
Translating Cooperative Strategies for Robot Behavior⋆

Florian Ruh and Frieder Stolzenburg

Hochschule Harz, Automation and Computer Sciences Department, D-38855 Wernigerode
{fruh,fstolzenburg}@hs-harz.de

Abstract. This paper presents a method for engineering and programming multi-
robot systems, based on a combination of statecharts and hybrid automata, which
are well-known in the fields of software engineering and artificial intelligence.
This formal specification method allows graphical presentation of the whole mul-
tiagent system behavior. In addition, these specificationscan be directly executed
on mobile robots. We describe the transformation process from the specifica-
tion to executable code, after introducing the necessary definitions. A translator
that automatically converts hybrid hierarchical statecharts into simple flat hy-
brid automata (i.e. without hierarchies) has been implemented. The respective
tool allows the text-based input of hybrid hierarchical automata specifications of
multiagent system with synchronization. The translation into flat automata is per-
formed by means of different plug-ins, leading e.g. to executable code for Sony
Aibo robot dogs. The plug-in just mentioned has been successfully applied in the
RoboCup four-legged league.
Key words: agent-oriented software engineering; multiagent systems; RoboCup;
tools for intelligent systems.

1 Introduction

Robotic soccer provides many research challenges and one ofthem is behavior control
including the subjects of team play, cooperation and flexible, quick reaction. A soccer
team can be designed as a homogeneous multiagent system. Since the behavior of mul-
tiagent systems and agents alone can be understood as drivenby external events and
internal states, an efficient way to model such systems are state transition diagrams,
which are well-established in software engineering. They are graphical representations
of finite state machines with hierarchically structured states and transitions which lead
from one state to another depending on the input or events. Outputs or actions can be
done during transitions or in states. State transition diagrams have been applied success-
fully for multiagent systems in general and in the RoboCup, asimulation of (human)
soccer with real or simulated robots (see e.g. [2, 5, 19]).

However, state transition diagrams do not properly cover all aspects of multiagent
systems. Therefore, hybrid hierarchical automata (HHA) with timed synchronization
have been developed to take continuous processes in the environment into account [7].
Moreover, they can consider time as an additional factor forsynchronization processes.
This formalism can help to model situations when two or more agents have to deal with
one resource. In the domain of soccer e.g., the agents have toconsent that exactly one
player goes to the ball.

⋆ This paper emerged from the master thesis of the first author [16].

Fig. 1.Statechart for Makaay move.

Therefore, as a running
example, we consider a sce-
nario influenced by the UEFA
champions league competition
2006/2007: theMakaay move
(see Fig. 1). Let there be one
player of typeA and two play-
ers of typeB in the offensive
team. PlayerA performs the
kick-off, while the players of
type B are waiting in different
sectors on the pitch, which is
divided into sectors (cf. [6]).
Player A chooses a direction
for passing (right or left mid-
field, sectors 3 or 5), then kicks
off and passes to one player
of type B in the destination
sector. PlayerA runs to sec-
tor 1 (middle offense) whereB
has passed the ball to. Finally,
player A tries to shoot to the
goal directly. If it fails,A tries
it again. Meanwhile,B goes to
the ball if it is nearer to it.B
then passes toA in sector 1
again.

In the sequel, Sect. 2 covers the formal specification of hybrid statecharts. Corre-
sponding description and target languages are defined and compared in Sect. 3. With
these foundations, we can create a concept for the translation process. Sect. 4 then deals
with the design of the application and shows an example of use. Finally, we discuss
related works in Sect. 5 and conclude with Sect. 6.

2 Hybrid Statecharts

2.1 States and Transitions

In a realistic physical environment, it is inevitable to consider continuous actions in
addition to discrete changes. Hybrid automata extend regular state transition diagrams
with methods that deal with those continuous actions. To understand the characteris-
tics, we will introduce several definitions for hierarchical hybrid automata with timed
synchronization now [7, 8] – called HHA.

Definition 1 (basic components).The basic components of astate machineare the
following disjoint sets:

S: a finite set ofstates, partitioned into three disjoint sets: Ssimple, Scomp, and Sconc
— called simple, composite and concurrent states, containing one designatedstart
states0 ∈ Scomp∪Sconc;

X: a finite set of variables, partitioned into two disjoint sets: Xreal and Xint — the
continuous/real-numbered and the integral/integer variables, respectively; for each
x∈ X we introduce the variables x′ for the conclusions of a discrete change;

T: a finite set of transitions with T⊆ S×S.

