
Judging Amy: Automated Legal Assessment
using OWL 2

Saskia van de Ven, Rinke Hoekstra, Joost Breuker,
Lars Wortel, and Abdallah El-Ali

Leibniz Center for Law, University of Amsterdam,
s.vandeven@uva.nl, hoekstra@uva.nl, breuker@uva.nl,

l.l.wortel@uva.nl, aali@science.uva.nl

Abstract. One of the most salient tasks in law is legal assessment, and
concerns the problem of determining whether some case is allowed or
disallowed given an appropriate body of legal norms. In this paper we
describe a system and Protégé 4 plugin, called OWL Judge, that uses
standard OWL 2 DL reasoning for legal assessment. Norms are repre-
sented in terms of the LKIF Core ontology, as generic situation descrip-
tions in which something (state, action) is deemed obliged, prohibited or
permitted. We demonstrate the design patterns for defining the norms
and actual cases. Furthermore we show how a DL classifier can be used
to assess individual cases and automatically generate a lex specialis ex-
ception structure using OWL Judge. We illustrate our approach with a
worked-out example of university library regulations.

Introduction

One of the most salient tasks in law is legal assessment, and concerns the problem
of determining whether some case is allowed or disallowed given an appropriate
body of legal norms. For legal experts this process becomes more and more
difficult as the amount of legislation continuously grows and the complexity
of legislative documents increases. Moreover, the structure of legal documents
differs from those in other domains. Legislation tends to be highly interconnected
– and interdependent – and normative conflicts between different regulations
are resolved by meta legal rules, such as lex specialis and lex posterior. The
application of these rules can result in complex exception structures, which can
be difficult to keep track of for the average citizen. [12] presented a way to resolve
lex posterior (the more recent norm takes precedence) conflicts between concept
definitions. Conversely, this paper is focused on the resolution of lex specialis
exceptions between norms, the legal principle that states that a more specific
norm takes precedence over a more general one.

Legal knowledge-based systems allow us to manage the complexity of leg-
islation and enable online e-government services. Transactions that require the
application of complex legislation, such as tax benefits or social security admin-
istration, are increasingly processed online. This gives citizens and businesses
more direct access to a personalised and transparent insight in their rights and

duties. Although there already exist several such systems, the wider acceptance
and dissemination of legal knowledge technology is hampered by the lack of an
open platform.

The Legal Knowledge Interchange Format (LKIF), developed within the ES-
TRELLA1 project, aims to provide an open platform for legal knowledge ex-
change between e-government services [1,10]. HARNESS2 is the working title of
a knowledge-based system that is currently being developed within this project.
Its architecture is based on the separation of control knowledge, such as problem
solving methods, from a domain theory [16,3]. The general architecture allows
for the implementation of multiple tasks, such as legal planning and argumen-
tation, though it currently only supports legal assessment. This task is solely
implemented using the OWL 2 DL language.

In the following sections we describe the requirements for legal assessment
and explain our approach. We present OWL Judge which is developed to assist
users in the task of assessing their individual case. All of this will be illustrated
with a worked-out example of university library regulations.

1 Legal Assessment

Clancey [4] identified different types of rules involved in the medical domain
theory of the Mycin system: identification, causal, world fact and domain fact
rules. Similarly, the domain theory of legal knowledge based systems is not ho-
mogeneous either. [15,17] give a general breakdown of the types of knowledge
and their dependencies involved in the legal domain. Valente’s Functional On-
tology of Law (FOLaw) describes the legal system as an instrument to influence
society and reach certain social goals, i.e. it exists to fulfil a function. The legal
system can be viewed as a “social device operating within society and on society,
and whose main function is to regulate social behaviour” [15, p. 49].

FOLaw distinguishes seven types of knowledge: commonsense knowledge,
world knowledge, normative knowledge, responsibility knowledge, meta-legal
knowledge, creative knowledge and reactive knowledge. Any legal knowledge
based system will incorporate at least one of these knowledge types.

The most characteristic category of legal knowledge is normative knowledge,
which reflects the regulatory nature of law. It has two functions: prescribing
behaviour, and defining a standard of comparison for social reality. A norm ex-
presses an idealisation: what ought to be the case (or to happen) a ccording to
the will of the agent that created the norm [11]. Meta-legal knowledge governs re-
lations between norms, and is applied when solving normative conflicts [6], and
determining the preference ordering of norms [2]. Legal principles such as lex
specialis are types of meta-legal knowledge. Because law governs the behaviour
of agents in the world, it must contain some description of this behaviour. This

1 The European project for Standardized Transparent Representations in order to
Extend Legal Accessibility, see http://www.estrellaproject.org/.

