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Abstract The Ontology for Biomedical Investigations (OBI), written in OWL 

DL, is being developed by a large consortium seeking to provide a cross-

domain, shared framework for representing investigations in the biological and 

biomedical sciences. In this paper we report our experiences and describe our 

development process as it pertains to OWL, which includes a number of 

elements that might inform tool developers as well as suggest 

general development patterns. Finally, we review where improvements to OWL 

and OWL related tools might be beneficial. 

1 Introduction  

The Ontology for Biomedical Investigations (OBI) Consortium1 is developing an 

ontology for the description of biological and clinical investigations, written in OWL 

DL. The OBI Consortium is a member of the OBO Foundry [1], a collaborative of 

developers of science-based ontologies who are establishing a set of principles for 

ontology development with the goal of creating a suite of interoperable reference 

ontologies in the biomedical domain.  

OBI uses the Basic Formal Ontology2 (BFO) as its upper-level ontology.  Upper 

ontologies such as BFO aid interoperability by providing a higher-level framework 

that functions as a common structural and intellectual scaffold by way of which 

ontologies can share a common understanding of those aspects of the world that are 

independent of any particular application domain [2]. 

In order to enable development of OBI as a large collaborative project, a strategy 

was required that would allow concurrent editing, distributed development, version 

control, offline development, use of different tools and editors, and script-based 

augmentation of the ontology content. A review of the existing collaborative ontology 

development tools failed to identify a single application that met OBI’s requirements. 

As a result we chose to rely on a small group of tools, augmented with a structured 

                                                             
1 http://purl.obofoundry.org/obo/obi 
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mechanism for development. For example, we chose Subversion1 to address the need 

for version control, distributed and offline development, as well as logging history for 

change management.  

To enable OBI development to proceed efficiently, the ontology structure was 

separated into 10 sections (biomaterial, data transformation, digital entity, function, 

instrument, plan, protocol application, qualities, role and relations) called branches, 

allowing concurrent development by different groups, with each group working more 

or less independently. Each branch is maintained in a separate OWL file, and contains 

closely related terms and definitions. For example, the instrument branch covers 

relevant kinds of instrumentation and parts of devices. 

Although this concurrent branch development strategy proved effective, it also 

presented some challenges preparing OBI for distribution. Editing several OWL files 

concurrently and in a distributed manner can lead to non-unique class identifier 

assignment and conflicts within the ontology. Our set-up also required curators to be 

reasonably familiar with an ontology editor in order to be able to view the required 

multiple OWL files in harmony.  

One of the fundamental principles of the OBO Foundry is to reuse, where sensible, 

existing ontology resources. While OWL provides a mechanism to import ontologies 

(owl:imports), this mechanism was not always suitable for OBI. Currently, editing 

tools are not effective for working with very large ontologies such as the NCBI 

Taxonomy [3] or the Foundational Model of Anatomy [4], making direct OWL 

imports of such ontologies, as a whole, impractical for day-to-day development. 

Furthermore, other ontologies used by OBI are under active development and may not 

be aligned with OBI’s design (e.g., not yet using BFO as an upper ontology, or not yet 

using OWL DL). Importing such ontologies as a whole could lead to inconsistencies 

or unintended inferences. Our alternative to the OWL built-in import mechanism is  

to copy only parts of the external ontology into obi.owl using a mechanism we call the 

Minimal Information to Represent an External Ontology Term (MIREOT). MIREOT 

provides guidelines on importing selected terms without the overhead of importing 

the complete ontology from which the terms derive.  

2 OBI development practices 

2.1 Minimal Information to Reference External Ontology Terms (MIREOT) 

In deciding upon a minimum unit of import, our first step was to consider the 

practices of other ontologies. The practice of the Gene Ontology (GO) [5] is that the 

intended meaning of classes remains stable. Even when the ontology is repaired or 

reorganized, the effects of such changes do not change the intended meaning of terms. 

