
Managing Change:
An Ontology Version Control System

Timothy Redmond2, Michael Smith1, Nick Drummond3, and Tania Tudorache2

1 Clark & Parsia, LLC
2 Stanford University

3 University of Manchester

Abstract. In this paper we present the basic requirements and initial
design of a system which manages and facilitates changes to an OWL
ontology in a multi-editor environment. This system uses a centralized
client-server architecture in which the server maintains the current state
and full history of all managed ontologies. Clients can access the cur-
rent ontology version, all historical revisions, and differences between
arbitrary revisions, as well as metadata associated with revisions. This
system will be used by many other ontology based services, such as in-
cremental reasoning, collaborative ontology development, advanced on-
tology search, and ontology module extraction. Taken holistically, this
network of services will provide a rich environment for the development
and management of ontology based information systems.

1 Motivation and Requirements

We need for a system that manages access to a changing ontology. This require-
ment is experienced by a variety applications with different stakeholders. An
illustrative use case is presented below.

A large distributed organization requires integration and alignment of many
heterogeneous data sources and information artifacts. They facilitate such in-
tegration by employing one or more expressive OWL ontologies that exist in
defined relations to data sources, information artifacts, and an enterprise con-
ceptual model. These ontologies, as a critical infrastructure components, have
stakeholders throughout the organization and outside its boundaries. Further,
they are developed and maintained concurrently by many parties. Individual
stakeholders participate in the ontology engineering process in different ways.
Some are primarily consumers, but may make detailed edits to areas of the on-
tologies critical to them. Others are charged with maintaining high-level ontol-
ogy coherence and use an integrated ontology development environment, such as
Protégé-OWL, to collaborate with similar editors in realtime, leveraging tools to
maintain a dynamic view of the ontology. All stakeholders rely on the ontologies
being available and consistent across the organization.

This use case illustrates a set of requirements:

Client Performance The network is a potential bottleneck of any distributed
or client-server system, but the critical work of ontology development is



2

driven by end users on the client. The system we propose uses a client-
server architecture, but enables the client to productively work even when
the network is unavailable or significantly degraded.

Concurrent Editing Multiple users may suggest changes that conflict with
one another. E.g., they may modify the axiom in different ways. Such changes
must be identified and conflicts resolved, but in a way that cleanly integrates
with existing development workflows. We propose a pluggable conflict man-
agement mechanism.

Complete Change Tracking To understand an ontology and be effective de-
velopers, ontology editors often need to see the history and evolution of
an ontology. We propose a system that makes accessing historical ontology
revisions easy and the presentation of changes configurable.

Scalability The ontology engineering efforts most in need of a management
system are those responsible for the development and curation of the largest
ontologies available. In recognition of these stakeholders, we consider scala-
bility as a critical factor in any design decision.

Finally, we will focus on an approach that keeps the design and implemen-
tation of the service simple. A complex service is more difficult to maintain for
developers, administrators and users. Design decisions have been made to favor
simplicity whenever possible.

We proceed by briefly surveying related work in the following section. Section
3 describes the ontology management system we are proposing and is followed by
a presentation of applications we anticipate being enhanced by the availability
of such a system. Finally, we conclude in Section 5.

2 Related Work

Several ontology engineering environments have been extended to address the re-
quirements of collaborative ontology development. Protégé 34 includes a remote
API so that a client can connect to a centralized server that manages concurrent
access to an OWL ontology. There are several distributed applications that use
the Protégé 3 implementation as a base to support ontology sharing. It fails
to satisfy the requirements detailed above because it requires network avail-
ability and does not focus on change management. Sesame5 [2] incorporates a
client-server architecture for distributed manipulation of RDF graphs and has
been used as an implementation platform for collaborative ontology development
in TopBraid Composer6. Sesame does not address our requirements because it
requires network availability, it does not include change management, and it
enforces an RDF-centric view of OWL which frustrates its application.