2 Hybrid Architecture for Reasoning with Norms Exploiting Semantic web Services

http://www.estrellaproject.org/

world knowledge functions as an epistemological interface between the legal sys-
tem and social reality. World knowledge is an abstraction of commonsense [15].
This principle lies at the heart of the LKIF Core ontology of basic legal concepts
[10,?].

Legal assessment concerns the problem of determining whether some case
is allowed or disallowed given an appropriate body of legal norms. It involves
the expression of an individual case, an interpretation of that case in terms of
the world knowledge, and the application of normative knowledge to determine
whether the case constitutes a norm violation. More precisely, the following steps
are needed to perform this task:

Case Input Create a description of the case that needs to be assessed. The
facts that are provided should correspond to terms are used in the norms,
i.e. both the norms and the individual case should commit to the same
domain ontology.

Match The individual case is matched against the set of norms.
Resolving conflicts Because it is not unlikely that the individual case matches

more than a single norm, the system identifies conflicting norms and decides
which norm has priority over the other norms (e.g. according to the principle
of lex specialis).3

Final verdict Provide an outcome of the normative qualification of the case. It
is desirable to present an explanation, e.g. why a certain norm applies to the
given input, showing which terms in a norm match the individual facts of
the case. Moreover the answer should be justified by reference to the norms
and original source. [8].

In the following sections we outline the representation in OWL 2 DL of the
three types of knowledge necessary for legal assessment. A domain ontology for
terminological knowledge defines the concepts used as the basic building blocks
for specifying case descriptions and norms. The ontology is a specialisation of
the LKIF Core ontology. The norms are specified in a separate OWL file, and
define the regulations that govern the situations expressible using the domain
ontology. They are expressed as generic situations in which a state or action is
qualified as undesirable, permitted or prescribed (see Figure 1). The individual
case description represents the facts that characterise an actual situation and is
expressed in terms of the domain ontology as a set of related OWL individuals.
Furthermore we will provide the corresponding OWL DL design patterns and
show how a description classifier can be used to perform legal assessment of an
individual case.

2 Norms and Generic Cases

A norm is represented as a deontic qualification of a generic case [15] (GC), which
is a conjunction of conditions that together form a description of the situation
3 Note that the outcome of this step does not always result in a single match. Several

norms may apply that have a conflicting deontic qualifier, but are not each other’s
exception.

owl:Thing

Qualified

Mental_Entity

Mental_Object

Qualification

Normatively_Qualified

Disallowed Allowed

Obliged

Norm

Right Permission

Obligation Prohibition

equivalent

qualifies

qualifies

allows

allows
disallow

Subjective_Entity

Fig. 1. Qualifications and Norms

expressed by the norm. A GC Σ is defined as a set of conditions σ1 u ... u σn
in conjunctive normal form. Conditions are class axioms composed of classes
and properties defined by the domain ontology. An individual case C is a set of
grounded propositions {c1, ..., cn}, called circumstances, that describe a certain
state of affairs. The match between a GC and an individual case is through
realisation. For instance, a generic case GC1 that is used in the definition of the
norm “Students are not allowed to rent books”:

GC1 ≡ Student u ∃checks out Library Book

is trivially satisfied by the individual case:

{Amy : Student, history book : Library Book,Amy checks out history book}

Obviously, a more specific case GC2 will be subsumed by GC1. However the
above example already shows that just representing a norm by a generic case is
not enough. From the generic case itself, it does not become clear whether the
expressed situation is allowed or not. Therefore we need the following deontic
notions that enable us to normatively qualify a generic case: permission, obliga-
tion and prohibition. These notions are part of the LKIF Core ontology which
is described in a bit more detail at the end of this section.

As the goal of our system is normative assessment, we would like to detect
violations of the default situation. Norms apply only to cases that differ from
this default situation. The majority of legislative documents by default allow a
situation, unless some norm(s) state(s) otherwise. In some regulations, the de-
fault situation is disallowed. This is for instance the case in permit systems. The
default situation should therefore be included as a generic case in any norma-
tive representation. All other generic cases specified by norms are subsumed by

Notion Match Default Allowed Default Disallowed

Prohibition no no effect possible effect
yes has effect no effect

Permission no no effect has effect
yes no effect has effect

Obligation no possible effect no effect
yes has effect has effect

Table 1. Behaviour of deontic notions with respect to the default

this default generic case. This allows us to make explicit any exceptions to the
default by more specific norms.