Rather the changes are towards more carefully expressing the logical relations 

between them. If the meaning really changes, terms are deprecated [6]. Since a term is 

considered stable, whereas the formal logic statements about them tend to be in flux, 

we consider terms (i.e. classes) a basic unit of import. 

The minimal amount of information needed to reference an external class is the 

source ontology URI and the term's URI. Generally, these items remain stable and can 
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be used to unambiguously reference the external class from within OBI. The minimal 

amount of information to integrate this class into OBI is its position in the OBI 

hierarchy, i.e., what OBI class the imported class is a subclass of. This minimal 

information set is stored in a separate file called external.owl. We also want to 

provide extra information about our imported classes, such as their label and 

definition, which we map into the corresponding OBI annotation properties. For 

example, in the current OWL rendering of OBO files, definitions are individuals and 

the rdfs:label of that individual records the text of the definition. That label becomes 

the value of OBI’s definition property.  

Such supplemental information is prone to change as the source ontologies 

evolve, and to allow for easy updates we store it in a separate file, called 

externalDerived.owl, created from external.owl and rebuilt via a script as needed. A 

mechanism providing for automatic update of the external information is used 

regularly, such as before OBI releases, in order to distribute up-to-date information.  

When deciding to import an external term we review the textual definition and, 

if needed, talk with its editor. As we are importing from OBO Foundry ontologies we 

have a community process for monitoring change, a shared understanding of the 

basics of our domain, and the intention to eventually share the same upper-level 

ontology. Therefore, we expect that terms will be deprecated if there is a significant 

change in meaning, and expect to adjust our import of terms as the other ontologies 

start enhancing their logical definitions.  

 

Figure 1 The to-be-imported cell term, as viewed in its original context in the Cell 

Type ontology class tree. The cell by organism and cell by class are examples of those 

we would prefer to not import into OBI. 

As an example, we recently replaced the OBI class cell with that from the OBO  

Foundry Cell Type (CL) ontology [7] (Figure 1). Following the MIREOT guidelines, 

we identify the minimum information required in this case:  
• the URI of the term cell: http://purl.org/obo/owl/CL#CL_0000000  
• the ontology from which the term is imported: http://purl.org/obo/owl/CL 
• the position of cell in the OBI hierarchy: as a subclass of Anatomical entity1 

A set of templated SPARQL queries2, taken together with external.owl, specifies 

which extra information about the class to gather, such as the definition and label, and 

these are retrieved using queries against the Neurocommons3 SPARQL4 endpoint5,6. A 

                                                             
1 This term will itself likely be replaced by the corresponding CARO term. 
2 http://purl.obofoundry.org/obo/obi/repository/trunk/src/tools/build/external-templates.txt 
3 http://neurocommons.org/ 
4 http://www.w3.org/TR/rdf-sparql-query/ 
5 http://sparql.neurocommons.org/sparql 
6 http://www.w3.org/TR/rdf-sparql-protocol/ 



 

 

script iterates through the minimal information stored in external.owl, substituting IDs 

into the appropriate SPARQL construct queries and gathers the combined results to 

create the supplementary information in externalDerived.owl file.  

The second example presents a slightly more complicated challenge. OBI currently 

uses the NCBI taxonomy for its species terms. When importing those we decided that 

the information about the term itself was not sufficient on its own: for example if we 

want to import the term Mus musculus, we also want to import its rank information – 

genus, kingdom, phylum, etc. In this case the SPARQL query retrieves all direct 

superclasses up to one of a set of top-level classes in the taxonomy.  

We are aware of and accept that by copying only parts of an ontology there is the 

risk that inferences drawn may be incomplete or incorrect.  

Correct inference using the external classes is guaranteed if the full ontologies are 

imported. We expect to provide an option in the OBI distribution that replaces import 

of these individual classes with a set of import statements generated by extracting the 

ontology URIs mentioned in external.owl. Other import options are possible, for 

instance using software that extracts a module [8] of the external ontology. However, 

for modular extraction to be effective for our uses the external ontology needs to be 

structured in a way that is compatible with OBIs upper ontology, and that the logical 

axioms are accurate. This isn’t always the case at the current stage of development of 

some of the ontologies we use. For example, importing the root class of CARO1 

within OBI was not desired, as its definition covers multiple classes in OBI that we 

did not consider useful to unite. In addition, although software that extracts "modules" 

are available, most are only in early stages of development2. 