Definition 2 (state hierarchy).Each state s is associated with zero, one or moreinitial
statesα(s): a simple state has zero, a composite state exactly one, and aconcurrent
state more than one initial state. In the latter case, the initial states are calledregions.
Moreover, each state s∈S\{s0} is associated to exactly one superior stateβ(s). There-
fore, it must holdβ(s)∈Sconc∪Scomp. A concurrent state must not directly contain other
concurrent ones. Furthermore, it is assumed that all transitions s1Ts2 ∈ T keep to the
hierarchy, i. e.β(s1) = β(s2). Furthermore, we writeαn(s) or βn(s) for the n-fold appli-
cation ofα or β to s, in particular,α0(s) = β0(s) = s. Variables x∈ X may be declared
locally in a certain stateγ(x) ∈ S. A variable x∈ X is valid in all states s∈ S with
βn(s) = γ(x) for some n≥ 0, unless another variable with the same name overwrites it
locally.

As said earlier, Fig. 1 depicts the statechart for our running soccer example. Here,
states are named after their affiliation to the players or theactions which are being done
at that moment. The statessoccermakaay(which is the start states0 here),kickoff,
go-to-ball, player-Aandplayer-Bare composite states;teamplayis a concurrent state
while all others are simple states. The oval symbolball is a synchronization point and
will be discussed in Sect. 2.2.

Definition 3 (jump and state conditions).For each transition, there exists ajump
condition. This is a predicate with free variables from the valid variables of X∪X′.
Additionally, each state s∈ S contains a state condition which describes continuous
changes in s. It is a predicate with free variables from X∪{t}.

Events are well-known in UML statecharts [12] and hybrid automata [8]. They can
easily be expressed by (binary) integer variables in our formalism. Therefore, we do not
introduce them explicitly in our definitions. But in contrast to simple hybrid automata,
we introduce hierarchies. Fig. 2(a) shows an example state tree, which is induced by
the β-function. Here,R is the root of the tree, and e.g. state 1 can be reached from 5,
i.e. 1= β3(5). Note that the value ofβn is always uniquely determined due to the tree-
like (and not graph-like) structure of the state hierarchy.Furthermore, letα3(R) = 3. A
configuration (defined next) is the subset of the active states in the state tree.

Definition 4 (configuration and completion). A configurationc is a rooted tree of
states with the root node as the topmost initial state of the overall state machine. When-
ever a state s is an immediate predecessor of s′ in c, it must holdβ(s′) = s. A config-
uration must becompletedby applying the following procedure recursively as long as
possible to leaf nodes: if there is a leaf node in c labeled with a state s, then introduce
all α(s) as immediate successors of s.

The semantics of our automata can now be defined by alternating sequences of
discrete and continuous steps. Following the synchrony hypothesis, we assume that
discrete state changes (via transitions whose annotated jump condition holds in the
current situation) happen in zero time, while continuous steps (within one state) may
last some time. Due to the lack of space, for details on the semantics of HHA, the reader
is referred to [15].

Fig. 2(b) demonstrates the relationship between state trees and configurations. It
depicts several configurations that are created from the state tree in Fig. 2(a). A config-
uration itself can be connected to another one. The originaltransitiont, which was used
for the completion ofs2 in c2, is used in a discrete step while its origin is changed from
s1 to c1 and its target froms2 to c2.

(a) State tree with syn-
chronization pointx.

(b) Configurations with synchronization problem.

Fig. 2.State tree and configurations of an automaton.

2.2 Synchronization

Synchronization is significant for modeling multiagent systems. Usually, a system deals
with limited resources. The interaction with them can take part in several states. Espe-
cially when reacting to events from the environment, the reaction process takes some
time τ > 0. For this, asynchronizationtakes care of the common resources defined at
a synchronization point. While synchronization is associated with transitions, imple-
mented via labels in original hybrid automata [8], synchronization is associated with
states in HHA, i.e. actions which last some certain time. In contrast to this, the syn-
chrony hypothesis states (for discrete steps), that a system is infinitely fast and therefore
can react immediately within zero seconds, i.e., a transition takes zero time.

