
Incoherence as a Basis for Measuring the
Quality of Ontology Mappings

Christian Meilicke and Heiner Stuckenschmidt

Computer Science Institute
University of Mannheim, Germany

{christian,heiner}@informatik.uni-mannheim.de

Abstract. Traditionally, the quality of ontology matching is measured using pre-
cision and recall with respect to a reference mapping. These measures have at
least two major drawbacks. First, a mapping with acceptable precision and recall
might nevertheless suffer from internal logical problems that hinder a sensible use
of the mapping. Second, in practical situations reference mappings are not avail-
able. To avoid these drawbacks we introduce quality measures that are based on
the notion of mapping incoherence that can be used without a reference mapping.
We argue that these measures are a reasonable complement to the well-known
measures already used for mapping evaluation. In particular, we show that one of
these measures provides a strict upper bound for the precision of a mapping.

1 Introduction

Assessing the quality of alignments is an important aspect of ontology matching. A
number of different measures have been proposed for this purpose. According to [4] it
can be distinguished between compliance measures, measures concerned with system
usability, and performance measures that focus on runtime or memory requirements.
A compliance measure compares a set of correspondences with a gold standard which
should be the complete set of all correct correspondences. The most prominent com-
pliance measures are precision and recall which have been adapted from information
retrieval to the field of schema and ontology matching [1]. As complement to these
measures we propose a family of measures based on the definition of mapping incoher-
ence. These measures do not fall in one of the above mentioned categories, but should
be categorized as formal or logic-based measures.

Compared to the widely used measures of precision and recall, the measures that
will be proposed in this paper do not rely on the existence of a gold standard (also
referred to as reference mapping). Contrary to this, they measure internal properties of a
mapping based on the semantics of the ontologies aligned via the mapping. This makes
our approach applicable in matching scenarios where we do not have a gold standard.
Measuring the incoherence of a mapping is motivated by the idea that the incoherence of
a mapping will hinder its sensible use even though it might contain a significant amount
of correct correspondences. Although we introduce incoherence as a new dimension for
quantifying mapping quality, there is a non-obvious relation to traditional measures. In
particular, we show that we can use one of the suggested measures to compute a strict

upper bound for the precision of a mapping. This result is surprising at first sight and
shows the significance of the overall approach.

In the following section we discuss related work on quality measures for mappings
and explain how our approach extends existing work. In section 3 we recall and refine
the theory of mapping incoherence as basis for the following sections. Before introduc-
ing incoherence measures, we discuss some problems caused by mapping incoherence
which justify the importance of measuring incoherence (section 4). In particular, we
explain the effects of incoherence with respect to the application scenario of data trans-
formation and query processing. In section 5 we introduce four incoherence measures
divided in two groups. Measures of the first group are concerned with the impact of
incoherence, while measures of the second group are used to measure the effort of re-
pairing an incoherent mapping. Finally, we show that one of these measures can be
used to compute a strict upper bound for mapping precision (section 6) followed by
some concluding remarks (section 7).

2 Related Work

Several suggestions have been made to extend and introduce new evaluation measures
to the field of ontology matching. In [2] Ehrig and Euzenat introduce relaxed precision
and recall. Their work is motivated by the idea that a correspondence of a mapping M
might not be totally incorrect even though it is not contained in reference mapping R.
Thus, it can be measured how close a correspondence is to a similar one inR. Amongst
others they suggest to measure the correction effort to transform such a correspondence
into a correct one. We pick up this idea and suggest measuring incoherence based on
the effort necessary to remove all causes of incoherence from M. In [3] Euzenat intro-
duces semantic precision and recall. These measures are based, roughly speaking, on
comparing the (bounded) deductive closure of R and M instead of a direct compari-
son. Such an approach requires the use of logical reasoning where both correspondences
and ontologies are considered. While Euzenat focuses on the entailment of correspon-
dences, our approach accounts that certain combinations of correspondences result in
incoherence.