A consideration using this approach is the status of OBI assertions made on 

external terms. In adding axioms such as the subclass axiom when placing the 

external term into OBI, the aim is to only assert true statements about the terms. 

Given this, the use of modules in the future will only increase the breadth of reasoning 

that can be done. We anticipate that some of these statements may migrate to the 

source ontologies at some point in the future, a fruit of the collaborative nature of 

OBO Foundry ontology development. 

2.2 Releasing OBI 

We required a mechanism that would allow the release of a public version of OBI3 on 

a monthly basis. Such a process allows users to acquire a traceable version of the 

ontology that can act as a stable reference point, and is analogous to a process 

commonly used in software development.  

We decided that constructing a single OWL file that contained the entire ontology 

would best serve our users. This eliminates issues around needing them to modify 

owl:imports statements or having them learn tool specific imports remapping when 

using a local copy of the ontology.  

                                                             
1 http://bioontology.org/wiki/index.php/CARO:Main_Page 
2 We tried [15], [16] and [17]. All module extractions discarded annotations. We also 

experienced crashes on large ontologies. One tool had undocumented assumptions about the 

form of URIs used as class names and therefore extracted empty modules. Our conclusion: - 

the technology is in early stages of development and, though promising, cannot be used as is. 
3 The latest version of OBI is available at http://purl.obofoundry.org/obo/obi.owl 



 

 

The goal of producing a single file catalyzed development of our release and quality 

control process. We found that having a dedicated release process encourages us to 

more carefully control and modify the ontology before making it available. Our 

release process includes checks for content quality (e.g., annotations compliant with 

our policy), syntax (e.g., OWL species validation), and reporting candidate release 

status to the ontology developers. To manage this, many of the tasks associated with 

release are automated. 

2.3 Quality checks and reports 

Our branch development model was chosen in order to facilitate concurrent 

development while allowing specific domain experts to focus on the section of the 

ontology relevant to their competences or interests: for example, a statistician would 

be more involved in data analysis and thus the Data Transformation branch. To ease 

curators' work whilst ensuring the quality of the ontology, we decided to provide 

reports to each branch that identified areas not compliant with our policies prior to 

each release. We use a Jena-based [9] script to read in our branch files and identify 

missing elements, duplicates, or misuse of any of our metadata properties1. The 

reports are rated according to what action needs to be taken: simple warnings for 

those errors that can be corrected automatically by script, or critical alerts for those 

issues requiring manual intervention from one of our curators. Reports are simple 

HTML pages displaying terms and associated issues. We explored different policies 

regarding what to do in case of significant errors (e.g., block release), but instead 

adopted a release early, release often approach in the hope that this would encourage 

developers to correct mistakes in a timely fashion. 

As an example of the sort of thing we need to correct, because of issues using the 

Protégé editor [10], we would occasionally encounter a problem with one of our 

annotation properties being saved in the wrong branch file: for example, when adding 

a label to one of the instruments, this label could get serialized in the Biomaterial.owl 

file instead of the InstrumentAndParts.owl file. This causes extra burden on the 

editors, as Protégé restricts editing to a single file at a time: it is therefore desirable to 

have a mechanism allowing relevant information to be written in the correct branch 

file. 

In order to mitigate this, we are considering using an extra annotation property to 

indicate which branch classes belong in. By using this information we could 

automatically clean up and reorganize branch files. 

Additional scripts perform other quality control checks, including listing terms 

missing a curation status instance, listing terms with extra curation instances (only 

one is allowed per term), listing terms missing a label, and listing classes that are 

asserted under a defined class. 