Subversion and git are examples of version control systems (VCSs) that are
used to manage source code and other resources for distributed authoring. Such
4 http://protege.stanford.edu
5 http://www.openrdf.org/
6 http://www.topquadrant.com/topbraid/composer/



3

systems are not adequate for ontologies; because they rely on the text changes
between the files, an ontology that has not changed at all in structure may be
considered to have significant changes. Approaches to using such systems for
OWL ontology management often constrain serialization and toolchain options.

There is related work on ontology change management. [1] motivates the
need for RDF graph change management tools and discusses implementation.
RDF-Utils7 includes RDF focused tools analogous to traditional diff and patch.
[4] presents a semantic diff algorithm for the description logic EL, and is hence
applicable to the OWL 2 EL profile. OWLDiff8 is a tool which includes syntactic
diff and merge functionality, and similar, but limited, semantic functionality
based on [4].

3 System Description

This section describes the Ontology Management System, first focusing on a
description of the data being managed, then on the architecture components.

3.1 Managed Resources

The managed data element at the core of the Ontology Management System is
an OWL ontology. A managed ontology exists in a collection of revisions, each
associated with a unique revision identifier.

By slightly simplifying the ontology structure defined in [5], a specific revision
of a managed ontology can be described by a name and a collection of axioms.
As such, the difference between an ontology at a given revision and the same
ontology at an arbitrary revision can be described by a changeset, defined as a
set of edit operations, each element of which is one of the following:

1. An axiom addition
2. An axiom removal
3. An ontology name change

One can consider the information content of a managed ontology as a directed
acyclic graph in which the nodes represent revisions and edges represent the
changeset that exists between two revisions. Paths in this graph are a sequence
of changesets which transform the ontology from the revision at the origin node
to the revision at the terminal node. Paths can be named and managed by the
Ontology Management System. By specially naming one path and appending to
it as new revisions are created, one can use its terminus to track a “current” view
of the managed ontology. By naming arbitrary paths, one can represent alterna-
tive views the ontology (just as branches are used in traditional source control
management systems). The graph in Figure 1 depicts such a representation.

It is noteworthy that because the changeset between two revisions can be
calculated, and similarly a revision can be constructed from another revision and
7 http://sourceforge.net/projects/knobot/
8 http://krizik.felk.cvut.cz/km/owldiff



4

Original
Ontology
Revision

Ontology Adapted
for new
purpose

Original Development
continues

Parallel Experimental 
Refactor

Fig. 1. Example Graph Representation of a Managed Ontology

a changeset, the full information content of a manged ontology can be expressed
using revisions exclusively, changesets exclusively, or through some combination
of both. This quality is exploited in the system design.

Finally, we extend this conceptualization slightly to allow the association of
arbitrary metadata with edges in the graph. This extension is useful to associate
editor intent with a changeset, to identify tool specific patterns in changesets9,
and to aggregate related changesets.

3.2 Architecture Components

The system proposed adopts a centralized client server architecture, depicted in
Figure 2. A single server is designed to concurrently service multiple clients. This
section provides more detail on the architecture by describing the client-server
communication and the design of the client and server components.

Client-Server Communication We begin the architecture presentation by
discussing the contents of client-server communication in order to provide a
context for component designs. All communication in the system is initiated by
clients and can be characterized as one of three request types. The request types,

9 As an example, the NCI EditTab is a custom tool developed for editing large thesauri
of terms. It enforces a specific editor workflow and limits the types of operations
users can perform in accordance with a role based access control policy. Common
edit operations in this tool, such as term “retirement” are specific to the notion of
workflow it adopts but can easily be tracked and managed usefully by associating
tool specific metadata with changesets.



5

Application Infrastructure

Ontology Management

JBoss, Tomcat, Spring, OSGi

ontology Checkpoint
Storage

ontology Changes
Storage

Integrity 
Management

Client

OWL API

Download Ontology, 
Send & Receive

Changes

Client Ontology
Cache

Conflict
Management

Conflict
Management

Plugin

Fig. 2. Ontology Management System Architecture

two of which are read operations and one of which is a write operation, are listed
below.