Definition 5. A synchronization point is identified by a variable x∈ Xsync⊆ X with
a maximum capacity C(x) > 0. Each state connected to the synchronization point is

classified by one of the following relations, R+ ⊆ S×Xsyncor R− ⊆ Xsync×S. If a state
increases the capacity, it will be classified by R+ and otherwise by R−, if it decreases
it (or resets the resource). In general, each connection in R+ ∪R− is annotated with a
number m with0 < m≤C(x) which identifies the volume to be increased or decreased
from the synchronization point, respectively.

Synchronization may take some time, since they are connected to (continuous)
states and not to discrete transitions. Thus, the synchronization process can theoreti-
cally be interfered by other actions or concurrent states which also try to share the same
synchronization point. To avoid side effects that may lead to inconsistency or even sys-
tem failure, the process is separated into allocation and (future) occupation of resources.
For this, the allocation variablesx+ andx− register the request for occupation or release
for each synchronization pointx. Therefore,x+ andx− must be added toX.

In this case (synchronization pointxand connected states), s1Ts2 is calledincoming
transitionfor s iff αn(s2) = s for somen≥ 0, initializing transitioniff it is an incoming
one withαn(s) = γ(x), outgoing transitioniff s1 = βn(s) for somen≥ 0 wheres1 occurs
in the current configuration andx is valid in s, successful outgoing transitioniff it is an
outgoing transition withs1 = s andfailed outgoing transitioniff it is not a successful
outgoing transition. Note that outgoing transitions cannot be characterized statically but
only dynamically by investigating the configuration trees.This is an important issue for
the revoking of the allocation (see Sect. 4.2). At a synchronization pointx, additional
constraints must be defined which affect the transitions that are incident with all states
s connected tox. Due to the lack of space, for details on the synchronizationconcept,
the reader is referred to [7].

The synchronization pointball in Fig. 1 has a capacity of 1. Thus, it can be in-
terpreted as a Boolean value as there is only one ball in a soccer match. Both states
go-to-ball occupy the synchronization pointball. Hence, they belong to the relation
R+. The stateskick-to-goalandpass-to-sectorrelease it and therefore belong toR−.

The example in Fig. 2(a) also makes use of a synchronization point. As seen in the
tree, the stateR introduces the synchronization pointx while 4 is somehow using it
here. The definition is marked with the dashed arrow pointingat x. However, for some
multiagent systems, the synchronization must be convertedinto ordinary variables if a
target platform does not provide synchronization interfaces.

3 Specification Languages

After having defined basic concepts, let us now consider concrete languages for pro-
gramming multiagent systems with HHA. Therefore, we will discuss two languages
briefly in the sequel: HAL and XABSL.

The project goals of HAL [3] were the definition of an ASCII-formatted specifi-
cation language for hybrid automata with timed-synchronization and, furthermore, its
transformation into an input format for model checkers suchasHyTech[8]. HAL is
at the same time the name of the project and the name for the specification language
(Hybrid Automaton Language). This corresponds to the definitions introduced in the
previous section. A HAL specification is usually written into an ASCII formatted file.

According to the syntax, it consists of a global frame which must be a composite au-
tomaton. It may include several other automata following the rules of hybrid automata
with timed synchronization. Even though the terms of inheritance, polymorphism are
not defined in HAL syntax, modularization is actually known.The namespace of two
parallel automata cannot collide while subsequent automata can access variables of their
superiors. An example is shown in the listing (Fig. 3).

composi te makaay {
s t a r t (teamplay) ;
concur ren t teamplay {

syn cp o in t (b a l l , 1) ;
reg ion p laye r A {

c a r d i n a l i t y := 1 ;
s t a r t (k i c k o f f) ;
composi te k i c k o f f {

s t a r t (c h o o s e p a s s s e c t o r) ;
var p a s s s e c t o r := 0 ;
var random 05 3 5 = 0 ;
s imp le c h o o s e p a s s s e c t o r {

f low := p a s s s e c t o r ˜ = random05 3 5 ;
i n v a r i a n t := p a s s s e c t o r != 3 & p a s ss e c t o r != 5 ;
t r an s := (g o t o b a l l , p a s s s e c t o r == 3 |

p a s s s e c t o r == 5) ;
} % c h o o s e p a s s s e c t o r
s imp le g o t o b a l l {

sync(b a l l , 1) ;
f low := g o t o b a l l w i t h o u t t u r n i n g m a x s p e e d 1 2 0 ;
i n v a r i a n t := b a l l s e e n d i s t a n c e >= 70 ;
t r an s := (p a s s t o s e c t o r , b a l l s e e n d i s t a n c e < 70

) ;
} % g o t o b a l l
% (. . .)
i n v a r i a n t := b a l l s e c t o r == 4 ;
t r an s := (g o t o s e c t o r 1 , b a l l s e c t o r != 4) ;

} % k i c k o f f
% (. .)

