
Literate, Active OWL Ontologies

Bijan Parsia

University of Manchester

Abstract. OWL ontologies are complex computational artifacts that
are intimately connected with conceptual information and with appli-
cation issues that are not easily explicable in the context of an OWL
document. In this paper, drawing inspiration from literate programming
and active essays, I propose a new form of narratively oriented, interac-
tive OWL document. The basic technique has been applied to the draft
version of the OWL 2 primer.

1 Introduction

With the rise of standardized languages intended for expressing formalizations
of ontologies, the size and complexity of ontologies, both in house and publicly
available, has risen dramatically. The has also been (yet another) shift in mean-
ing of the term ‘ontology’ to also refer to a particular expression in a particular
language: that is to a computational, rather than conceptual, artifact. The ris-
ing sense of the term places ontologies as siblings to programs, databases (and
database schemes), and UML diagrams instead of conceptual models, software
patterns and architectures, and algorithms.1

The tool and methodology infrastructure surrounding modern ontology lan-
guages (like OWL) reflect this as does the design of the languages themselves.
Development environments are modeled on programming language IDEs as are
new services and techniques (e.g., debugging, diffing, unit testing). This inspira-
tion has proven quite fruitful and is likely to continue.

However, a downside of this trend is that it has become more difficult (and
perhaps less common) to engage and present ontologies at a higher level. Since
popular, practical ontology languages are expressively limited (in order to fa-
cilitate automated reasoning) it is not always the case that the intent of the
author is clearly or correctly reflected in the expression of that intent.2 That is,
1 This analogy is not precise as these categories overlap in multiple ways. Also, there

are systematic, if sporadic, attempts to blur them further. The spirit of the distinc-
tion is computational concreteness: if we consider the distinction between programs
(which must include sufficient detail to allow execution) and algorithms (which can
be more abstract), we are not far off from the distinction between the newer and the
older senses of ‘ontology’.

2 This problem is exacerbated by the fact that reasoner implementations are not ro-
bustly efficient across the whole language they support. For example, inverse roles
in OWL ontologies are known to cause trouble for current tableau reasoners, though
recent optimization advances[hermit] promise to change that.



OWL ontologies may be, at best, approximations of a conceptualization. When
we have another formalization to directly approximate (as with the DOLCE on-
tologies) that situation may not be so severe. But sometime all we have is a
natural language based conceptualization.

Similarly, there are many ways to present an ontology, and for many purposes.
An IDE (or standard serialization) typically forces a single, non-domain sensitive
presentation (e.g., a class hierarchy with each level alphabetized). Sometimes, an
ontology has a few focal classes; other times, there is a pattern of modeling used
throughout; still other times, there are odd bits that need careful explanation
or there are obvious alternative ways of modeling which are non-obviously ruled
out. In these cases, a clear narrative is required to convey important aspects of
the ontology. Typically, such narratives are communicated by email, verbally, or
by other out of bound means (e.g., documentation).

Building documents with such narratives over a working OWL ontology is
comparatively difficult — rife with tedious detail. The canonical form is prose
interspersed with OWL axioms (for example, in a tutorial, an article, or a book
chapter). The key difficulty is that the OWL fragments, typically, are not com-
plete OWL ontologies thus cannot be checked even for syntactic correctness
without cutting and pasting into a wrapper. Nor can highlighted entailments be
verified easily, which is particularly important during composition, but it is also
frustratingly common when making minor “aesthetic” tweaks.

While authoring narratives over ontologies is difficult, the audience experi-
ence is far from ideal. The syntax of the examples is fixed and not always to
the taste of each reader. The fragments individually aren’t workable ontologies,
thus it is difficult to test or simply play with examples. All the tools a reader
is used to using are not easily applicable — even if the author supplies, in an
appendix, a complete version of an ontology, the context of the examples is lost.
Thus, the reader must keep the narrative context in mind through a series of
large context switches (e.g., from the narrative jump to the appendix, copy and
paste to an IDE, find the relevant axioms (which may not be grouped in the
IDE as in the narrative thus requiring switching back and forth inside the IDE),
and then explore the point raised by the narrative).

From both a reading and a writing perspective we have comparatively poor
support for strongly narrative presentations of ontologies (which I shall call
“narrative ontologies” throughout this paper). In this paper, I suggest a different
approach to producing narrative ontologies inspired by Donald Knuth’s Literate
Programming methodology and tool chain. Furthermore, given the flexibility of
electronic documents, I propose that the narrative ontologies we produce should
be more interactive in ways partly inspired by Alan Kay’s notion of an “active”
essay.