2.4 Identifier maintenance policy 

Having a stable and consistent ID policy is a fundamental OBO Foundry principle. In 

OBI, identifiers are prefixed with “OBI_” and followed by seven digits. Forcing 

developers to manage this was impractical, particularly given the distributed 
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development process. Instead, we have curators ignore the identifier format while 

developing OBI. As an automated step prior to each release we run scripts that find 

terms without standard IDs and rename them, as well as perform other checks such as 

whether all IDs present in the previous release are still present, since terms are not 

supposed to be deleted according to the GO policy OBI follows. 

2.5 Managing disjoints 

During the initial stages of our development process, we manually added disjoints to 

classes as we were building the ontology. However, we ran into consistency issues as 

we edited OBI, as a stated disjoint in one place of the OBI tree would not hold true 

when a term was moved to a different location in the class hierarchy. Therefore, a 

script is used as part of our release process to automatically compute disjoint class 

statements, assuming that our asserted class hierarchy is not rearranged during 

reasoning. The sets of disjoints are computed traversing the asserted class tree, 

ignoring placeholder classes and defined classes, making OBI classes at each level 

mutually disjoint, and OBI classes disjoint to non-OBI classes at the same level. 

2.6 Distributing OBI with inferred superclasses  

We are using defined classes, and want to provide an easy-to-use file that does not 

require the use of a reasoner on the end-user side. Therefore we assert, via script, the 

inferred superclasses to our OWL file.  

This allows end users to view a fully-inferred class hierarchy without using a 

reasoner, while keeping the original ontology "clean" according to Rector's [11] 

normalization recommendations by using defined classes and avoiding asserting 

multiple superclasses. 

2.7 Assuming that all classes have instances  

In Figure 2, we define a manufacturer class, an object property is manufactured by 

with range manufacturer role, and add that a specific microarray type is manufactured 

by an organization Affymetrix. We were expecting the reasoner to classify Affymetrix 

as manufacturer. However this is not the case unless we explicitly add a microarray 

individual to the ontology. 

 This behavior arises because OWL reasoners do not assume simultaneous 

existence of instances of all classes when doing subsumption checks. 

Rather, satisfiability checks are done by asserting that at least one instance exists, 

serially, for each class. In the framework of BFO, universals exist when and then they 

are instantiated – a universal can exist only if it has instances. While it is possible that 

a universal only had instances in the past, this situation does not occur in OBI. Given 

the choice, we would indicate our assumption that all classes have at least one 

individual to a reasoner and have it compute subsumptions and other inferences on 

that basis. However the reasoners we use, Pellet [12] and Fact++ [13], do not offer 

this choice. Therefore we decided to script the addition of anonymous individuals of 

each type named in the ontology as part of our release process. We do this for each 

leaf class, and before computing the inferred superclasses. 



 

 

Namespace(e = <http://example.com/>) 
Ontology(<http://example.com/>  
 Class(e:manuf_role partial e:role)  
 Class(e:role partial) 
 Class(e:organization partial) 
 Individual(e:Affymetrix type(e:organization)) 
 ObjectProperty(e:has_role ) 
 ObjectProperty(e:is_manufactured_by  
    range(restriction (e:has_role someValuesFrom(e:manuf_role))) 
 Class(e:hg133 partial e:microarray) 
 Class(e:hg133 partial  
    restriction (e:is_manufactured_by value(e:Affymetrix))) 
 Class(e:manufacturer complete 
    restriction(e:has_role someValuesFrom(e:manuf_role)))) 

Figure 2 Abstract syntax for an ontology for which the desired inference is not made. 

Asserting a distinct anonymous individual as member of each leaf class means that 

the superclasses will also have one member and ensures that the type of entailment 

described above, that we depend on, will reliably be computed and that ontologies 

that are not jointly satisfiable will be detected. We plan to suggest that a similar 

mechanism is adopted by the OWL versions of all OBO ontologies. We note that this 

choice is not without problems. OBI, augmented with these assumed individuals, 

becomes more difficult to reason with reliably - we have had problems with both 

Pellet and Fact++ and are at the moment communicating with the developers of those 

reasoners to determine the source of the problem. Therefore, we currently use the 

assumed individuals to compute the inferred class hierarchy, but do not include them 

in the released version of OBI. 