} % p l a y e r A
% (. . .)

} % teamplay
} % makaay

Fig. 3. HAL specification.

Another successful approach of modeling agent behavior isXABSL(Extensible
Agent Behavior Specification Language) [11]. It was developed and integrated into
the code basis of theGermanTeam, several times world and German champion in the

RoboCup four-legged league, as a language for behavior engineering. The specifica-
tions can be transformed automatically into intermediate code which has to be inter-
preted on the target platform by theXabslEngine. The XABSL package also provides
functionalities for visualization, debugging and documentation. Theoptiondivision in
XABSL specifications includes a global symbol file to get access to the environment. It
consists of one initial and several other states with their own decision trees. Theaction
division specifies all assignments that are executed there.A subsequent option call is
also possible.

4 The Translator Tool

The HAL converter provides a window-based flattening mechanism for state machine
specifications, a batch mode for quick processing, and re-usability. Additionally, there
should be a graphical editor to easily create source code from hybrid statecharts. Al-
ready created files (or files that are created manually) are allowed to be used as an
input for the application. Hence, a lexer and a parser provide the conformity with the
HAL syntax. With this design, it is possible to create a hybrid automaton which can be
used later as input for the flattening algorithm (see below).The translator from HAL
to XABSL shall cover all features of synchronized hybrid state machines that can be
transferred to XABSL.

4.1 Flattening Algorithm

For the translation process, there is no simple one-to-one structural mapping between
HHA and XABSL. As XABSL and also standard verification tools often are not able
to cope with hierarchies, it is required to flatten the automaton, i.e., all states except
the initial one are transformed into simple ones. As the translator shall be feasible of
creating processable output for those tools, this gives us another reason to flatten the
hierarchical structure. Though this transformation may lead to state explosion, it could
be avoided, nevertheless, if hierarchical configurations could be processed as directly
as in some logic-based implementations [7, 15].

In the implementation, configurations are used to clarify which agent currently is in
which state. The flattening algorithm processes an input state tree and converts it to a set
of configurations. In particular, the output can be used to simplify the agent’s behavior
structure and to gain performance due to less complexity. For this, the algorithm is
divided into four major parts.

1. Copy regions
Expand the regions in the tree according to their cardinality c (given in the upper
right corner of a region). Modify each region to a composite state, copy itc-times
and replace the original with the copies.

2. Globalize variables and constants
Each state may introduce variables and constants. Each local definition must be
globalized as it will be used in the configuration flows and transitions later on. The
global definitions must be uniquely named to avoid namespacecollisions.

3. Convert synchronizations
If a state uses a synchronization point to interact with other states, these synchro-
nizations must be resolved. Due to their complexity, a relatively extensive inspec-
tion is required which is explained in detail in Sect. 2.2 and4.2. Although the
resulting additions to transition guards reduce readability, the even more complex
process of inter-state synchronization could be eliminated. A practical approach for
the detection of the correct place to revoke an allocation isgiven below.

4. Create configurations
Each state tree possesses an initial configurationc0. This contains all the initial
states that can be reached in the tree beginning at the root. According to the com-
pletion algorithm (Def. 4), the configurations are created recursively beginning at
c0. Already existing configurations will be recognized and used if transitions lead
to them. These newly created transitions form the discrete steps of the system.

The synchronization conversion in the third step is a rathercomplex process. At first,
all synchronization points in the automaton are collected.After this, the automaton will
be traversed, and the occupation, the release, as well as theallocation, and its revoke
are added for each synchronization found in the state tree. The synchronization pointx
itself, its maximum capacityC(x), and its allocation variablesx+ andx− are converted
into global variables. For each transition type, differentexpressions must be added to
the guards and the discrete expressions. However, a flagxf for each synchronization
pointx is introduced indicating its current status. Ifx is occupied thenxf := −1. If x is
allocated but not occupied yet thenxf := 1. Otherwise,xf := 0. For all not initializing
incoming transitions,xf := 1 will be added to their discrete expressions,xf := 0 will be
added for all initializing incoming transitions,xf := −1 will be added for all successful
outgoing transitions. For each not successful outgoing transition, it must be checked if
x is already allocated but not occupied by this synchronization. Therefore, the transition
must be duplicated. The comparisonxf = 1 is added to the guard of the first transition,
xf 6= 1 is added to the second one. The revocation of the allocationis added only to the
discrete expression of the first one. Finally, all synchronization points can be erased as
they are now properly converted into ordinary variables.