2 Background

The term “ontology” has undergone considerable shift within the field of knowl-
edge representation even once we put aside the large shift in meaning from the



philosophical sense to the computer science sense. The key switch is the notion of
an ontology as primarily a computational artifact expressed in a specific ontology
language such as OWL whereas before the key meaning was of a conceptualiza-
tion. Classic essays on an ontology of some domain (famously, liquids[1]) may
include a formalization of some form (e.g., in first order logic), but generally fit-
ness to application and computational issues took a back seat to fidelity to the
domain and conceptual elegance. Typically, these ontologies are not developed
in a standard computational notation and were not developed with the benefit
of tool support. Sometimes, the formalization is fairly incomplete with axioms
appearing almost more as illustrations or elucidations than as the meat of the
essay.

OWL has a number of concrete syntaxes in active use, but the stability of a se-
rialization under simple parsing and reserialization is extremely unreliable. In the
OWL-S ontologies, for example, though the serialization used was RDF/XML, a
great deal of documentation occurred in XML comments which are completely
stripped by all RDF parsers as is the order of presentation. OWL-S is illustrative
as an example for several reasons: It was intended as a high level conceptual-
ization and a useable computational artifact; the canonical presentation of the
computational artifact contain a substantive attempt to present explicative nar-
rative that was lost or easily mangled by tools; additionally, there was entirely
narrative material concurrently developed which had no direct connection with
the computational artifact and had to be manually synched.

There are standard entity annotation techniques (e.g., using rdf:comment or
dc:description) which are heavily used but restricted to documentation of a
single version of a single term at a time. They also do not permit grouping of
terms or focus on axioms (though OWL2 allows for axiom annotations), nor are
tools sensitive to their content. Thus, they are more like tooltips than substantive
narrative structuring constructs.

Swoop supports Annotea[?] annotations on OWL entities with the body of
the annotations being generic HTML. This support has several interesting fea-
tures: The annotations are out of band thus can be supplied by arbitrary parties;
hyperlinks in the body linking to entities in the ontology were live so could be
used to control the current Swoop display; and change sets could be attached to
an annotation allowing for predefined modifications to the ontology. The last two
features, when combined with Swoop’s undo and rollback mechanism, work well
to provide simple narratives, e.g., of proposed changes or repairs to an ontology
(see Figure 1).

Swoop annotations are a limited form of literate active ontologies. Compo-
sition of essaylets or even longer essays is done in Swoop in the context of a
live ontology. There is a significant authoring short cut — words that terminate
a URI for some term in the ontology can be hyperlinked to that term with an
accelerator key which makes it very easy and natural to link to terms from all
over the ontology. The ontology is active both navigationally and by means of
attached change sets which can be used to (speculatively) modify the ontology.
Issues include the fact that overall navigation is still Swoop-centered, multiple



Fig. 1. An example of a Annotea annotation. Clicking on a hyperlink in the annotation
body will shift the Swoop interface to display the linked to term, thus a reader can
follow directions given in the narrative. Also, a specific change is attached to this
annotation which the reader can apply to see the effect, then revert.

distinct changes are not possible in a single annotation, annotations are not
themselves effectively linkable, there is no support for presenting axioms, and
there is no support for checking specific entailments in the narrative. In the
end, Swoop annotations are annotations and work best as an auxiliary to the
standard Swoop presentation rather than a narrative driven alternative.

There are several web based, Javadoc-esque systems for presenting OWL
ontologies (e.g., OWLDoc3 or Ldontospec4). These have the advantage of being
familiar to developers and hosted in a browser. However they do not support
interaction and are not narrative based at all. With the development of browser
based IDEs such as OWLSight5 its hard to see the advantages of these forms.

Interactive proof assistants (such as [2] and their associated languages have
always supported the interactive development and reading of proofs (hence their
name) and have in recent years moved toward presentation modes that are closer
to traditional math papers while retaining their interactive capabilities. However,
they are focused on complex proofs of specific theorems rather than ontologies
per se.

