
XTT+ Rule Design Using the ALSV(FD)
Grzegorz J. Nalepa and Antoni Ligęza 1

Abstract. This paper presents advances in Set Attributive Logic
and its application to develop tabular rule-based systems within the
XTT framework. The primary goal is to extend the expressive power
of simple attributive languages so that it becomes satisfactory for
complex applications, including the business rules support. A formal
framework of extended Attributive Logic with Set Values over Finite
Domains (ALSV(FD)) is presented and specific inference rules are
provided with their corresponding prototype in PROLOG.

1 INTRODUCTION

Rule-based systems (RBS) are one of the most efficient paradigms
for knowledge representation and automated inference. This is an
intuitive and well-established language [5]. However, when it comes
to the engineering practice, as well as its scientific aspect, the formal
approach to the rule language specification has to be considered. In
fact, there are number of specific rule languages based on different
formal calculi, from simple propositional logic, through subsets of
predicate calculus, to specific higher-order logics [9].

This paper presents advances in Set Attributive Logic and its appli-
cation to develop tabular rule-based systems within the XTT frame-
work. The primary goal is to extend the expressive power of sim-
ple attributive languages so that it becomes satisfactory for complex
monitoring, control, decision support and business rules applications.
A formal framework of extended Set Attributive Logic is presented
and specific inference rules are provided. The practical representa-
tion and inference issues both at the logical and implementation level
are tackled.

2 HEKATE RULE LANGUAGE

In the HEKATE project (hekate.ia.agh.edu.pl) an extended
rule language is proposed. It is based on the XTT language described
in [11]. The version used in the project is currently called XTT+.

The XTT+ rule language is based on the classic concepts of rule
languages for rule-based systems [8], with certain important exten-
sions and features, such as:

• strong formal foundation based on attributive logic,
• explicit rulebase structurization,
• extended rule semantics.

In this paper the XTT+ language will be simply referred to as XTT.
In XTT there is a strong assumption, that the rule base is explicitly

structured. The rules with same sets of attributes are grouped within
decision tables. On the rule level explicit inference control is allowed.

1 Institute of Automatics, AGH – University of Science and Technology,
Al. Mickiewicza 30, 30-059 Kraków, Poland email: gjn@agh.edu.pl
ligeza@agh.edu.pl

In this way, a set of tables is interconnected using links, correspond-
ing to inference control. This makes up a decision-tree like structure,
with tables in the tree nodes. In a general case, the XTT is a directed
graph, with cycles optionally allowed.

In RBS, a rule has a general format:

IF condition THEN decision

This format can be used in both forward and backward chaining sys-
tems. However, here we focus on the production rule systems, based
on the forward chaining paradigm. The power of a rule language
stems from the syntax and semantics of the conditional and decision
expressions. Number of systems implicitly assume, that this rule for-
mat can be extended to the conjunctive normal form (CNF), that is:

IF cond1 AND cond2 AND ... AND condN
THEN decision

which in fact corresponds to a Horn clause ϕ [1, 9], that is:

ϕ = ¬p1 ∨ ¬p2 ∨ . . .¬pk ∨ q,

Such a clause can be represented as an implication of the form:

ϕ = p1 ∧ p2 ∧ . . . ∧ pk ⇒ q.

which can be regarded as a rule in the above format, where ps cor-
respond to conditions and q corresponds to the decision. In fact the
PROLOG language uses a subset of predicate calculus, restricted to
Horn clauses [3].

The decision expression can also be a compound one in the CNF.
Now the question is what are the conditional and decision expres-
sions. In number of systems these correspond to expressions in the
propositional calculus, which makes the semantics somehow limited.
Some systems try to use some subsets of predicate logic, which gives
much more flexibility, but may complicate a RBS design and the in-
ference process. This is the case of the PROLOG language [2]. In XTT
these expressions are in the the attributive logic [9] described in more
detail in Sect. 4. This gives much more power than the propositional
logic, but does not introduce problems of the predicate logic-based
inference. In XTT an extended rule semantics is used. These exten-
sions were introduced in [13], and refined in [12].