The way in which deontic operators interact can be rather complex. We
therefore introduce design patterns to facilitate the specification of norms. The
following paragraphs describe the behaviour of norms compared to the default,
and provide the design patterns (see also Table 1).

Default situation: allowed In the “most common” case, everything is by default
allowed. A match of an individual case with the GC of a permission does not
have any normative consequences for example. Similarly, when the individual
case does not match a prohibition, no normative consequences follow. On the
other hand, a match with the GC of a prohibition, constitutes an exception to
the default. These types of exceptions should be detected and given precedence
over the default situation. However, this simplistic matching process becomes
more complex in the case of no match with the GC of an obligation.

We take a fictive example from the library domain again: “Students are
obliged to show their library card in order to rent a book. If in this example,
someone does want to rent books (a match with the context), but does not show
his library card (which is the specific obliged part), the obligation is violated.
However there would be no match with the generic case which expresses this
(only a partial match), we would have failed to detect a violation of the default.
To be able detect these violations, the GC is partitioned into that part which
is explicitly allowed (AΣ) and that part which is explicitly disallowed (DΣ) by
the obligation. Moreover a norm is typically only addressed towards a certain
element of the GC, given some context. We therefore distinguish between the
context of a norm and that part of the GC which the norm is directed towards.
The pattern we follow in the representation of obligations is therefore as follows:

AΣ ≡ σ1 u ... u σn u σn+1

↗ ≡ Σ1 u Σ2

OΣ
↘
DΣ ≡ σ1 u ... u σn

≡ Σ1

Where the context is defined as Σ1: σ1 u ... u σn (a student rents a book), and
the obliged part of the GC is Σ2: σn+1 (showing the library card). Renting a
book is disallowed, but renting a book and showing a library card is allowed,
which is the desired behaviour.

Default situation: disallowed Of course, where the default situation is disallowed,
the normative qualifications differ significantly. For instance, if a norm expresses
a permission, and there is no match with an individual case, we are still in line
with the default situation. However, a match constitutes a direct exception to
the default. Similarly, for obligations and prohibitions the exceptions change:
a compliance with the allowed part of an obligation is an exception, where a
compliance with the disallowed part of a prohibition is not. Therefore, if there is
no match in case of a prohibition: we might have failed to detect a violation of the
default. A prohibition expresses a disallowed situation (DΣ), but also implicitly
represents an allowed (AΣ) situation (the complement of the disallowed case is
an allowed situation). In case of the example “Students that are in the library,
are prohibited to make noise” it is allowed to be in the library, but it is disallowed
to be in the library and make noise. The design pattern is as follows:

DΣ ≡ σ1 u ... u σn u σn+1

↗ ≡ Σ1 u Σ2

FΣ
↘
AΣ ≡ σ1 u ... u σn

≡ Σ1

Where the context is defined as Σ1: σ1 u ... u σn (being in the library), and the
prohibited part of the GC is Σ2: σn+1 (making noise).

The LKIF Core ontology defines the class Norm and its subclasses Permission,
Obligation and Prohibition as follows [10,2]:

Norm v Qualification u ∃qualifies Normatively Qualified

Permission v Norm

≡ ∃allows Allowed u ∀allows Allowed

Obligation v Permission

≡ ∃allows Obliged u ∃disallows Disallowed

u ∀allows Allowed u ∃disallows Disallowed

Prohibition ≡ Obligation

The Prohibition and Obligation are equivalent because they are simply two
different ways to put the same thing into words: a prohibition to smoke is an
obligation not to smoke. The Permission is different in that it allows something,
but does not prohibit anything. For the purpose of clarity we will refer to the
subclasses of Normatively Qualified as generic cases. The properties allows and

disallows are disjoint subproperties of qualifies; a norm cannot simultaneously
allow and disallow the same situation. Although a GC describes an entire situa-
tion, it can be represented as a single class description because the entities in a
single situation should be connected. On the other hand, this means the norm’s
qualification is biased to the class that forms the entry point for describing the
GC.