Measuring mapping incoherence is closely related to measuring and repairing on-
tology incoherence. Thus, we adapted some of the measures defined by Qi and Hunter
in [11]. Later we will show how to reduce the incoherence of a mapping M to con-
cept unsatisfiability in an ontology that results from merging the ontologies matched
via M. An obvious way of measuring mapping incoherence is thus based on counting
the number of unsatisfiable concepts in the merged ontology. As proposed in [6], it can
be distinguished between root and derived unsatisfiable concepts. Accordant to [11],
we pick up this distinction and distinguish between two types of measuring the impact
of incoherence based on concept unsatisfiability.

In previous work [8, 9] we have developed and tested strategies to repair incoherent
ontology mappings.1 These strategies rely on discarding individual correspondences
from an incoherent mapping M to finally arrive at a coherent submapping M∗ ⊆ M.

1 Notice that in previous work we misleadingly used the notion of inconsistency instead of
incoherence. Precise definitions of these notions are given in [5].

Clearly, such a strategy should remove a minimal set of correspondences. This approach
leads to an incoherence measure that indicates the effort of repairing incoherent map-
pings in numbers of correspondences to be removed. Moreover, it has been emphasized
that the confidence value of a correspondence plays an important role in mapping re-
pairing. Thus, we distinguish between a cardinality based measure and a confidence
based measure. Both measures quantify the effort of revising an incoherent mapping.

3 Foundations

According to Euzenat and Shvaiko [4] a correspondence can be defined as a semantic
relation between ontological entities annotated with a confidence value.

Definition 1 (Correspondence and Mapping). Given ontologiesO1 andO2, let Q be
a function that defines sets of matchable elements Q(O1) and Q(O2). A correspondence
between O1 and O2 is a 4-tuple 〈e, e′, r, n〉 such that e ∈ Q(O1) and e′ ∈ Q(O2), r
is a semantic relation, and n is a confidence value from a suitable structure 〈D,6〉. A
mapping between O1 and O2 is a set of correspondences between O1 and O2.

Definition 1 allows to capture a wide class of correspondences by varying what is
admissible as matchable element, semantic relation, and confidence value. In this work
we consider correspondences between named concepts and properties. We also restrict
correspondences to match entities of the same type, i.e. both e and e′ have to be concepts
or both have to be properties. We also restrict r to be ≡, v or w, i.e. we only focus on
equivalence and subsumption correspondences. Finally, we assume that the confidence
value, which can be seen as a measure of trust in the fact that the correspondence holds,
is represented numerically on D = [0.0, 1.0].

As argued in [8] and [9] the semantics of a mapping M between ontologies O1

and O2 can be defined in the context of merging O1 and O2 via M. In this section we
focus on technical aspects and postpone the discussion on adequacy and implications to
the next section. A merged ontology contains the axioms of O1 and O2 as well as the
correspondences of M translated into axioms of the merged ontology.

Definition 2 (Merged ontology). Let O1 and O2 be ontologies (finite sets of axioms).
The merged ontologyO1∪Mt O2 ofO1 andO2 connected byM is defined asO1∪Mt

O2 = O1 ∪ O2 ∪ {t(x) | x ∈ M} with t being a translation function that maps
correspondences to axioms.

Notice that in O1 and O2 a concept or property might have the same local name. To
refer without ambiguity in the context of a merged ontology to an entity e which origins
from Oi we use prefix notation i#e in the following. There is a straightforward way to
translate concept correspondences and property correspondences into DL axioms. We
refer to the corresponding translation function as natural translation tn.

Definition 3 (Natural Translation). Given correspondence c = 〈1#e, 2#e ′, r, n〉 be-
tween ontologies O1 and O2, the natural translation tn of c is defined as

tn(c) 7→

1#e ≡ 2#e ′ if r =≡
1#e v 2#e ′ if r =v
1#e w 2#e ′ if r =w

Now let us briefly recall the notion of ontology incoherence. An ontology O is
incoherent, iff there exist an unsatisfiable concept in O. Analogous, a mapping M be-
tween O1 and O2 is called incoherent due to t, if there exists an unsatisfiable concept
i#Ci∈{1,2} in O1 ∪Mt O2 that is satisfiable in Oi. If there exists such a concept, its
unsatisfiability must have (at least partially) been caused by M.