[3] presented a radically new form of programming methodology, literate
programming. The fundamental point of literate programming is the program
3 http://www.co-ode.org/downloads/owldoc/
4 http://code.google.com/p/ldontospec/
5 http://pellet.owldl.com/owlsight



are meant for communication between people as well as communication between
a person and a system. The forms of presentation “best” for people and those
best for systems are distinct. Instead of maintaining two separate forms of the
program (i.e., the program and its documentation) the author would develop
a single artifact, a literate program, that could generate both people oriented
documents (i.e., essays) and working programs. The source of a literate program
was TEX with special support macros for various programming languages, such
as Pascal or C. Authors would work with program fragments which contained
indicators for what other fragments they were associated with. Two support
programs (WEAVE and TANGLE) could consume this source and generate a
working program or a typeset essay, respectively.

Knuth was very optimistic about the benefits of this methodology. He be-
lieved that writing programs this way improved the quality of the program (for
comparable effort) and that the resulting essays were superior documentation.
The TEX system itself was generated from a literate program as was the com-
panion TEXBook. However, while there are enthusiasts, literate programming
has not caught on as a general used programming methodology.

Alan Kay[4] champions the notion of an active essay [5]. An active essay con-
tains small embedded programs which illustrate key ideas. The embedded pro-
grams have two aspects: illustration and experimentation. As illustration they
are typically animations of some idea and so make an active essay straightfor-
wardly a multimedia document. Whatever benefits embedded alternative me-
dia can bring are thus available in active essays. The innovation is that these
programs are supposed to be modifiable by the reader in order to explore the
ideas presented by the program. This modification can be more or less canned,
i.e., by providing controls which allow the user/reader to modify parameters to
the embedded program. Or the modification can be arbitrary which requires
a suitably accessible programming language and environment. As with literate
programming, active essays are not hugely popular, in part, it is clear, due to
the difficulty of producing and consuming them.

What I propose is somewhat less ambitious that active essays or literate
programming: The context is restricted to OWL ontologies and I target existing
forms of document, seeking to enhance and smooth current practice rather than
produce a radical change.

3 The Source Language

This section gives a brief, example driven overview of the Litont language.
Unlike most programming languages, OWL already is very liberal, in most

serializations, about order of axioms (indeed, in RDF based serialization, even
parts of axioms may be widely separated), thus the challenge is not to support
out of order presentation, but to ensure that the the fragments cohere. In this
paper, I consider two host languages: LATEX and HTML by way of MediaWiki
syntax. These choices are narrowly pragmatic: They are my current most heavily
used authoring environments.



Critically, authors should be able to work in their favored notation. There is
no need to force an author to make a choice of notation based on publication
target and to work in an unfamiliar notation. For example, it is common when
targeting an OWL paper to an AI, KR, or description logic audience to use
standard DL notation but when presenting to an OWLED, WWW, or ISWC
audience to use functional syntax, RDF/XML, or Turtle. Given the existence
of tools such as the OWL API which convert between all these formats, the
originating source should be to author’s taste.

Fragments of an OWL ontology (considered as a set of axioms) are often
missing critical boilerplate from an OWL point of view. For example, consider
the following axiom in Turtle syntax:

b:C rdfs:subClassOf b:D.
b:C rdf:type owl:Class.
b:D rdf:type owl:Class.

This simple axiom requires 4 namespace declarations (for the prefixes b:,
rdfs:, rdf:, and owl:. Obviously, including these inline is wretched for read-
ability and tedious for authors. (In this case, there would be four lines of illegi-
ble boilerplate...more than half the fragment.) In litont, the author may define
named ontologies with relevant boilerplate. For example (in MediaWiki syntax):

{{OwlOnt
|label=o1
|format=turtle
|template=
@prefix b: <http://ex.org/anExample>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.

}}

In the case of Turtle, the system knows where to insert axioms (after the boil-
erplate). Fragments are tied to an declared ontology in the following way:

{{OwlAxioms
|ont=o1
|label=example1
|axioms=

b:C rdfs:subClassOf b:D.
b:C rdf:type owl:Class.
b:D rdf:type owl:Class.

}}

This OwlOnt construct serves two purposes. First, it collects all the appropriately
tagged fragments in the documents in the ontology into a single ontology and
inlines that ontology into the document. Second, it is use to syntactically check



and transform individual fragments. Thus, an author can write in their preferred
notation and render the fragments (and the overall ontology) in another.