3 The University Library Regulations

Now that we have explained our approach we will illustrate it by means of
a worked-out example of a toy domain: university library regulations. We list
relevant regulations and introduce a use case. We then show how the regulations
are represented, and introduce OWL Judge.
Consider the following university library regulations:

1a) Students registered at this university are allowed to check out a book from
this library

1b) Students registered at other universities are allowed to check out a book
from this library provided that they are enrolled in at least one course given
at this university.

1c) Students who have checked out more than five books are not allowed to check
out another book.

One of our students is Amy. She is registered at the University of Amsterdam
and has an inquisitive mind: she has checked out 6 books on some general topic:

{Amy : Registered Student, general book 1 : Library Book,

general book 2 : Library Book, general book 3 : Library Book,

general book 4 : Library Book, general book 5 : Library Book,

general book 6 : Library Book,Amy checks out general book 1,
Amy checks out general book 2,Amy checks out general book 3

Amy checks out general book 4,Amy checks out general book 5,
Amy checks out general book 6}

According to the regulations, Amy’s situation is allowed by article 1a, but dis-
allowed by article 1c. However, these two articles contain an intuitive hierarchic
pattern: the case described by article 1a subsumes that of article 1c. In fact,
article 1c is an exception to 1a, because 1a implicitly expresses that students
registered at other universities are not allowed to check out any books. The
expected verdict of the system should therefore be that Amy’s situation is dis-
allowed, as article 1c is more specific than article 1a, the lex specialis principle
states that 1c trumps 1a.

Although the two relevant articles are article 1a and 1c, we first need to
specify the default situation. In the library regulations the default situation is

disallowed; students are generally not allowed to check out books, unless stated
differently in the norms. The default norm and generic case apply to all situations
where a book is checked out:

Default GC v Generic Case u ∃disallowed by {defaultnorm}
≡ ∃checks out Library Book

Default Norm v Prohibition u ∀disallows Default GC

≡ {defaultnorm}

Article 1a states that students registered at this university are allowed to
check out a book from this library:

Art1a GC v Generic Case u ∃allowed by {art1a}
≡ Registered Student u ∃checks out Library Book

Art1a Permission v Permission u ∀allows Art1a GC

≡ {art1a}

Article 1c states that students who have checked out more than five books
are not allowed to check out another book:

Art1c GC F v Generic Case u ∃disallowed by {art1c}
≡ Student u ≥ 6 checks out Library Book

Art1c GC P v Generic Case u ∃allowed by {art1c}
≡ Student u ∃checks out Library Book

u ≤ 5 checks out Library Book

Art1c Prohibition v Prohibition u ∀disallows Art1c GC F

u ∀allows Art1c GC P

≡ {art1c}

Article 1c expresses a prohibition where the default situation is disallowed.
The GC is therefore partitioned into a part that is disallowed (the prohibition)
and the thing that is allowed (the context). In this case it is permitted to check
out books, checking out more than 5 books is prohibited. By using a cardinality
restriction, checking out less than or exactly 5 books is allowed by this rule.

3.1 Exception structure

As mentioned in the preceding paragraphs, multiple interacting norms can create
complex exception structures. As our norms are represented as OWL classes, a
DL classifier can generate the subsumption hierarchy of generic cases. This hier-
archy actually reflects the lex specialis exception relations between norms. More-
over we can apply the following role inclusion axioms to make these exception

Fig. 2. OWL judge provides a verdict for Amy’s case.

relations explicit:

allows ◦ disallowed by ⊆ exception

disallows ◦ allowed by ⊆ exception

Because norms are nominals that consist of a single individual, these excep-
tion relations can be derived automatically, using Pellet for all norms. Take for
example the Art1c Prohibition which disallows Art1a GC. The individual art1c,
which represents the prohibition from article 1c, disallows our individual amy,
since her situation matches with Art1c GC. However, amy is also classified as
Art1a GC, and therefore amy is also allowed by art1a. In this way we can derive
the exception relation between art1c and art1a:

{art1c exception art1a}

This inferred exception hierarchy is used by OWL Judge to resolve possible
conflicts, and helps to present a final verdict to the user.

3.2 OWL Judge

OWL Judge assists users in the task of legal assessment. It prompts the user to
select an OWL file containing the norms, and a file containing a case description.
Once the “check” button is pressed, Pellet is called to perform classification and
realisation on the given files (see Figure 2).

First OWL Judge checks all individuals that exist in the file containing the
case description. Depending on their classification as Allowed or Disallowed, they
are displayed in respectively the “Allowed” and/or “Disallowed” column, shown
in the top left part of the screen. A user can click on the individuals in those
columns and retrieve an explanation of the classification. For the explanation,
OWL Judge uses the standard explanation facilities of Pellet [8].