– Get request for a specific revision
– Diff request for the changeset between two revisions
– Put request to create a new revision based on an existing revision and a

changeset

Request types Get and Diff are read only requests. For each, the revision
parameters can be identified either by using the unique revision identifier, or by
the name of a path, in which case the terminal revision on that path is used. This
permits a client to, for example, fetch the latest revision from “trunk” or compare
some specific revision with the latest revision from the “refactor branch”. The
Put request is used by a client to modify the managed ontology. It requires a
base revision to be identified explicitly by the client, a changeset to be applied
to that revision, and the named path on which the changeset should appear.
Optionally, additional metadata to be associated with the changeset, may be
included. Such requests permit a client to, for example, add a new revision to
the “project X branch”. Considered together this collection of request types is
designed to emulate behavior common in traditional version control systems.



6

It is notable that the Put request modifies the managed ontology state using
a revision identifier and changeset, not the complete new ontology state. This
representation requires a coordination of state between the requesting client and
the server components. To increase robustness in this coordination, we anticipate
implementing an ontology checksum, i.e., a bit string, much shorter than the typ-
ical ontology, that can be derived from the ontology and for which the likelihood
of collision between two ontologies is practically zero. For a Put operation, a
client would calculate the checksum for the ontology that exists after applying
the changeset. Thus, the checksum would allow the server to verify that the revi-
sion it creates matches the revision intended by the client. The implementation
details of the ontology checksum have not yet been chosen. Desiderata include
efficient calculation for large ontologies, and incremental update given a change-
set. In particular, we anticipate the server component calculating the checksum
frequently and want the checksum to increase robustness without significantly
impacting performance. The feasibility of choosing a useful checksum that ad-
dresses these concerns is being investigated. The use of a checksum in traditional
VCS is common, and the implementation of git suggests that if the likelihood of
collision is sufficiently low, such a checksum is also useful as a revision identifier.

It is anticipated that most of the calls made by ontology management clients
will be Diff and Put requests and note that several existing OWL software
frameworks, including the OWL API, already work with data structures similar
to changesets.

Finally, we note that the implementation will include additional information
in the client requests to support non-core functionality, such as authentication
and access control.

Ontology Management Server The server component is the data repos-
itory and communication hub of the management system. It is composed of
subcomponents responsible for ontology storage, changeset calculation, conflict
management, and access control; each subcomponent is discussed below.

Ontology Storage As described in §3.1, for any ontology managed by the ontology
management server, the server requires a complete representation of some “root”
revision of the ontology and a sufficient collection of changesets to guarantee a
path between each revision of the ontology. This data is sufficient to produce
the ontology at any revision, as required by Get requests.

This naive approach to storage has several inefficiencies. Most notably, the
time required to produce a revision degrades with the number of changesets in
the path between the root and target revision. Similarly, if one considers the
possibility of data corruption among changesets (e.g., due to hardware failures),
dependence on long paths of changesets is undesirable. Clearly, a more effective
approach is to maintain intermediate revisions, called backed revisions between
which shorter paths exist. To produce a specific target revision, the server ac-
cesses the backed revision with the shortest path length to the target revision,
then traverses the path to the target.



7

The choice of how many backed revisions should exist is dependent on many
factors and optimal tuning requires a multi-dimensional performance analysis
that includes consideration of secondary storage capacity and access times, com-
putational burden, and permissible latency when serving client requests. The
naive approach is equivalent to maintaining a single backed revision for an on-
tology. At the opposite extreme, every revision could be a backed revision. We
anticipate initial implementation of a heuristic approach in which a backed re-
vision is created every n revisions, where n is a tunable parameter. Should the
performance of such an approach prove to be unacceptable, we intend to explore
optimization approaches including the use of access patterns to determine the op-
timal placement of a fixed number of backed revisions within the revision graph.
Finally, an administrator may request that a particular revision be backed. This,
a type of manual override, may be useful in the case that a particular revision
is widely published and has predictably heavy access patterns.