Let us now move to attributive logic that provides a formal foun-
dation for the rule language.

3 A MOTIVATIONAL EXAMPLE
Consider a simple piece of knowledge expressed with natural lan-
guage as follows.

The regular class hours are from 8:00 to 18:00. If all the teach-
ing hours are located within regular class hours then the salary
is regular. If the teaching hours goes beyond the regular class
hours then the salary is special.



The problem is to formalize these two rules with attributive logic.
Let RCH stays for regular class hours, and TH for teaching hours.
We can define a fact like:

RCH = {8, 9, 10, 11, 12, 13, 14, 15, 16, 17},

and
TH = {10, 11, 12, 16, 19, 20}

to specify a case of teaching hours. Note that teaching hours may
form any subset of {0, 1, 2, 3, . . . , 23} (not necessarily a convex in-
terval).

Now, to express the rules we need an extended attributive logic
employing set values of attributes and some powerful relational sym-
bols. For example, we can have:

R1 : TH ⊆ RCH −→ Salary =′ regular ′

and
R2 : TH ∼ NRCH −→ Salary =′ special ′

where

NRCH = {0, 1, 2, 3, 4, 5, 6, 7, 18, 19, 20, 21, 22, 23}

is a specifications of non-regular class hours, and sim means a non-
empty intersection. Note that an attempt to specify the rules with
attribute logic based on atomic values (even if relational symbols
such as <,≤, > and≥ are allowed) would lead to a very long and at
least clumsy set of hardly readable rules.

4 ATTRIBUTIVE LOGIC
Attributive logics constitute a simple but widely-used tool for knowl-
edge specification and inference. In fact in a large variety of ap-
plications in various areas of Artificial Intelligence (AI) [14] and
Knowledge Engineering (KE) attributive languages constitute the
core knowledge representation formalism. The most typical areas of
applications include rule-based systems [8, 9], expert systems (ones
based on rule formalism) [6, 15] and advanced database and data
warehouse systems with knowledge discovery applications [7] and
contemporary business rules and business intelligence components
(e.g. Jess, Drools).

However, it is symptomatic that although Propositional Logic and
Predicate Logic (in the form of First-Order Predicate Calculus) have
well-elaborated syntax and semantics, presented in details in numer-
ous books covering logic for knowledge engineering [4, 6, 15], logic
for computer science or Artificial Intelligence [1, 8], the discussion
of syntax and semantics of attribute-based logic is omitted in such
positions.

In a recent book [9] the discussion of attributive logic is much
more thorough. The added value consist in allowing that attributes
can take set values and providing formal syntax of the Set Attribu-
tive Logic (SAL) with respect to its syntax, semantics and selected
inference rules.

The very basic idea is that attributes can take atomic or set values.
After [9] it is assumed that an attribute Ai is a function (or partial
function) of the form Ai: O → Di. A generalized attribute Ai is a
function (or partial function) of the form Ai: O → 2Di , where 2Di

is the family of all the subsets of Di. The atomic formulae of SAL
can have the following three forms: Ai = d, Ai = t or Ai ∈ t,

where d ∈ D is an atomic value from the domain D of the at-
tribute and t = {d1, d2, . . . , tk}, t ⊆ D is a set of such values. The

semantics of Ai = d is straightforward – the attribute takes a single
value. The semantics of Ai = t is that the attribute takes all the val-
ues of t (the so-called internal conjunction) while the semantics of
Ai ∈ t is that it takes some of the values of t (the so-called internal
disjunction).

The SAL as introduced in [9] seems to be an important step to-
wards the study and extension of attributive logics towards practical
applications. On the other hand it still suffers from lack of expressive
power and the provided semantics of the atomic formulae is poor.