Definition 4 (Incoherence of a Mapping). Given a mapping M between ontologies
O1 and O2 and a translation function t. If there exists a concept i#C with i ∈ {1, 2}
such that O1 ∪Mt O2 |= ⊥ w i#C and Oi 6|= ⊥ w i#C then M is incoherent with
respect toO1 andO2 due to t. OtherwiseM is coherent with respect toO1 andO2 due
to t.

Obviously, the incoherence of a mapping is strongly affected by our choice of t. In the
following we use t = tn as translation function. Notice that it is possible to define an al-
ternative translation function. In particular, it will turn out that the measures introduced
in section 5 are independent of this choice with respect to their applicability, although
their results are affected by the choice of the translation function.

4 The Importance of Mapping Coherence

One might argue, that mapping coherence is only important in a very specific appli-
cation scenario like reasoning in a merged ontology. In the following we show that
incoherence has a negative effect on a wide range of relevant applications. In [10] four
different purposes of using ontology mappings have been distinguished. A more fine-
grained distinction has been proposed in [4], but most of these scenarios can be sub-
sumed under one of these use cases.

– Frameworks. Mappings are described in frameworks on an abstract level indepen-
dent of an intended use.

– Terminological Reasoning. Mappings are used to perform reasoning across aligned
ontologies.

– Data Transformation. Data from one ontology is transferred into the terminology
of another ontology based on the knowledge encoded in a mapping.

– Query Processing. Queries formulated with respect to a certain ontology are trans-
lated into the terminology of a different ontology.

The Frameworks use case is about describing mappings on an abstract level. Since
we try to argue for the applicability of our approach in a practical context, it is of minor
interest and will not be discussed. It is obvious that incoherence is undesirable in the
Terminological Reasoning case as incoherence will lead to inconsistency of the whole
ontology when instances are added to unsatisfiable concepts. Inconsistency, however,
disables meaningful reasoning as everything can be derived from an inconsistent on-
tology. It is less obvious that coherence is important for the Data Transformation and
Query Processing use cases. In the following, we show that an incoherent mapping will
lead to serious errors in the context of data translation and query processing.

4.1 Data Transformation

To better understand the effects of incoherence in the context of Data Transformation
let us consider the following example. Suppose there are two companies C1 and C2.
Both use different ontologies, say O1 and O2, to describe human resources and related
topics. Now it happens that C2 takes over C1. C2 decides to migrate all instance data of
O1 into O2. O1 will no longer be maintained. A terminological mapping M between
O1 and O2 has to be created to migrate the instances of O1 to O2 in a fully automated
way.

Fragments of ontologies O1 and O2 are depicted in figure 1. We refer to these frag-
ments throughout the whole section without explicitly mentioning it in the following.
Data Transformation can be roughly described as the following procedure.

1. For all instances a of O1 create a copy a′ of this instance in O2.
2. For all concept correspondences 〈1#e, 2#e ′, r, n〉 ∈ M with r ∈ {≡,v} and for

all instances a with O1 |= 1#e(a) add axiom 2#e ′(a′) to O2.
3. For all property correspondences 〈1#e, 2#e ′, r, n〉 ∈ M with r ∈ {≡,v} and for

all instances a, b with O1 |= 1#e(a, b) add axiom 2#e ′(a′, b′) to O2.

In the following we refer to the ontology resulting from migrating instances from Oi

to Oj based on mapping M as Oj ∪M(Oi). At first sight, mapping coherence seems
to be irrelevant with respect to this use case, because we do not copy any of the termi-
nological axioms into Oj . Consider the following correspondences to understand why
this impression is deceptive.

〈1#Person, 2#Person,≡, 1.0〉 (1)
〈1#ProjectLeader , 2#Project ,v, 0.6〉 (2)

Let now mapping M contain correspondence (1) and (2). M is incoherent, due to the
fact that in O1 ∪Mt O2 concept 1#ProjectLeader becomes unsatisfiable. Concepts
2#Project and 2#Person are disjoint and due to M concept 1#ProjectLeader is
subsumed by both of them, resulting in its unsatisfiability. Suppose now, there exists an
instance a with 1#ProjectLeader(a). Applying the migration rules results in a new in-
stance a′ with 2#Project(a′) and 2#Person(a′). Due to the disjointness of 2#Project
and 2#Person there exists no model for O2 ∪M(O1) and thus O2 ∪M(O1) is an
inconsistent ontology. Opposed to our first impression there seems to be a tight link
between the incoherence of M and the inconsistency of O2 ∪M(O1).