OWL Judge also generates a final verdict, which is especially interesting in
situations where multiple norms apply to the individual case (if only one norm
applies it is clearly the final verdict as well). If an individual is both Allowed and
Disallowed, OWL Judge tries to resolve this conflict by checking whether one of
the norms allowing or disallowing it contains an exception relationship with the
other norm: a norm trumps another norm, if the generic case of the first norm
is more specific. This means some additional querying of the TBox and ABox is
done by the plugin.

The most specific one will be displayed in the appropriate “Verdict” column,
shown in the top right of the screen. The user can again select the individual
to view an explanation of OWL Judge’s verdict. The screen shows that the
individual amy is disallowed by defaultnorm and art1c, but allowed by art1a.
The explanation indicates that article 1c is the most specific norm, which makes
the final verdict “prohibited”.

4 Conclusions and future work

Currently, the individual case description has to be entered using a generic OWL
editor, such as Protégé4 or Topbraid Composer5. This of course asks for quite
some experience in working with these kind of tools. Moreover a person that
creates the case description should have knowledge of what is present in the
ontology and in the norms, as the terms in the case description should correspond
to either the terms used in the ontology or in the norms. It would be very
beneficial to provide a more friendly user interface. Such an interface should
for example guide a user in what terms to use and try to complete the case
description as much as possible. Some work, cf. [5], suggests that the language
used in regulations is highly structured, which suggests a possibility to support
a structured language interface along the lines of [14].

OWL Judge as it exists now implements our basic requirements, but there are
still some things we would like to address. For instance, it might be interesting
to enhance the explanation by allowing users to click on a certain individual
case to get more information about it. Moreover OWL Judge is not yet capable
of determining whether an individual case is Obliged, which is also something
that needs to be dealt with. Furthermore, we would like to further enhance the
explanations with forms of justification, such as a reference to the original source
of law. Preferably the original source of law is stored in the MetaLex/CEN format

4 http://protege.stanford.edu
5 http://www.topbraidcomposer.com

http://protege.stanford.edu
http://www.topbraidcomposer.com

of [19], an open XML interchange format for legal and legislative resources6. This
enables a direct connection between the original legal source to (specific parts of)
our model. This would also form a nice way to interact with the MetaVex editor,
a WYSIWYG editor used to create and edit documents in the MetaLex/CEN
format [18].

The major advantage of using only OWL 2 DL to represent both conceptual
and normative knowledge is that we can use an existing reasoner, Pellet, to
perform all reasoning. There is no need to concern ourselves with an interaction
between different formalisms. The question is whether OWL 2 DL is expressive
enough to suit our needs. In some cases we would like to talk about things at
the level of individuals, instead of at the level of concepts. For example, if we
want to represent “a student that checks out a book belonging to a course he
is enrolled in”, this is currently impossible to express in DL because of the tree
model property7.

Rule formalisms can easily represent this example just by using variables each
time we want to point to a certain student or course. Alternative approaches,
such as structured objects ([13]) are very promising as well, but are currently not
supported by mainstream reasoners. However, the necessary effect can sometimes
be achieved by approximation [9]. Also, others are working to achieve higher
expressiveness by using SWRL conditions [7]. Thus far we have found solutions
that work for limited cases but cannot be applied in general. Nonetheless, the
approach explained in this paper might be sufficient for some domains, and we
intend to thoroughly test and evaluate our approach on existing regulations.

References

1. Alexander Boer, Thomas F. Gordon, Kasper van den Berg, Marcello Di Bello,
András Förhécz, and Réka Vas. Specification of the legal knowledge interchange
format. Deliverable 1.1, Estrella, 2007.

2. Alexander Boer, Tom van Engers, and Radboud Winkels. Mixing legal and non-
legal norms. In M-F. Moens and P. Spyns, editors, Jurix 2005: The Eighteenth
Annual Conference., Legal Knowledge and Information Systems, pages 25–36, Am-
sterdam, 2005. IOS Press.

3. Joost Breuker. Components of problem solving. In Luc Steels, Guus Schreiber,
and Walter van de Velde, editors, A Future for Knowledge Acquisition: proceedings
of the EKAW-94, European Knowledge Acquisition Workshop, pages 118 – 136,
Berlin, 1994. Springer Verlag.