4.2 Allocation in Synchronizations

During the development of the theoretical model of hybrid automata with timed syn-
chronization, a problem concerning not successfully outgoing transitions occurs. The
correct situation has to be found, when the allocation shallbe revoked, since it must
actually be done only once per occupation. For this purpose,some definitions have to
be introduced.

Let δ(s) return all variables used in the states but not defined there. Furthermore,
we introduce a mappingζ which returns all state successors ofs that usex and are part
of the configurationc:

ζ(s,x,c) = {si | βn(si) = s∧x∈ δ(si)∧si ∈ S(c),n > 0}

Fig. 2(a) depicts a simple example for that synchronizationproblem. The dashed
arrows indicate the definition and the usage of the synchronization pointx. The state tree

shows – among others – a transition from state 2 to 7. Fig. 2(b)shows the appropriate
configurations withc0 being the initial one. In this case, the synchronization point x is
defined in the stateR while only 4 is usingx. In fact,R must be a concurrent state as
it defines a synchronization point. Though concurrent states usually have two or more
regions, this example reduces complexity and actually usesonly one.

Let us now have a closer look on what is happening inc1 when the process has
activated state 5. State 4 is also active as it is the immediate predecessor of state 5 in the
tree. The transition from 2 to 7 is a not successful outgoing transition for 4 as 2= βn(4)
with n = 1 > 0.

Now, to collect all states that may have allocatedx before the transitiont induces a
discrete step toc2, the mappingζ can be applied. Here,ζ is used with the parameter 2
as this state is the origin of the transition. In the configuration c1 this is a set containing
one single state:ζ(2,x,c1) = {4}. That statement confirms that (only) 4 has allocated
the synchronization pointx in this situation. There has no occupation been done yet.
So for the transitiont, the allocation has to be revoked and further actions can be done
during the process. On the contrary, the configurationc3 does not have an active allo-
cation or occupation sinceζ(2,x,c3) = /0. Therefore, the synchronization point remains
unchanged for the transitiont.

4.3 User Interface

Fig. 4. HAL screen-shot before starting the trans-
lation.

From a shell the user can start
the Java application in console or
window mode with several manda-
tory and optional parameters. As
shown in Fig. 4, all configurations
can be set intuitively in the win-
dow mode. The required input file
can either be typed into the text-
field on the top of the main content
pane or it can be chosen by using
a file dialog window. The tempo-
rary and the target output file are
named accordingly. However, they
can be defined individually, too.

4.4 XabslFish

The XabslFish plug-in defines constraints which check the input automaton for the
proper structure. For this, the flattener algorithm must have processed the automaton.
The regions must be copied according to their capacities, the variables must be global-
ized to provide an efficient handling of the XABSL symbol file and the synchronizations
must be converted into ordinary variables. The variables must not be renamed during
their globalization as they will later be translated by use of the configuration file.

The conversion of the flattened automaton starts with reading the appropriate con-
figuration file. This is used to transform HAL variables to expressions, to basic behavior

calls or for their declaration in the output symbol file. In the second step of the trans-
lation, the symbol file is generated. A Boolean flag indicatesif any symbol has to be
written at all. In case that there is no symbol to write, the file will not be created. In con-
sequence of that it can be decided if the future options will include this file or not. The
third step is the major part of the translation. Here, the automaton tree is traversed and
each node will be converted into an option. The subsequent automata become accessi-
ble via internal states while initial subsequent states keep their status. Each transition
from a successor to another automaton is implemented into the state decision tree where
discrete expressions are converted into actions in the target state. If all successor nodes
are completed the own flow expressions of the current automaton will be converted into
actions. This algorithm is processed recursively for each automaton.