Contrary to this, mappings can be constructed, where such a direct link cannot be
detected. Let M, for example, contain correspondences (3) and (4). M is incoherent
due to the unsatisfiability of 2#ProductLine in the merged ontology.

〈1#Deadline, 2#TimedEvent ,v, 0.9〉 (3)
〈1#ProjectDeadline, 2#ProductLine,w, 0.7〉 (4)

Now we have to acknowledge that bothO2 ∪M(O1) andO1 ∪M(O2) do not become
inconsistent. But what happens if we first transfer all instances x ofO2 toO1∪M(O2)
and then again transfer the x′ instances of O1 ∪M(O2) to O2 ∪M(O1 ∪M(O2))?

Fig. 1. Fragments of ontologies O1 (on the left) and O2 (on the right). A square represents a
concept, an ellipse a property, subsumption is represented by indentation. Domain and range of
a property are restricted to be the concepts connected by the accordant arrow. Dashed horizontal
lines represent disjointness between concepts.

Given some instance a with O2 |= 2#ProductLine(a) after the first step we have
the counterpart of a, namely a′, with O1 ∪M(O2) |= 1#ProjectDeadline(a′) by ap-
plying correspondence (4) and can derive O1 ∪M(O2) |= 1#Deadline(a′). After the
second step we haveO2 ∪M(O1 ∪M(O2)) |= 2#TimedEvent(a′′) by applying cor-
respondence (3). We expect that adding axiom a = a′′ does not affect the consistency of
O2 ∪M(O1 ∪M(O2)). ButO2 ∪M(O1 ∪M(O2)) now implies 2#ProductLine(a)
as well as 2#Event(a). Since 2#ProductLine and 2#Event are defined to be disjoint,
there exists no model forO2∪M(O1∪M(O2)). Again, we find a strong link between
mapping incoherence and inconsistency after instance migration.

4.2 Query Processing

In the following we revisit a variant of the example given above to better understand the
use case of Query Processing. Again, company C2 takes over C1. But this time bothO1

and O2 are maintained. Instead of migrating all instances from O1 to O2 queries are
rewritten at runtime to enable information integration between O1 and O2. A termino-
logical mapping is the key for information integration. It is used for processing queries
and generating result sets which contain data from both ontologies. As we are con-
cerned with theoretical issues, we argue on an abstract level instead of discussing e.g.
characteristics of a SPARQL implementation. A query language for DL based knowl-
edge bases should at least support instance retrieval for complex concept descriptions.
Depending on the concrete query language there might be a complex set of rewriting
rules. At least, it must contain variants of the following two rules.

R1: Let i#C and i#D be concept descriptions in the language of Oi. If Oi |= i#C ≡
i#D , then query q can be transformed into an equivalent query by replacing all
occurrences of i#C by i#D .

R2: Let i#C and j#D be concept descriptions in the language of Oi, respectively
Oj . If there exists a correspondence 〈i#C , j#D ,≡, n〉 ∈ M, then query q can be
transformed into an equivalent query by replacing all occurrences of i#C by j#D .

Suppose we query for the name of all project leaders, formally speaking we are inter-
ested in the instances of ∃1#hasName−1.1#ProjectLeader . To receive instances of
both O1 and O2 we have to rewrite the query for O2. Now let M contain correspon-
dences (5), (6), and (7).

〈1#hasName, 2#name,≡, 0.9〉 (5)
〈1#Project , 2#Project ,≡, 1.0〉 (6)

〈1#manages, 2#managerOf ,≡, 0.7〉 (7)

Suppose that O1 contains axiom 1#ProjectLeader ≡ ∃1#manages.1#Project .
We exploit this axiom by applying R1. Now for every concept and property name that
occurs in ∃1#hasName−1.∃1#manages.1#Project , there exists a direct counterpart
in O2 specified in M. By applying R2 we thus finally end with a concept description
in the language of O2.