In this paper an improved and extended version of SAL is pre-
sented in brief. For simplicity no object notation is introduced. The
formalism is oriented toward Finite Domains (FD) and its expressive
power is increased through introduction of new relational symbols.
The practical representation and inference issues both at the logi-
cal level and implementation level are tackled. The main extension
consists of a proposal of extended set of relational symbols enabling
definitions of atomic formulae. The values of attributes can take sin-
gular and set values over Finite Domains (FD).

4.1 ALSV(FD)
An extension of SAL was proposed in [10]. Both the syntax and se-
mantics were extended and clarified. Here some further details to
support set values of attributes over finite domains are discussed.

The basic element of the language of Attribute Logic with Set Val-
ues over Finite Domains (ALSV(FD) for short) are attribute names
and attribute values. Let us consider:

A – a finite set of attribute names,
D – a set of possible attribute values (the domains).

Let A = {A1, A2, . . . , An} be all the attributes such that their val-
ues define the state of the system under consideration. It is assumed
that the overall domain D is divided into n sets (disjoint or not),
D = D1 ∪ D2 ∪ . . . ∪ Dn, where Di is the domain related to at-
tribute Ai, i = 1, 2, . . . , n. Any domain Di is assumed to be a finite
(discrete) set.

As we consider dynamic systems, the values of attributes can
change over time (or state of the system). We consider both simple
attributes of the form Ai: T → Di (i.e. taking a single value at any
instant of time) and generalized ones of the form Ai: T → 2Di (i.e.
taking a set of values at a time); here T denotes the time domain of
discourse.

Let Ai be an attribute of A and Di the sub-domain related to it.
Let Vi denote an arbitrary subset of Di and let d ∈ Di be a single el-
ement of the domain. The atomic formulae of ALSV(FD) are defined
as follows.

Definition 1 The legal atomic formulae of ALSV for simple at-
tributes are:

Ai = d, (1)

Ai 6= d, (2)

Ai ∈ Vi, (3)

Ai 6∈ Vi. (4)

Definition 2 The legal atomic formulae of ALSV for generalized at-
tributes are:

Ai = Vi, (5)

Ai 6= Vi, (6)



Ai ⊆ Vi, (7)

Ai ⊇ Vi (8)

A ∼ V, (9)

Ai 6∼ Vi. (10)

In case Vi is an empty set (the attribute takes in fact no value) we
shall write Ai = {}. In case the value of Ai is unspecified we shall
write Ai = NULL (a database convention). If we do not care about
the current value of the attribute we shall write A = _ (a PROLOG

convention).
The semantics of the atomic formulae as above is straightforward

and intuitive. In case of the first three possibilities given by (1), (2),
(3) and (4) we consider Ai to be a simple attribute taking exactly one
value. In case of (1) the value is precisely defined, while in case of
(3) any of the values d ∈ Vi satisfies the formula. In other words,
Ai ∈ Vi is equivalent to (Ai = d1)⊗ (Ai = d2)⊗ . . .⊗ (Ai = dk),
where Vi = {d1, d2, . . . , dk} and ⊗ stays for exclusive-or. Here (2)
is a shorthand for Ai ∈ Di \ {d}. Similarly, (4) is a shorthand for
Ai ∈ Di \ Vi.

The semantics of (5), (2) (7),(8), (9), and (10) is that Ai is a gener-
alized attribute taking a set of values equal to Vi (and nothing more),
different from Vi (at at least one element), being a subset of Vi, being
a superset of Vi, having a non-empty intersection with Vi or disjoint
to Vi, respectively.

More complex formulae can be constructed with conjunction (∧)
and disjunction (∨); both the symbols have classical meaning and
interpretation.

There is no explicit use of negation. The proposed set of re-
lations is selected for convenience and as such is not completely
independent. For example, Ai = Vi can perhaps be defined as
Ai ⊆ Vi ∧ Ai ⊇ Vi; but it is much more concise and convenient to
use “=” directly. Various notational conventions extending the basic
notation can be used. For example, in case of domains being ordered
sets symbols such as >, >=, <, =< can be used.