OwlOnt and OwlAxioms comprise the basic functionality of a literate ontology
and syntax translation underpins the most basic form of interaction in an active
ontology.6 This is sufficient for a number of cases and sufficiently helpful to be
worthwhile. An addition construct to indicate entailments is also helpful:

{{OwlEntailment
|from=example1
|label=entailment1
|entailed=

b:C rdfs:subClassOf b:D.
}}

(Obviously, this case is trivial.) When the source is processed, each entailment is
checked to see if it holds from the specified fragments or from the whole ontology.
It is also possible to make the entailment “implicit”, that is, not displayed but
connected with a stretch of text.

Additional features planned are addition and retraction (with diff display)
and thus versions , approximation (i.e., taking an axiom and replacing it with a
simpler version), and more fragment and display types.

4 The Presentation

Aside from verifying that the fragments are syntactically correct, converting
them to the target syntax, verifying that entailments indeed follow, and collecting
fragments into a traditional OWL document, the current system has two basic
interaction mechanism: First, the fragment display syntax is configurable, that
is, users can select their preferred format for display, or even display more than
one for comparison (see figures 2 and 3).

Fig. 2. The OWL2 primer current uses a floating control panel and can display several
syntaxes inline at once.



Fig. 3. An alternative, tab based presentation of multiple syntaxes.

The other mechanism is a copy and paste mode which presents the fragments
as syntactically complete ontologies so that the user can test them in alternative
tools. This mode can also supply a link which opens the fragment in OWLSight.

Future interaction mechanism include “turing off” axioms and rechecking
whether an entailment holds, speculatively adding additional or altered axioms,
getting explanations, adding entailments to be checked, and applying systematic
transforms.

5 Implementation

Currently, the implementation is very hacky. The “tangle” and “weave” scripts
are simple regex based preprocessing scripts and are fairly fragile. The hyperme-
dia support is currently quite partial without support for manipulation beyond
syntax customization and fragment extraction. These are being developed to
support the writing of the OWL 2 Primer. After completion of that I intend to
release a robust version of the framework.

Aside from helping with the generation of stand alone documents or on-
tologies, I anticipate that this general idea will be very helpful for Wiki based
ontology development. In particular, support for simple “graphical” axiom mod-
ification will make editing an ontology in a Wiki much easier. Furthermore, the
ability to target fragments for different ontologies helps distinguish the Wiki
of the ontology from the ontology itself. An OWL ontology Wiki should be a
literate active ontology.

Similarly, I intend to support ontology centric narrative development (as well
as narrative centric ontology development). I plan to add Swoop like annotation
support to Protégé 4. Crucially, I plan to have support for extracting a narrative
from the annotations in an ontology. Thus, one can build post-facto documenta-
tion of an ontology starting from a perspective best suited for gathering “notes”
about the ontology.

6 In LATEX, there are similarly named commands.



6 Conclusion

Initial feedback from readers of the syntax switching features of the OWL 2
Primer have been very positive. In addition to allowing people to read the nota-
tion they are most comfortable with, it is helpful both for learning new notations
and for giving insight into their “home” notation. For example, people familiar
with first order logic gain a very clear picture of the semantics of OWL by looking
at translations into FOL.

From an authoring perspective, it is a considerable relief to not have to
maintain all those syntaxes in parallel. Similarly, it is very nice to be able to
load up the document and check that the syntax is correct. Checking such by
hand is so tedious that I have tended to avoid it for long periods of time, whereas
when the checking is automatic I check on almost every save and certainly on
every commit.

Thus far, the main use has been for writing a tutorial, not for developing
ontologies from scratch. It is unclear whether there are significant benefits to be
had by a literate programming switch in style. I do believe that partial literate
active ontologies will be useful as documentation and for facilitating communi-
cation about ontologies.

References

1. Hayes, P.J.: Naive physics I: ontology for liquids. (1990) 484–502
2. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for

Higher-Order Logic. Volume 2283 of LNCS. Springer (2002)
3. Knuth, D.E.: Literate programming. The Computer Journal 27(2) (1984) 97–111
4. Kay, A.: Inventing the future. IEEE Software 15(2) (1998) 22–24
5. Lincke, J., Hirschfeld, R., Rüger, M., Masuch, M.: Sophiescript - active content in

multimedia documents. Creating, Connecting and Collaborating through Comput-
ing, 2008. C5 2008. Sixth International Conference on (14-16 Jan. 2008) 21–28