Changeset Calculation To service Diff requests, the server must calculate the
changeset between any two revisions. Unsurprisingly, the approaches to change-
set calculation are similar to that of storage.

In the naive approach, the server uses the revisions to be compared and
performs axiom-by-axiom comparison to produce a changeset. The more sophis-
ticated approach takes advantage of the mergability of changesets. A sequence
of changesets that constitute a path between two revisions can be merged using
algorithm 1 to produce a single changeset. In this algorithm, we use Add(.) to
refer to an axiom addition, Remove(.) to refer to an axiom removal, and Name(.)
to refer to a name change operation. Each changeset is a collection of these
operations. Intuitively, the algorithm merges the changesets by letting add and
remove operations “cancel” one another and only includes the final name change.
It is notable that behavior for addition of an already present axiom or removal
of an absent axiom is undefined. Such a condition should not occur and indicates
an error.

Conflict Management Support of the Put request requires the server to identify
conflicting changesets. Simply, if two Put operations are attempted using the
same base revision and path, but different changesets, the possibility for a conflict
arises when processing the second operation. It follows that if the base revision
referenced in a Put operation is not the terminus of the referenced path, a
conflict may arise if the changeset is not a superset of the changeset between the
referenced revision and the terminus. The server requires a conflict management
component that identifies conflicts and, optionally, resolves some trivial conflicts.
There are several schemes that can be used to identify and deal with conflicts:

– The simplest identification algorithm shifts the responsibility to the client –
if a Put request references a base revision that is not the terminus of the
referenced path it is rejected.

– Compare the changeset provided by the client with the changeset between
the base revision and the terminal revision and develop a heuristic to refine



8

Algorithm 1 Merge a sequence of changesets
Require: A sequence of changesets, φ connecting two revisions r1 and r2
Ensure: A single changeset, ψ, connecting r1 and r2
1: ψ := ∅
2: for all Changesets γ ∈ φ do
3: for all Edits ε ∈ γ do
4: if ε = Add(α) for some axiom α then
5: if Remove(α) ∈ ψ then
6: ψ := ψ/Remove(α)
7: else
8: ψ := ψ ∪ Add(α)
9: end if

10: end if
11: if ε = Remove(α) for some axiom α then
12: if Add(α) ∈ ψ then
13: ψ := ψ/Add(α)
14: else
15: ψ := ψ ∪ Remove(α)
16: end if
17: end if
18: if ε = Name(ν) for some name ν then
19: for all ξ such that Name(ξ) ∈ ψ do
20: ψ := ψ/Name(ξ)
21: end for
22: ψ := ψ ∪ Name(ν)
23: end if
24: end for
25: end for

the changeset. For example, one might consider independent edits to discon-
nected parts of an ontology acceptable, but edits involving the same entities
unacceptable.

– Implement a locking scheme, such as the one described in [6] and reject all
changes that do not abide by the locking rules.

The appropriate mechanism for identification and resolution of conflicts is likely
to be site dependent. For this reason, conflict management is a pluggable com-
ponent of the proposed server. The primary interface to this plug-in is a method
that accepts a base revision and two changesets, one provided by the client, one
by the change calculation component, and returns an indication of conflict. Op-
tionally, the plug-in may return a refined changeset to be applied at the path
terminus.

Access Control Use of the ontology management system in an open, distributed
environment motivates the presence of an access control component on the server.
Minimally, such a component must accept a client request, augmented with meta-
data such as client authentication information, and return a permit or deny



9

decision. The appropriate set of access control policies is dependent on the de-
ployment environment. The proliferation of declarative access control languages
make it most practical to implement access control as a pluggable component.
We anticipate implementing a trivial, “permit all” access control plug-in, a basic
user and passphrase based implementation, and, in order to support behavior
comparable to what is present in Protégé 3 Server, a role based access control
plug-in.