4.2 BASIC INFERENCE RULES FOR ALSV(FD)
Since the presented language is an extension of the SAL (Set At-
tributive Logic) presented in [9], its simple and intuitive semantics
is consistent with SAL and clears up some points of it. For example,
the upward and downward consistency rules do hold and can be for-
mulated in a more elegant way. Let V and W be two sets of values
such that V ⊆ W . We have the following straightforward inference
rules for atomic formulae:

A ⊇ W

A ⊇ V
(11)

i.e. if an attribute takes all the values of a certain set it must take all
the values of any subset of it (downward consistency). Similarly

A ⊆ V

A ⊆ W
(12)

i.e. if the values of an attribute takes values located within a certain
set they must also belong to any superset of it (upward consistency).
These rules seem a bit trivial, but they must be implemented for en-
abling inference, e.g they are used in the rule precondition checking.

The summary of the inference rules for atomic formulae with sim-
ple attributes (where an atomic formula is the logical consequence
of another atomic formula) is presented in Table. 1. In Table 1 and

Table 1. Inference rules for atomic formulae for simple attributes

|= A = dj A 6= dj A ∈ Vj A 6∈ Vj

A = di di = dj di 6= dj di ∈ Vj di 6∈ Vj

A 6= di _ di = dj Vj = D \
{di}

Vj = {di}

A ∈ Vi Vi = {dj} dj 6∈ Vi Vi ⊆ Vj Vi ∩ Vj =
∅

A 6∈ Vi D \ Vi =
{dj}

Vi =
{dj}

Vj = D \
Vi

Vj ⊆ Vi

Table 2 the conditions are satisfactory ones. However, it is impor-
tant to note that in case of the first rows of the tables (the cases of
A = di and A = V , respectively) all the conditions are also nec-
essary ones. The interpretation of the tables is straightforward: if an
atomic formula in the leftmost column in some row i is true, then the
atomic formula in the topmost row in some column j is also true, pro-
vided that the relation indicated on intersection of row i and column
j is true. The rules of Table 1 and Table 2 can be used for checking
if preconditions of a formula hold or verifying subsumption among
rules.

4.3 RULES IN ALSV(FD)
ALSV(FD) has been introduced with practical applications for rule
languages in mind. In fact, the primary aim of the presented language
is to extend the notational possibilities and expressive power of the
XTT-based tabular rule-based systems [9]. An important extension
consist in allowing for explicit specification of one of the symbols
=,6=,∈, 6∈, ⊆, ⊇, sim and 6∼ with an argument in the table.

Consider a set of n attributes A = {A1, A2, . . . , An}. Any rule
is assumed to be of the form:

(A1 ∝1 V1) ∧ (A2 ∝2 V2) ∧ . . . (An ∝n Vn) −→ RHS

where ∝i is one of the admissible relational symbols in ALSV(FD),
and RHS is the right-hand side of the rule covering conclusion and
perhaps the retract and assert definitions if necessary; for details see
[9].

Knowledge representation with eXtended Tabular Trees (XTT) in-
corporates extended attributive table format. Further, similar rules
are grouped within separated tables, and the whole system is split
into such tables linked by arrows representing the control strat-
egy. Consider a set of m rules incorporating the same attributes
A1, A2, . . . , An. In such a case the preconditions can be grouped to-
gether and form a regular matrix. Together with the conclusion part
this can be expressed as in Tab. 3

Table 3. A general scheme of an XTT table

Rule A1 A2 . . . An H

1 ∝11 t11 ∝12 t12 . . . ∝1n t1n h1

2 ∝21 t21 ∝22 t22 . . . ∝2n t2n h2

...
...

...
. . .