∃1#hasName−1.1#ProjectLeader (8)
R1⇐⇒ ∃1#hasName−1.∃1#manages.1#Project (9)
R2⇐⇒ ∃2#name−1.∃2#managerOf .2#Project (10)

What happens if we process the query based on this concept description toO2? As result
we receive the empty set. The range of 2#managerOf is concept 2#ProductLine,
and 2#ProductLine is defined to be disjoint with 2#Project . Thus, for logical reasons
there exists no instance of concept description (10) in O2.

This problem is obviously caused by the incorrectness of correspondence (7). But
the incorrectness of (7) does not only affect the query under discussion. It also causes
mapping M to become incoherent, because in the merged ontology O1 ∪Mt O2 con-
cept 1#ProjectLeader becomes unsatisfiable due to its equivalence with concept de-
scription ∃1#manages.1#Project . This time we find a strong link between mapping
incoherency and the incorrectness of a query result due to processing the mapping.

5 Measuring Incoherence

The definition of mapping incoherence given above is a boolean criterion that only dis-
tinguishes between coherent and incoherent mappings. Contrary to this, an incoherence
measure should satisfy m(O1,O2,M) > m(O1,O2,M′) if M has a higher degree
of incoherence than M′. At the moment we might have an intuitive understanding of
different degrees of incoherence, but a precise definition has to be given in the follow-
ing subsections. Up to now, we define an incoherence measure to satisfy the following
constraint.

Definition 5 (Incoherence Measure). Let M be a mapping between ontologies O1

and O2 and let t be an translation function. An incoherence measure mt maps O1,O2,
andM to a value in [0, 1] such that mt(O1,O2,M) = 0 iffM is coherent with respect
to O1 and O2 due to t.

In the following we distinguish between effect-based and revision-based measures. The
former are concerned with the negative impact of mapping incoherence. The latter
measure the effort necessary to revise a mapping by removing incoherences. Both ap-
proaches make it possible to extend the boolean property of incoherence to a continuous
measure of its degree.

5.1 Measuring the Impact of Incoherence

The first measure to be introduced is based on the idea of counting unsatisfiable con-
cepts. It is an adaption of an ontology incoherence measure introduced in [11]. Before
we proceed, we need to agree on some abbreviations and naming conventions.

Definition 6. Let O be an ontology. Then CO(O) refers to the set of named concepts
in O and US (O) = {C ∈ CO(O) | O |= C v ⊥} refers to the set of unsatisfiable
concepts in O.

Contrary to measuring incoherences in ontologies, we have to distinguish between
two types of concept unsatisfiability in the merged ontology: There are unsatisfiable
concepts in O1 ∪Mt O2 which have already been unsatisfiable in O1, respectively O2,
while there are unsatisfiable concepts which have been satisfiable in O1, respectively
O2. We are interested in the latter concepts. In particular, we compare the number of
these concepts with the number of all named concepts satisfiable in O1 or O2.

Definition 7 (Unsatisfiability Measure). LetM be a mapping between ontologiesO1

and O2, and let t be a translation function. Unsatisfiability measure mt
sat is defined by

mt
sat(O1,O2,M) =

|US (O1 ∪Mt O2) \ (US (O1) ∪US (O2))|
|CO(O1 ∪Mt O2) \ (US (O1) ∪US (O2))|

This measure can be criticised for the following reason. Suppose again, we have an
incoherent mappingM for ontologiesO1 andO2 depicted in figure 1. Suppose that due
to M concept 1#Person becomes unsatisfiable in the merged ontology. As a conse-
quence concept 1#ProjectLeader becomes unsatisfiable, too. By applying definition 7
we thus measure both direct impact (unsatisfiability of 1#Person) and indirect impact
(unsatisfiability of 1#ProjectLeader) of M, even though we might only be interested
in the direct impact. The distinction between root and derived unsatisfiability, as intro-
duced in [6], solves this problem. A precise definition requires us to recall the notion of
a MUPS, defined in [12], which is minimal unsatisfiability preserving sub-TBox.

