifies that multiaggistems can be specified by
formal methods based on standard modeling procedures (atate machines). It is
also demonstrated, how by transformation techniques éxisleLcode can be generated,
running on a mobile robot (namely the Aibo robot).

Future work will concentrate on an implementation of therfalism with constraint
logic programming (CLP), which can be used for both, engingeand analysis of
multiagent systems, following the lines of [15]. This willdd to an even more realistic
knowledge engineering system.

References

1. R. Alur, J. M. Esposito, M. Kim, V. Kumar, and |. Lee. Formmabdeling and analysis of
hybrid systems: A case study in multi-robot coordinatiom. World Congress on Formal
Methods (1)pages 212—-232, 1999.

2. T. Arai and F. Stolzenburg. Multiagent systems specifioddy UML statecharts aiming at
intelligent manufacturing. In Castelfranchi and Johnstingages 11-18. Volume 1.

3. T. Bernstein, D. Borns, C. Colmsee, K. Czarnotta, H. Germe Nause, M. Pacha,
R. Thomas, A. Vellguth, T. Wiebke, and M. Windler. HAL — hytbrautomaton language.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Technical report, Department of Automation and Computder®es, Hochschule Harz,
2006. Team project description (in German).

. C. Castelfranchi and W. L. Johnson, editd?soceedings of the 1st International Joint Con-

ference on Autonomous Agents & Multi-Agent Syst&uakogna, Italy, 2002. ACM Press.

. V. T. da Silva, R. Choren, and C. J. P. de Lucena. A UML bagpdaach for modeling and

implementing multi-agent system&utonomous Agents and Multiagent Syste2r14-921,
2004.

. F. Dylla, A. Ferrein, G. Lakemeyer, J. Murray, O. Obst, of&, S. Schiffer, F. Stolzenburg,

U. Visser, and T. Wagner. Approaching a formal soccer th&éom behaviour specifications
in robotic soccer. In P. Dabnichcki and A. Baca, edit@smputers in Sporpages 161-185.
WIT Press, Southampton, Boston, 2008.

. U. Furbach, J. Murray, F. Schmidsberger, and F. StolzgnbHybrid multiagent systems

with timed synchronization — specification and model chegkiln M. Dastani, A. El Fal-
lah Seghrouchni, A. Ricci, and M. Winikoff, editorBpst-Proceedings of 5th International
Workshop on Programming Multi-Agent Systems at 6th Intesnal Joint Conference on
Autonomous Agents & Multi-Agent SystemNAI 4908, pages 205-220, Honolulu, 2008.
Springer, Berlin, Heidelberg, New York.

. T. Henzinger. The theory of hybrid automataPimceedings of the 11th Annual Symposium

on Logic in Computer Sciencpages 278-292, New Brunswick, NJ, 1996. IEEE Computer
Society Press.

. T.Ishida and S. Yamane. Introduction to scenario desenipanguage g. IhCKS '07: Pro-

ceedings of the Second International Conference on Infies\&esearch for Development
of Knowledge Society Infrastructuyrpages 137-144, Washington, DC, USA, 2007. IEEE
Computer Society.

G. A. Kaminka and I. Frenkel. Integration of coordinatimechanisms in the BITE multi-
robot architecture. IICRA-07 2007.

M. Lotzsch, M. Jungel, M. Risler, and T. Krause. XABSlhe Extensible Agent Behavior
Specification Language. URI: http://wwwz2.informatik.berlin.de/ki/’XABSL/, 2006.

Object Management Group, IndJML Version 2.1.2 (Infrastructure and Superstructyre)
November 2007.

J. Odell, H. V. D. Parunak, and B. Bauer. Extending UMLdgents. In G. Wagner, Y. Les-
perance, and E. Yu, editorBroceedings of the Agent-Oriented Information System&Wor
shop at 17th National Conference on Artificial Intelligenpages 3-17, 2000.

L. E. Parker. Alliance: An architecture for fault toletanultirobot cooperation.|IEEE
Transactions on Robotics and Automat®898.

C. Reinl, F. Ruh, F. Stolzenburg, and O. von Stryk. Midbot systems optimization and
analysis using MILP and CLP. In P. U. Lima, N. Vlassis, M. Spaand F. S. Melo, editors,
Workshop 1: Formal Models and Methods for Multi-Robot Sysstat 7th International Joint
Conference on Autonomous Agents and Multi-Agent Syspages 11-16, Estoril, Portugal,
2008. International Foundation for Autonomous Agents andtiMi\gent Systems.

F. Ruh. A translator for cooperative strategies of neo@gjents for four-legged robots. Master
thesis, Fachbereich Automatisierung und Informatik, Fsotiule Harz, 2007.

A.T. Stentz, M. B. Dias, R. M. Zlot, and N. Kalra. Markead®ed approaches for coordination
of multi-robot teams at different granularities of inteian. In Proceedings of the ANS 10th
International Conference on Robotics and Remote Systemdaizardous Environments
March 2004.

M. Wooldridge, M. Fisher, M.-P. Huget, and S. Parsonsd®&checking multi-agent systems
with MABLE. In Castelfranchi and Johnson [4], pages 952-9&8ume 2.

V. A. Ziparo and L. locchi. Petri net plans. Rroceedings of the Fourth International
Workshop on Modelling of Objects, Components and AgentsCAM@b, pages 267—-289,
2006.