2.8 Increasing the readability of the RDF/XML version of OBI 

We chose to use numerical identifiers for all our entities. Numeric identifiers ensure 

that a human-readable label can be changed without needing to change the URI, and 

establishes an unbiased basis for internationalization. However, we sometimes need to 

edit the OWL RDF/XML directly, which is cumbersome because IDs are not easily 

remembered. To increase human readability we post-process the RDF/XML and 

generate XML comments for the released version of the file, see Figure 3. We 

recommend that tool developers offer an option to use some annotation property as an 

XML comment when serializing OWL.   
 
<owl:Class rdf:about="&obo;OBI_0000265"> <!-- report table -->  
  <!-- definition editor --> 
   <OBI_0000274 xml:lang="en">person:Allyson Lister</OBI_0000274>  
  <rdfs:label xml:lang="en">report table</rdfs:label>  
  <!-- definition --> 
  <OBI_0000291 xml:lang="en">A report table is a report display  
element consisting of a matrix of cells laid out in a grid, some set of which are 
filled with some information content</OBI_0000291>  
  <rdfs:subClassOf>  
    <owl:Class rdf:about="&obo;OBI_0000001"/> <!-- report display element -->  
  </rdfs:subClassOf> 
</owl:Class> 

Figure 3 Example of XML comments used to note what ids correspond to in 

RDF/XML serialization 



 

 

2.9 OBI terms on the Web 

In addition to supplying the OBI ontology as a single file, we are in the stage of 

prototyping responding with a bounded amount of useful information for each URI 

naming a term in OBI. In doing so we follow httpRange-141 and use a HTTP response 

code of 303 with a redirect to RDF/XML describing the term. We use the Persistent 

Uniform Resource Locator (PURL) [14] system for all identifiers to ensure that 

changes in hosting do not force changes to our URIs. We do no content negotiation to 

emphasize that the URI names a single thing. In order to present readable information 

in web browsers, we use an XSL stylesheet, which is executed by the browser to 

generate HTML (Figure 4). We chose to make each bundle of RDF delivered at this 

URL a valid OWL DL ontology by importing the full OBI ontology. A certain 

amount of relevant information is included for web clients that do not follow that 

import statement: for a class, the axioms defining it, inferred superclasses, properties 

that it is in the domain of or range of, and labels for any referenced terms are added. 

We also include project information using the DOAP schema2 including pointers to 

our repository, tracker, mailing list, and release information.  

 

 
 

Figure 4 Screenshots of the prototype HTML page for an OBI term and its 

associated metadata (left), and the corresponding RDF content (right) from 

http://purl.obofoundry.org/obo/OBI_0000225.  

                                                             
1 http://www.w3.org/2001/tag/issues#httpRange-14 
2 http://trac.usefulinc.com/doap 
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3 Discussion 

3.1 Deprecation  

As OBI evolves we find that sometimes terms have errors and need to be 

deprecated/obsolesced1 while their identifiers must be maintained, as users, datasets 

and analysis pipelines may be dependent on their existence. We chose to follow the 

Gene Ontology deprecation policy by moving our obsolete terms under the 

ObsoleteClass hierarchy and store them in a separate file to make it easier to excise 

them from some versions of OBI. As Protégé allows for editing of only one ontology 

file at a time (the active ontology), we constantly run into issues surrounding term 

movement among ontology files, making editing difficult and error prone. In addition, 

our deprecation policy stipulates, among other things, that axioms involving 

deprecated terms should be removed. In order to support this practice and the 

relocation of the classes to the Obsolete.owl file, we wish to see either better tool or 

OWL language support that would cause axioms involving deprecated terms to be 

considered annotations. While we are also considering extending our deprecation 

policy by applying the existing OWL mechanism (owl:DeprecatedClass, 

owl:DeprecatedProperty) to our terms, we did not find tools that take advantage of 

this designation to offer useful services yet.   