Definition 8 (MUPS). Let O be an ontology, let T ⊆ O be the TBox of O, and let
C ∈ US (O). A set T ′ ⊆ T is a minimal unsatisfiability preserving sub-TBox (MUPS)
in T for C if C is unsatisfiable in T ′ and C is satisfiable in every T ′′ ⊂ T ′. The set of
all MUPS with respect to C is referred to as mups(O,C).

A MUPS for a concept C can be seen as a minimal explanation of its unsatisfi-
ability. Whenever there exists another unsatisfiable concept D such that the minimal
explanation of C ’s unsatisfiability also explains the unsatisfiability of D then C is re-
ferred to as derived unsatisfiable concept, because one reason for C ’s unsatisfiability is
the unsatisfiability of D .

Definition 9 (Derived and Root Unsatisfiability). Let O be an ontology and let C ∈
US (O). C is a derived unsatisfiable concept if there exists D 6= C ∈ US (O) such that
there exist M ∈ mups(O,C) and M ′ ∈ mups(O,D) with M ⊇ M ′. Otherwise C is a
root unsatisfiable concept. The set of derived unsatisfiable concepts of O is referred to
as USD(O) and the set of root unsatisfiable concepts is referred to as USR(O).

Similar to the unsatisfiability measure we can now introduce the root unsatisfiabil-
ity measure by considering only root unsatisfiable concepts instead of all unsatisfiable
concepts in the merged ontology.

Definition 10 (Root Unsatisfiability Measure). LetM be a mapping between ontolo-
gies O1 and O2, and let t be a translation function. Root unsatisfiability measure mt

rsat
is defined by

mt
rsat(O1,O2,M) =

|USR(O1 ∪Mt O2) \ (US (O1) ∪US (O2))|
|CO(O1 ∪Mt O2) \ (US (O1) ∪US (O2))|

Obviously, we have mt
sat(O1,O2,M) ≥ mt

rsat(O1,O2,M) for each mapping M
between two ontologies O1 and O2. As argued above, the mt

rsat measure has to be
preferred. Nevertheless, a non trivial algorithm is required to compute the set of root
unsatisfiable concepts as described in [6] which makes the application of this measure
more expensive from a computational point of view.

5.2 Measuring the Effort of Mapping Revision

The second type of measure is concerned with the effort of revising incoherent map-
pings. We use the term revision to describe the process of removing correspondences
from an incoherent mapping until a coherent submapping has been found. If a revision
is conducted by a domain expert we would, for example, be able to measure the time
necessary. Since we want our measure to be computable without any human interven-
tion, we thus have to think of an automated strategy to revise a mapping. Such a strategy
should obviously remove a minimum number of correspondences, because we would
like to keep as much information in the mapping as possible. The following measure is
based on this idea and compares the number of correspondences that would be removed
by such a strategy with the number of all correspondences in the mapping.

Definition 11 (Maximum Cardinality Measure). Let M be a mapping between on-
tologies O1 and O2, and let t be a translation function. Maximum cardinality measure
mt

card is defined by

mt
card(O1,O2,M) =

|M \M′|
|M|

where M′ ⊆ M is coherent with respect to O1 and O2 due to t and there exists no
M′′ ⊆ M with |M′′| > |M′| such that M′′ is coherent with respect to O1 and O2

due to t.

Suppose there are incoherent mappingsM1 andM2 with |M1| = |M2| = 10. Fur-
ther suppose, according to the naming convention in definition 11, we have |M′

1| = 8

and |M′
2| = 7. Thus, we have mt

card(O1,O2,M1) = 0.2 and mt
card(O1,O2,M2) =

0.3. But now suppose that all of the correspondences in M1 have the same confidence
value, say 1. Contrary to this, M2 differs with respect to the confidence value of its
correspondences. In particular, it turns out that all of the three correspondences that
have been removed have a very low confidence value compared to the remaining corre-
spondences. The following definition introduces the maximum trust measure which is
similar to the maximum cardinality measure but accounts for differences in the confi-
dence distribution.