...
...

m ∝m1 tm1 ∝m2 tm2 . . . ∝mn tmn hm

In Table 3 the symbol ∝ij∈ {=, 6=,∈, 6∈} for simple attributes
and ∝ij∈ {=, 6=,⊆,⊇,∼, 6∼} for the generalized ones. In practical



Table 2. Inference rules for atomic formulae for generalized attributes

|= A = W A 6= W A ⊆ W A ⊇ W A ∼ W A 6∼ W

A = V V = W V 6= W V ⊆ W V ⊇ W V ∩W 6= ∅ V ∩W = ∅
A 6= V _ V = W W = D _ W = D _
A ⊆ V _ V ⊂ W V ⊆ W _ W = D V ∩W = ∅
A ⊇ V _ W ⊂ V W = D V ⊇ W V ∩W 6= ∅ _
A ∼ V _ V ∩W = ∅ W = D _ V = W _
A 6∼ V _ V ∩W 6= ∅ W = D _ W = D V = W

applications, however, the most frequent relation are =, ∈, and ⊆,
i.e. the current values of attributes are restricted to belong to some
specific subsets of the domain. If this is the case, the relation symbol
can be omitted (i.e. it constitutes the default relation which can be
identified by type of the attribute and the value).

The current values of all the attributes are specified with the con-
tents of the knowledge-base (including current sensor readings, mea-
surements, inputs examination, etc.). From logical point of view it is
a formula of the form:

(A1 = S1) ∧ (A2 = S2) ∧ . . . ∧ (An = Sn), (13)

where Si = di (di ∈ Di) for simple attributes and Si = Vi, (Vi ⊆
Di) for complex.

Having a table with defined rules the execution mechanism
searches for ones with satisfied preconditions. The satisfaction of
preconditions is verified in an algebraic mode, using the dependen-
cies specified in the first row of Table 1 for simple attributes and the
first row of Table 2 for the complex ones.

The rules having all the preconditions satisfied can be fired. In
general, rules can be fired in parallel (at least in theory) or sequen-
tially. For the following analysis we assume the classical, sequential
model, i.e. the rules are examined in turn in the top-down order and
fired if the preconditions are satisfied. Various mechanisms can be
used to provide a finer inference control mechanism [9].

4.4 ATTRIBUTE DOMAINS
It is assumed that for each XTT attribute a type has to be stated. A
type is named and it specifies: the base type and the domain. In the
design of the XTT+ attributive language the set of base types was in-
troduced in a way that simplifies the low-level interpreter integration
with Prolog, Java, and RDBMS.

An example definition could be as follows:

• suppose we have a natural language specification: “some temper-
ature”,

• create attribute type,

– pick a attribute type name, e.g. “Temperature”

– decide what base type to use, in this case it could be a float,

– define the domain by specifying constraints, e.g. -100, 100 de-
pending on the conditions,

– decide whether the domain is ordered – in case of symbolic
base type, in this case numbers are ordered,

• create new attribute, with given,

– attribute type, in this case of “Temperature”,

– name, e.g. sensor_temperature,

– decide whether the attribute can take only single values, or also
multiple values.

Generalized attributes are unordered or ordered sets (lists). This
means attributes are in fact multi-valued. Some applications for this
features are e.g.: a set of languages a person speaks, or storing sub-
sequent values (changing in time).

4.5 RULE FIRING
The XTT+ rule firing process is coherent with the regular RBS se-
mantics. It involves: condition checking and decision execution.

The condition checking can be described as a pattern matching
process, where the condition evaluates true or false. The condition is
an expression in the CNF build of expressions in the ALSV(FD).

The decision execution is where actions are possible. In a general
case, the XTT+ rule decision involves: attribute value change context
switching through inference control links event triggering. In XTT it
is assumed, that the whole system state is described by the means of
attributes.

5 PROTOTYPE IMPLEMENTATION EXAMPLE
In the prototype implementation of the knowledge base, rules and
the interpreter are developed in PROLOG. A meta-programming ap-
proach is followed. This allows for encoding virtually any structured
information. Note that in such a case the built-in PROLOG inference
facilities cannot be used directly, there is a need for a meta-interpreter
(however, this gives more flexibility in terms of rule processing).