4.5 An Example of Use

Let us now come back to our running example (Fig. 1). For purpose of clarity, the
transition labels with the jump conditions and the discreteexpressions are omitted as
well as the flow expressions and invariants in the states. However, within this example
there are several main features of synchronized hybrid automata covered. The soccer
team has at least three players: one of typeA, two of typeB. Furthermore, there is
exactly one ball on the field which can be interpreted as a resource with the maximum
capacity 1. Due to the lack of space, for further details on the implementation, the reader
is referred to [16].

5 Related Work

There are many related works on the specification of multiagent systems and also on
software engineering of multiagent systems (see e.g. [2]),including Agent UML [13],
where UML statecharts for modeling agent behavior are also considered, but not in the
main focus of interest, however. We will therefore only briefly discuss some work on
multi-robot coordination architecture, coordination mechanisms, and on formal speci-
fication of multi-robot systems.

As proposed by [17], multiagent systems have to deal with allocation and synchro-
nization of tasks and concurrent subtasks. There are market-based approaches which
support the coordination of the robot teams while each robotis paid revenue for each
accomplished subtask and otherwise incurs cost for allocating team resources. AL-
LIANCE [14] is the name of an architecture for fault tolerantmulti-robot cooperation.
With this, it is possible to create multiagent systems that can deal with failures and
uncertainties in the selection and execution of actions anddynamically changing envi-
ronment.

In [10], coordination mechanisms are introduced in a concrete multi-robot archi-
tecture. The scenario description language Q in [9] concentrates on social agents that
interact with humans. However, these articles deal with teamwork behaviors and inter-
action rather than translating a formalism to a specific hardware platform. Nevertheless,
modeling and implementing multiagent systems is proposed in [2, 5]. Though this is

based on UML statecharts, yet, we use hybrid automata with timed synchronization in
addition, in order to construct those systems.

The paper [1] presents a case study in multi-robot coordination, employing linear
hybrid automata. By a rectangular approximation of the physical environment, the geo-
metric regions in which a robot reaches a given goal faster with the help of communica-
tion, can be computed. [19] employs Petri nets for the specification of multiagent plans.
Here, synchronization also can be expressed quite naturally within the Petri net frame-
work. The MABLE language [18] is based on BDI agents, described textually, and a
tool for modeling and verifying multiagent systems. However, the focus in the papers
just mentioned is on verification or analysis and not on implementation and generat-
ing executable code on mobile robots, whereas we apply standard software engineering
methods to real robots in this paper.

6 Discussion and Conclusions

XabslFishallows the behavior control of Aibo robots (or any other XABSL-driven
robots) to be designed as a multiagent system with formal methods. Therefore, the
performance of the robot is enhanced. The safety of a correctbehavior control is based
upon the fact that the translation from HAL to XABSL can precisely be adjusted man-
ually for each input automaton. The applicationXabslFishsupports the modeling of
hybrid automata with timed synchronization and translatesthe specification to an un-
derstandable format for the target platform. The soccer domain is used as an example
for multiagent systems, which have to act autonomously in a dynamic environment.

XabslFishtranslates multiagent system specifications from the hybrid automaton
languageHAL to XABSL. It is designed as a plug-in for the application, theHAL con-
verter, that deals with hybrid automata. Even though it can translate the major part of a
state machine automatically, some individual mappings must be defined in a configura-
tion file. In summary, this paper exemplifies that multiagentsystems can be specified by
formal methods based on standard modeling procedures (namely state machines). It is
also demonstrated, how by transformation techniques executable code can be generated,
running on a mobile robot (namely the Aibo robot).

Future work will concentrate on an implementation of the formalism with constraint
logic programming (CLP), which can be used for both, engineering and analysis of
multiagent systems, following the lines of [15]. This will lead to an even more realistic
knowledge engineering system.

References

1. R. Alur, J. M. Esposito, M. Kim, V. Kumar, and I. Lee. Formalmodeling and analysis of
hybrid systems: A case study in multi-robot coordination. In World Congress on Formal
Methods (1), pages 212–232, 1999.

2. T. Arai and F. Stolzenburg. Multiagent systems specification by UML statecharts aiming at
intelligent manufacturing. In Castelfranchi and Johnson [4], pages 11–18. Volume 1.

3. T. Bernstein, D. Borns, C. Colmsee, K. Czarnotta, H. Germer, N. Nause, M. Pacha,
R. Thomas, A. Vellguth, T. Wiebke, and M. Windler. HAL – hybrid automaton language.