Definition 12 (Maximum Trust Measure). Let M be a mapping between ontologies
O1 and O2, and let t be a translation function. Further, let conf : M → [0, 1] be a
function that maps a correspondence on its confidence value. Maximum trust measure
mt

trust is defined by

mt
trust(O1,O2,M) =

∑
c∈M\M′

conf (c)∑
c∈M

conf (c)

where M′ ⊆ M is coherent with respect to O1 and O2 due to t and there exists no
M′′ ⊆ M with

∑
c∈M′′ conf (c) >

∑
c∈M′ conf (c) such that M′′ is coherent with

respect to O1 and O2 due to t.

This measure is derived from the algorithm already described in [9] which can be
used to compute M′ for a specific type of mappings. Namely, one-to-one mappings
that contain only correspondences expressing equivalences between concepts. We also
used it in the context of mapping extraction [8]. Its application is motivated by the idea
that M \M′ mainly contains incorrect correspondences given an appropriate confi-
dence distribution. We adapted this idea to introduce the mt

trust measure as confidence
weighted complement to the mt

card measure.
Notice that computing both of these measures requires to solve computational hard

problems. On the one hand only full-fledged reasoning guarantees completeness in de-
tecting unsatisfiability. On the other hand the underlying problem is the optimization
problem of finding a hitting set H ⊆ M of minimal cardinality (respectively minimal
confidence total) over the set all of minimal incoherent subsets of M. This problem is
known to be NP-complete [7]. Nevertheless, first experiments indicate that both mea-
sures can be computed in acceptable time for small and medium sized ontologies.

6 Truth and Coherence

In the following we are concerned with an important interrelation between the classical
compliance measure of precision and the maximum cardinality measure of incoherence.
Philosophically speaking, we are interested in how far an incoherent mapping can truly
express semantic relations between ontological entities. Accordant to [1], the precision
of a mapping can be defined as follows.

Definition 13 (Precision). Given a mapping M between ontologies O1 and O2, let R
be a reference mapping between O1 and O2. The precision of M with respect to R is
defined as precision(M,R) = |M ∩R| / |M|.

In section 4 we argued that an incoherent mapping M causes different kinds of
problems when applied in a realistic scenario. More precisely, it is the incorrectness
of a correspondence that causes both the problem as well as the incoherence. Even
though incorrect correspondences not necessarily result in incoherence, we can be sure
that an incoherent mapping contains at least one incorrect correspondence. Thus, a
well-modeled reference mapping R will be coherent due to each translation function
t compatible with the mapping semantics accepted by the person who created R. The
following proposition corresponds to this consideration.

Proposition 1 (Incoherence and Precision). Let R be a reference mapping between
O1 and O2. Further let mapping M be incoherent and let R be coherent with respect
to O1 and O2 due to translation function t. Then we have precision(M,R) < 1.

Proof. Given the coherence ofR, it can be concluded that every subset ofR is coherent,
too. Since M is incoherent, it is thus no subset of R, i.e M\R 6= ∅. We conclude that
M∩R ⊂M. It follows directly precision(M,R) < 1.

Notice that automatically generated mappings normally do not have a precision of 1.
Thus, the application of proposition 1 is only of limited benefit. Nevertheless, it can be
generalized in a non trivial way by exploiting the definition of the maximum cardinality
measure (definition 11). This generalization allows us to compute a non trivial upper
bound for mapping precision without any knowledge of R.

Proposition 2 (Upper Bound for Precision). Let M be a mapping and R be a refer-
ence mapping betweenO1 andO2. Further letR be coherent with respect toO1 andO2

due to translation function t. Then we have precision(M,R) ≤ 1−mt
card(O1,O2,M).