Example domains and attributes specification in PROLOG follows:

domain(d7,[1,2,3,4,5,6,7]).
attribute(aDN,atomic,d7).
attribute(sDN,set,d7).

The atomic formulae (facts) are represented as terms of the type
fact/4 with four arguments; here are some examples:

%%% fact(<attribute-type>,<attribute-name>,
% <relation>,<attribute-domain>)
fact(atomic,aDN,eq,7).
fact(atomic,aDD,in,[monday,wednesday,friday]).
fact(set,sDD,sim,[monday,wednesday,friday]).
fact(set,sSE,subseteq,[spring,summer,autumn]).

Facts are used mostly in rule preconditions. The mean-
ing of the above facts is as follows: f1: sDN=7,
f2: aDD∈[monday,wednesday,friday], f3:
sDD∼[monday, wednesday,friday], and f4:
sSE⊆[spring,summer,autumn]. PROLOG list are used
to represent set values.



The state of the system is represented by all the facts true in that
state. Recall that the form A = d and A = V are allowed for state
specification.

%%% state(<state-identifier>,
% <attribute>,<value>,<type>).
state(s17,aDD,atomic,friday).
state(s17,aSE,atomic,spring).
state(s17,sDN,set,[1,3,5,7]).

Note that using set values in state specification increases dras-
tically the expressive power. This is a bit similar to the Cartesian
Product: in state s17 the attribute sDN takes all the values from
[1,3,5,7].

Inference, i.e. checking logical consequence defined by first rows
of Table 1 and Table 2 is performed with the valid/s predicate
defined as follows:

valid(f(atomic,A,eq,Value),State):-
state(State,A,atomic,StateValue),
Value == StateValue,!.

valid(f(atomic,A,neq,Value),State):-
state(State,A,atomic,StateValue),
Value =\= StateValue,!.

valid(f(atomic,A,in,SetValue),State):-
state(State,A,atomic,StateValue),
member(StateValue,SetValue),!.

valid(f(atomic,A,notin,SetValue),State):-
state(State,A,atomic,StateValue),
\+member(StateValue,SetValue),!.

valid(f(set,A,eq,SetValue),State):-
state(State,A,set,StateValue),
eqset(SetValue,StateValue),!.

valid(f(set,A,neq,SetValue),State):-
state(State,A,set,StateValue),
neqset(SetValue,StateValue),!.

valid(f(set,A,subseteq,SetValue),State):-
state(State,A,set,StateValue),
subset(SetValue,StateValue),!.

valid(f(set,A,supseteq,SetValue),State):-
state(State,A,set,StateValue),
subset(StateValue,SetValue),!.

valid(f(set,A,sim,SetValue),State):-
state(State,A,set,StateValue),
intersect(SetValue,StateValue,[_|_]),!.

valid(f(set,A,notsim,SetValue),State):-
state(State,A,set,StateValue),
intersect(SetValue,StateValue,[]),!.

The excerpt of the implementation code presented above includes
only symbolic domains. The definitions for the remaining domains
are similar to the ones presented here. Currently the use of CLP
(Constraint Logic Programming) PROLOG extensions are being in-
vestigated.

6 CONCLUDING REMARKS
Providing an expressive yet formally described rule language is of a
high importance for practical rule design and implementation. This
paper presents extensions of Set Attributive Logic as presented in
[9]. In the proposed logic both atomic and set values are allowed
and various relational symbols are used to form atomic formulae.
The proposed language provides a concise and elegant tool of sig-
nificantly higher expressive power than in case of classical attribute
logic. It can be applied for design, implementation and verification
of rule-based systems.

In the paper new inference rules specific for the introduced logic
are presented and examined. New inference possibilities constitute
a challenge for efficient precondition matching algorithm. Algebraic
solutions are proposed. Knowledge representation and some excerpt
from inference engine implemented in PROLOG is described. Com-
ponents of a rule-based system in form of extended attributive de-
cision tables (the so-called XTT paradigm) are presented and their
characteristics and applications are outlined.