3.2 Annotations on annotations 

As OBI is used in a variety of fields we need to address the fact that one term can 

mean different things in different communities. For example, the term probe is a 

synonym for the term reporter in some microarray experimentalist communities, 

whereas it is a synonym for the term detector in another. While this is clumsy in 

OWL 1, OWL 2’s proposed annotations on annotations is adequate for specifying 

these community-specific labels, as it would allow us to “tag” any of our synonyms 

with extra information noting pertinence to a specific community.  

3.3 Versioning  

OBI's policy is to release frequent updates and to maintain access to all versions. We 

create dated versions of each release to provide access to successive revisions as well 

as a permanent unversioned link to the most recent release. This leaves to the end-user 

the choice between preferring stability or being up to date with the latest 

developments. While developing OBI we prefer stability (i.e., not being surprised by 

unplanned-for changes), and to work around the lack of published ontology versions 

we have to rely on local copies of imported ontologies. OWL 2's version URIs2 will 

enable publishers to make available several versions of the ontology, and users to 

easily choose and unambiguously reference which one to use. We believe this is an 

efficient mechanism for coping with ontology versioning both for OBI and the wider 

ontology community in general.  

                                                             
1 We consider these processes to be equivalent. 
2 http://www.w3.org/2007/OWL/wiki/Syntax#Ontology_URI_and_Version_URI 



 

 

3.4 Support for Rector-normalization style editing 

The dominant paradigm for editing ontologies is that of a single rooted hierarchy. 

However the style proposed by Rector and advocated by the OBO Foundry is to 

develop a series of single inheritance ontologies and a separate set of classes defined 

in terms of elements of the single inheritance trees. An ontology interface that 

supports fluidly moving between the component trees, the defined classes, and the 

inferred composite view, as well as providing easy access to common patterns for the 

composite definitions would significantly benefit ours and other’s efforts. 

3.5 Disjoints 

Our solution for disjoints is not entirely satisfactory. Declaring a disjoint policy for 

whole trees where the siblings are all mutually disjoint is appealing, but there are 

exceptions. Consider the classes kit and instrument which are subclasses of device. 

Device’s subclasses remain disjoint if we decide to modify the hierarchy by moving 

kit to be subclass of instrument. However, if kit and instrument were each declared 

disjoint with each other we would arrive at an inconsistency. Upon closer examination 

we found other potential exceptions - cases where, the siblings were not always 

disjoint. One example is the Role hierarchy, and within that biological specimen role 

and assay input role. We are currently debating whether these two roles overlap with 

each other - certainly the processes in which they are realized do. In OBI, an assay 

always is defined as having some material as input, and a biological specimen role is 

the role borne by a material prior to a study. We might wish to note this pair as an 

exception - that they are not disjoint.  

There are additional complications involving the choice of whether disjoints should 

be added relative to the asserted or inferred class hierarchy. If the former and the 

author misses an inference that results in a rearrangement of the class hierarchy, we 

might get an inconsistency. If disjoints are added after reasoning then we need to not 

add disjoints for completely defined classes. 

4 Conclusion 

OBI is an ambitious project, uniting a large number of collaborators from different 

biological and biomedical sciences (more than 45 experts representing 18 

communities1), many of who plan to use OBI in their own projects. Due to the number 

and distributed location of developers and domain experts, OBI’s needs for 

collaborative ontology development bring new and currently unaddressed 

requirements at both the organizational and technical levels.  

                                                             
1 http://obi-ontology.org/page/Consortium 



 

 

 

Already, projects such as Array Express1 and ModECODE2 are starting to use OBI 

terms., and a variety of other projects are planning to in the near future, for example 

the Vaccine Ontology3, the Immune Epitope Database4, and K-Ef-Ed5 

The collective use of OBI by these and other communities will enhance the 

dissemination of, elucidation of, and reasoning with knowledge about investigations, 

and therefore help advance our understanding of biological systems. 
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