Ontology Management Client We anticipate many applications operating
as clients in the ontology management system. The minimal requirements for
a client are the ability to submit the request types described above. Initially,
we intend to implement a command line tool, modeled on common VCS tools
such as svn and git, that allows user driven interaction and permits ontology
developers to use the ontology management system with their existing, unmodi-
fied toolchain. Additionally, we plan to implement a plug-in modifying Protégé 4
to include client functionality. We anticipate creating a software implementation
(written in Java) that each of these initial implementations uses. Further, several
components of this software library are expected to be shared with the server
implementation, including the calculation of changesets and ontology checksums.
Sharing the conflict management implementation will improve usability by let-
ting clients identify conflicts before submitting requests to the server. Similarly,
it will be practical to share elements of the access control implementations.

4 Enhanced Applications

We envision that the Ontology Management System will be useful for a wide vari-
ety of distributed applications that use ontologies. The two applications initially
motivating this work were source control and collaborative ontology editing. The
proposed system addresses their requirements; the question of whether the client
polls for changes more frequently, as with a collaborative editing system, or less
frequently, as in a source control system is a deployment specific detail.

Another common application is the ontology repository, which should sup-
port change management, but often employs ad hoc solutions. We anticipate
developing ontology repositories that are based on the proposed system for their
data store. Other applications which monitor ontology changes using ontology
APIs, such as the OWL API, can be adapted to use the system. This may lead
to the incorporation of a variety of unanticipated applications operating in a
distributed environment.

In addition to the end-user applications described above, the proposed system
will support a variety of infrastructure applications. We anticipate adapting an
incremental reasoning service currently in production with Pellet and Protégé 3
Server, adapting existing extraction services to allow clients to access and work
with smaller extracted portions of an ontology (see e.g., [3, 4]), and modifying
Lucene based ontology search mechanisms that allow cross ontology searches for
classes based on phonetic or misspelled search criteria. Each of these applications



10

is already in use and includes an application specific implementation of change
management. By reusing the infrastructure provided by the Ontology Manage-
ment System, each will contain less custom code and overall maintainability will
improve.

5 Conclusion

We propose an ontology management system designed to facilitate the develop-
ment and curation of one or more ontologies among a large number of distributed
stakeholders. We have discussed the requirements and design criteria of such a
system, contrasted our proposal with existing tools, and enumerated some of
the applications that we anticipate benefiting from the implementation of such a
system. We believe that such a system is required to make ontology engineering
a mature discipline and we view it as a critical component of the maturing OWL
infrastructure.

6 Acknowledgments

This work was largely motivated by, and incubated during, a series of discussions
on the future development path of the tools used to curate the NCI Thesaurus
and related enterprise vocabularies. We thank Gilberto Fragoso, Sherri De Coro-
nado, and Bob Dionne for their valuable input into those discussions and the
National Cancer Institute for past and ongoing funding of OWL infrastructure
development.

References

1. Tim Berners-Lee and Dan Connolly. Delta: an ontology for the distribution of dif-
ferences between RDF graphs. Available at http://www.w3.org/DesignIssues/Diff.

2. J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A Generic Architec-
ture for Storing and Querying RDF and RDF Schema. The Semantic Web-ISWC,
2342:54–68, 2002.

3. Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike Sattler. Mod-
ular reuse of ontologies: Theory and practice. Journal of Artificial Intelligence
Research, 31:273–318, 2008.

4. B. Konev, C. Lutz, D. Walther, and F. Wolter. CEX and MEX: Logical Diff and
Semantic Module Extraction in a Fragment of OWL. In 4th OWL Experiences and
Directions Workshop (OWLED-2008DC).

5. Boris Motik, Peter F. Patel-Schneider, and Ian Horrocks. OWL 2 Web
Ontology Language: Structural Specification and Functional-Style Syntax.
http://www.w3.org/TR/owl2-syntax/, 2008.

6. Julian Seidenberg and Alan L. Rector. A methodology for asynchronous multi-user
editing of semantic web ontologies. In Derek H. Sleeman and Ken Barker, editors,
K-CAP, pages 127–134. ACM, 2007.