Technical report, Department of Automation and Computer Sciences, Hochschule Harz,
2006. Team project description (in German).

4. C. Castelfranchi and W. L. Johnson, editors.Proceedings of the 1st International Joint Con-
ference on Autonomous Agents & Multi-Agent Systems, Bologna, Italy, 2002. ACM Press.

5. V. T. da Silva, R. Choren, and C. J. P. de Lucena. A UML based approach for modeling and
implementing multi-agent systems.Autonomous Agents and Multiagent Systems, 2:914–921,
2004.

6. F. Dylla, A. Ferrein, G. Lakemeyer, J. Murray, O. Obst, T. Röfer, S. Schiffer, F. Stolzenburg,
U. Visser, and T. Wagner. Approaching a formal soccer theoryfrom behaviour specifications
in robotic soccer. In P. Dabnichcki and A. Baca, editors,Computers in Sport, pages 161–185.
WIT Press, Southampton, Boston, 2008.

7. U. Furbach, J. Murray, F. Schmidsberger, and F. Stolzenburg. Hybrid multiagent systems
with timed synchronization – specification and model checking. In M. Dastani, A. El Fal-
lah Seghrouchni, A. Ricci, and M. Winikoff, editors,Post-Proceedings of 5th International
Workshop on Programming Multi-Agent Systems at 6th International Joint Conference on
Autonomous Agents & Multi-Agent Systems, LNAI 4908, pages 205–220, Honolulu, 2008.
Springer, Berlin, Heidelberg, New York.

8. T. Henzinger. The theory of hybrid automata. InProceedings of the 11th Annual Symposium
on Logic in Computer Science, pages 278–292, New Brunswick, NJ, 1996. IEEE Computer
Society Press.

9. T. Ishida and S. Yamane. Introduction to scenario description language q. InICKS ’07: Pro-
ceedings of the Second International Conference on Informatics Research for Development
of Knowledge Society Infrastructure, pages 137–144, Washington, DC, USA, 2007. IEEE
Computer Society.

10. G. A. Kaminka and I. Frenkel. Integration of coordination mechanisms in the BITE multi-
robot architecture. InICRA-07, 2007.

11. M. Lötzsch, M. Jüngel, M. Risler, and T. Krause. XABSL:The Extensible Agent Behavior
Specification Language. URI: http://www2.informatik.hu-berlin.de/ki/XABSL/, 2006.

12. Object Management Group, Inc.UML Version 2.1.2 (Infrastructure and Superstructure),
November 2007.

13. J. Odell, H. V. D. Parunak, and B. Bauer. Extending UML foragents. In G. Wagner, Y. Les-
perance, and E. Yu, editors,Proceedings of the Agent-Oriented Information Systems Work-
shop at 17th National Conference on Artificial Intelligence, pages 3–17, 2000.

14. L. E. Parker. Alliance: An architecture for fault tolerant multirobot cooperation. IEEE
Transactions on Robotics and Automaton, 1998.

15. C. Reinl, F. Ruh, F. Stolzenburg, and O. von Stryk. Multi-robot systems optimization and
analysis using MILP and CLP. In P. U. Lima, N. Vlassis, M. Spaan, and F. S. Melo, editors,
Workshop 1: Formal Models and Methods for Multi-Robot Systems at 7th International Joint
Conference on Autonomous Agents and Multi-Agent Systems, pages 11–16, Estoril, Portugal,
2008. International Foundation for Autonomous Agents and Multi-Agent Systems.

16. F. Ruh. A translator for cooperative strategies of mobile agents for four-legged robots. Master
thesis, Fachbereich Automatisierung und Informatik, Hochschule Harz, 2007.

17. A. T. Stentz, M. B. Dias, R. M. Zlot, and N. Kalra. Market-based approaches for coordination
of multi-robot teams at different granularities of interaction. In Proceedings of the ANS 10th
International Conference on Robotics and Remote Systems for Hazardous Environments,
March 2004.

18. M. Wooldridge, M. Fisher, M.-P. Huget, and S. Parsons. Model checking multi-agent systems
with MABLE. In Castelfranchi and Johnson [4], pages 952–959. Volume 2.

19. V. A. Ziparo and L. Iocchi. Petri net plans. InProceedings of the Fourth International
Workshop on Modelling of Objects, Components and Agents, MOCA’06, pages 267–289,
2006.