Future work includes a more robust implementation of the type
system, tighter integration with a Java-based runtime, as well as an
interface do RDBMS.

ACKNOWLEDGEMENTS
The paper is supported by the Hekate Project funded from 2007–
2009 resources for science as a research project.

References
[1] Mordechai Ben-Ari, Mathematical Logic for Computer Science,

Springer-Verlag, London, 2001.
[2] Ivan Bratko, Prolog Programming for Artificial Intelligence, Addison

Wesley, 3rd edn., 2000.
[3] Michael A. Covington, Donald Nute, and André Vellino, Prolog pro-

gramming in depth, Prentice-Hall, 1996.
[4] Michael R. Genesereth and Nils J. Nilsson, Logical Foundations for

Artificial Intelligence, Morgan Kaufmann Publishers, Inc., Los Altos,
California, 1987.

[5] Adrain A. Hopgood, Intelligent Systems for Engineers and Scientists,
CRC Press, Boca Raton London New York Washington, D.C., 2nd edn.,
2001.

[6] Peter Jackson, Introduction to Expert Systems, Addison–Wesley, 3rd
edn., 1999. ISBN 0-201-87686-8.

[7] Handbook of Data Mining and Knowledge Discovery, eds., Willi Klös-
gen and Jan M. Żytkow, Oxford University Press, New York, 2002.

[8] The Handbook of Applied Expert Systems, ed., Jay Liebowitz, CRC
Press, Boca Raton, 1998.

[9] Antoni Ligęza, Logical Foundations for Rule-Based Systems, Springer-
Verlag, Berlin, Heidelberg, 2006.

[10] Antoni Ligęza and Grzegorz J. Nalepa, ‘Knowledge representation with
granular attributive logic for XTT-based expert systems’, in FLAIRS-20
: Proceedings of the 20th International Florida Artificial Intelligence
Research Society Conference : Key West, Florida, May 7-9, 2007, eds.,
David C. Wilson, Geoffrey C. J. Sutcliffe, and FLAIRS, pp. 530–535,
Menlo Park, California, (may 2007). Florida Artificial Intelligence Re-
search Society, AAAI Press.

[11] Grzegorz J. Nalepa and Antoni Ligęza, ‘A graphical tabular model
for rule-based logic programming and verification’, Systems Science,
31(2), 89–95, (2005).

[12] Grzegorz J. Nalepa and Igor Wojnicki, ‘Proposal of visual generalized
rule programming model for Prolog’, in 17th International conference
on Applications of declarative programming and knowledge manage-
ment (INAP 2007) and 21st Workshop on (Constraint) Logic Program-
ming (WLP 2007) : Wurzburg, Germany, October 4–6, 2007 : pro-
ceedings : Technical Report 434, eds., Dietmar Seipel and et al., pp.
195–204, Wurzburg : Bayerische Julius-Maximilians-Universitat. Insti-
tut für Informatik, (september 2007). Bayerische Julius-Maximilians-
Universitat Wurzburg. Institut für Informatik.

[13] Grzegorz J. Nalepa and Igor Wojnicki, ‘Visual software modelling with
extended rule-based model : a knowledge-based programming solution
for general software design’, in ENASE 2007 : proceedings of the sec-
ond international conference on Evaluation of Novel Approaches to
Software Engineering : Barcelona, Spain, July 23–25, 2007, eds., Cesar
Gonzalez-Perez and Leszek A. Maciaszek, pp. 41–47. INSTICC Press,
(july 2007).

[14] Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Ap-
proach, Prentice-Hall, 2nd edn., 2003.

[15] I. S. Torsun, Foundations of Intelligent Knowledge-Based Systems,
Academic Press, London, San Diego, New York, Boston, Sydney,
Tokyo, Toronto, 1995.