4. William J. Clancey. The epistemology of a rule-based expert system - a framework
for explanation. Artificial Intelligence, 20(3):215–251, 1983. First published as
Stanford Technical Report, November 1981.

5. E. de Maat, R. Winkels, and T. van Engers. Making Sense of Legal Texts. In
G. Grewendorf and M. Rathert, editors, Formal Linguistics and Law, Trends in
Linguistics - Studies and Monographs (TiLSM). Mouton, De Gruyter, Berlin, (in
press) 2008.

6 http://www.metalex.eu/
7 See [9] for an in-depth discussion on the problem of identity of individuals.

http://www.metalex.eu/

6. Abdullatif A.O. Elhag, Joost A. Breuker, and Bob W. Brouwer. On the formal
analysis of normative conflicts. In H.Jaap van den Herik et al., editor, JURIX
1999: The Twelfth Annual Conference, Frontiers in Artificial Intelligence and Ap-
plications, pages 35–46, Nijmegen, 1999. GNI.

7. A. Forhecz and G. Strausz. First-order owl conjunctions. In Proceedings of OWLED
2008 EU, 2008. Under Review.

8. Christian Halaschek-Wiener, Yarden Katz, and Bijan Parsia. Belief base revision
for expressive description logics. In OWL: Experiences and Directions 2006, 2006.

9. Rinke Hoekstra and Joost Breuker. Polishing diamonds in OWL 2. In Aldo
Gangemi and Jérôme Euzenat, editors, Proceedings of the 16th International Con-
ference on Knowledge Engineering and Knowledge Management (EKAW 2008),
LNAI/LNCS. Springer Verlag, October 2008. To be published.

10. Rinke Hoekstra, Joost Breuker, Marcello Di Bello, and Alexander Boer. The
LKIF Core ontology of basic legal concepts. In Pompeu Casanovas, Maria An-
gela Biasiotti, Enrico Francesconi, and Maria Teresa Sagri, editors, Proceedings of
the Workshop on Legal Ontologies and Artificial Intelligence Techniques (LOAIT
2007), June 2007.

11. Hans Kelsen. General Theory of Norms. Clarendon Press, Oxford, 1991.
12. Szymon Klarman, Rinke Hoekstra, and Marc Bron. Versions and applicability

of concept definitions in legal ontologies. In Kendall Clark and Peter F. Patel-
Schneider, editors, Proceedings of OWL: Experiences and Directions (OWLED
2008 DC), Washington, DC (metro), April 2008.

13. Boris Motik, Bernardo Cuenca Grau, and Ulrike Sattler. Structured objects in
OWL: Representation and reasoning. Technical report, University of Oxford, UK,
2007.

14. Rolf Schwitter, Kaarel Kaljurand, Anne Cregan, Catherine Dolbear, and Glen
Hart. A comparison of three controlled natural languages for owl 1.1. In Kendall G.
Clark and Peter F. Patel-Schneider, editors, Proceedings of OWL: Experiences and
Directions (OWLED 2008 DC), Washington, DC (metro), April 2008.

15. A. Valente. Legal Knowledge Engineering: A Modelling Approach. PhD thesis,
University of Amsterdam, Amsterdam, 1995.

16. A. Valente, J.A. Breuker, and P.W. Brouwer. Legal modelling and automated
reasoning with ON-LINE. International Journal of Human Computer Studies,
51:1079–1126, 1999.

17. Andre Valente and Joost Breuker. ON-LINE: An architecture for modelling le-
gal information. In International Conference on Artificial Intelligence and Law
(ICAIL-1995), pages 307–315, 1995.

18. Saskia van de Ven, Rinke Hoekstra, Radboud Winkels, Emile de Maat, and Ádám
Kollar. MetaVex: Regulation drafting meets the semantic web. In Giovanni Sartor
and Pompeu Casanovas, editors, Computable Models of the Law. Languages, Dia-
logues, Games, Ontologies., volume 4884 of Lecture Notes in Artificial Intelligence,
pages 42–55. Springer Verlag, 2008.

19. R. Winkels, A. Boer, and R. Hoekstra. METAlex: An XML Standard for Legal
Documents. In Proceedings of the XML Europe Conference, London (UK), 2003.

	Judging Amy: Automated Legal Assessment using OWL 2
	Saskia van de Ven cl@@auth, Rinke Hoekstra cl@@auth, Joost Breuker cl@@auth, Lars Wortel cl@@auth, Abdallah El-Ali