Proof. Accordant to definition 11 let M′ ⊆ M be the coherent subset of M with
maximum cardinality. Further let be M∗ = M ∩ R, i.e. M∗ consist of all correct
correspondences in M. Since M∗ is a subset of R and R is coherent with respect to
O1 andO2 due to t, we conclude thatM∗ is also coherent. It follows that |M∗| ≤ |M′|,
because otherwise M′ would not be the coherent submapping of maximum cardinality
contrary to definition 11. In summary, the following inequation holds.

precision(M,R) =
|M ∩R|
|M| =

|M∗|
|M| <

|M′|
|M| = 1− |M′ \M|

|M| = mt
card(O1,O2,M)

Proposition 2 reveals an important interrelation between coherence and precision.
The counterpart of mapping precision is the measure of recall. At first glimpse it seems
that recall and coherence describe independent properties of a mapping. Nevertheless,
there exists a non trivial relation between recall and coherence that allows to derive
comparative statements about the relative recall of two overlapping mappings in some
cases. Although this interrelation is not as significant as the the one expressed in propo-
sition 2, further theoretical considerations are required.

The utility of proposition 2 in the evaluation process essentially depends on the dis-
tance between the upper bound and the actual value of mapping precision. In particular,
measuring low values for the mt

card measure will lead to a poor differentiation with
respect to the precision that has to be expected. In initial experiments, not included in
this paper due to lack of space, first results indicate that the upper bound for mapping
precision strongly varies and can be used to filter out highly imprecise mappings.

7 Conclusion

In this paper, we have discussed the notion of incoherence of ontology mappings and
its role in the assessment of automatically created mappings. There are two main con-
clusions of this work. First, we conclude that incoherence is an important aspect of
mapping quality as incoherent mappings have undesirable effects on most relevant ap-
plication scenarios as we have demonstrated in section 4. Second, appropriate measures
of incoherence can help to assess the quality of a mapping even if no reference map-
ping is available and thus precision and recall cannot be determined. In particular, the
measure of incoherence provided in definition 11 provides a strict upper bound for the
precision of a mapping and can therefore be used as a guideline for estimating the per-
formance of matching systems. In future work experimental studies will show in how
far the proposed measures can be effectively applied in the evaluation process.2

Acknowledgement The work has been partially supported by the German Science Foun-
dation (DFG) in the Emmy Noether Programme under contract STU 266/3-1.

References

1. Hong-Hai Do, Sergey Melnik, and Erhard Rahm. Comparison of schema matching evalua-
tions. In Proc. of the GI-Workshop Web and Databases, Erfurt, Germany, 2002.

2. Marc Ehrig and Jerome Euzenat. Relaxed precision and recall for ontology matching. In
Proc. of the K-Cap 2005 Workshop on Integrating Ontology, Banff, Canada, 2005.

3. Jerome Euzenat. Semantic precision and recall for ontology alignment evaluation. In Proc.
of th 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, 2007.

4. Jerome Euzenat and Pavel Shvaiko. Ontology Matching. Springer, 2007.
5. Peter Haase and Guilin Qi. An analysis of approaches to resolving inconsistencies in DL-

based ontologies. In Proc. of the International Workshop on Ontology Dynamics, Innsbruck,
Austria, 2007.

6. Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and James Hendler. Debugging unsatisfiable
classes in OWL ontologies. Journal of Web Semantics, 2005.

7. Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations. Plenum, 1972.

8. Christian Meilicke and Heiner Stuckenschmidt. Analyzing mapping extraction approaches.
In Proc. of the ISWC 2007 Workshop on Ontology Matching, Busan, Korea, 2007.

9. Christian Meilicke and Heiner Stuckenschmidt. Applying logical constraints to ontology
matching. In Proc. of the 30th German Conference on Artificial Intelligence, Osnabrück,
Germany, 2007.

10. Natasha Noy and Heiner Stuckenschmidt. Ontology alignment: An annotated bibliography.
In Semantic Interoperability and Integration, Dagstuhl, Germany, 2005.

11. Guilin Qi and Anthony Hunter. Measuring incoherence in description logic-based ontologies.
In Proc. of the 6th International Semantic Web Conference, 2007.

12. Stefan Schlobach and Ronald Cornet. Non-standard reasoning services for the debugging of
description logic terminologies. In Proc. of 18th International Joint Conference on Artificial
Intelligence, Acapulco, Mexico, 2003.

2 A first beta-version of our system supporting the measures mt
sat, mt

card, and mt
trust based on a

slightly modified natural translation can be obtained on request.

