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Abstract. This paper focuses on the use of corpus-basedingdearning

(ML) methods for fine-grained semantic annotatiénext. The state of the art
in semantic annotation in Life Science as in ottemhnical and scientific
domains, takes advantage of recent breakthrougie idevelopment of natural
language processing (NLP) platforms. The resouregsired to run such
platforms include named entity dictionaries, terohgies, grammars and
ontologies. The demand for domain-specific, comensive and low cost
resources led to the intensive use of ML methodie frecise specification of
the ML task goal and target knowledge, and the aaleqgnormalization of the
training corpus representation can notably increbsequality of the acquired
knowledge. We argue in this paper that integrated-NMP architectures
facilitate such specifications. We illustrate ouentbnstration with four
representative NLP tasks that are part of BieAlvis semantic annotation
platform. Their impact on the quality of the seniargnnotation is qualified
through the evaluation of an IR application in Bdolegy.

Keywords: Semantic Annotation, Machine Learning, Ontologgatning,
Natural Language Processing.

1 Introduction

Despite the growing number of available structumatabases dedicated to
biomedicine, a large part of the domain knowledygerily available in documents in
natural language. Besides, several services ceetialblications in Health and Life
Sciences. The main one, Entrez PubMed (NCBI), eefegs over 16 millions of
papers [1]. However, at the same time, the siz¢hefbibliographic bases grows
exponentially and the scope of the scientific qoest crosses the traditional
boundaries of biologist expertise fields, makingssical Information Retrieval (IR)
applications no longer sufficient to target the fuseand relevant documents.
Advanced techniques involving more semantics havebé applied to textual
information processing in the biomedical domain.

Life and Health sciences are recognized as critcawledge-intensive domains
for the Semantic Web [2]. Research efforts towatttss Semantic Web aim “at
replacing the currenveb of linkswith aweb of meaning[3] producing large-scale
methods for automating deep semantic analysis aatkup of Web pages in a



machine-readable form suitable for information astion (IE) or information
retrieval (IR) applications in the biomedical domaiSemantic analysis methods
involve more and more Natural Language ProcessiNgP] and powerful
representation languages that are reaching a myatstage, where fine-grained
semantic markup of large Web corpora of text iniotesg domains and languages
become possible. This is demonstrated for insthydte GATE [4], UIMA [5], and
Alvis [6] NLP platforms that make an extensive agdinguistic knowledge. A large
part of it is domain-specific and requires costivelopment and maintenance efforts
that can be alleviated by Machine Learning (ML) hnogls. Corpus-based ML
methods yield impressive knowledge acquisition ltesfor a wide variety of NLP
tasks such as named entity recognition (NER) [/P8]S tagging [9] and concept and
relation tagging [10, 11]. However, the cost reradiigh for (i) the production of the
appropriate features for representing the traiexagmples, (ii) the manual annotation
of the training examples and (iii) the evaluatidritee quality of the ML results. The
close integration of ML methods and end-user appbos, e.g. IE or IR, into
semantic annotation platforms gives a useful fraorkwto overcome these
limitations. Such efficient platform integration pfies the proper characterization of
the type and role of the knowledge that is used prudiuced by each platform
component. This formalization step allows to avoidny cases of redundancy and
inconsistency of semantic annotations. Translatig into ML concerns means that
the learning target concept must be clearly spatifaccording to the overall
knowledge model and the design of the example septation should be derived
accordingly. Following this principle, we have defd four representative and related
learning steps and the NLP process that compuesdicessary training corpora.
Experimental results with the BioAlvis ML-NLP platin show that the appropriate
normalization of the example representation acogrdd the learning task improves
ML performance and facilitates further knowledgéegration. With the application
of the BioAlvis platform to IR of biomedical documts, we measure the quality
improvement of the semantic annotation performed e learned knowledge.

2 From Wordsto Concepts

2.1 Semantic Annotation

Automatic semantic annotation supplies a meanirgjfulcture to free texts expressed
in natural language with the purpose of allowingchiae processing. In the Semantic
Web framework, the semantic annotation consistarnninterpretation of the text
supported by an ontologie. the assignment of concepts and relations of aolamy

to fragments of text. The extent of the annotatd fragments is fairly variable
depending on the target application. IE and IR gagpecific bits of information
contained in short fragments of tekg. terms, words and multi-word units. Fig. 1
shows an example of the semantic annotation ohgesee from a scientific article on
Molecular Genetics. The wor@erE denotes a protein and the waigK denotes a
gene. Thenegative interactiorconcept is supported by thehibit verb. GerE (resp.



sigK) and the verlinhibit are instantiations of the arguments of the ontoladgtion
agent(resp.targef) between the protein and the conceggative interaction

Fig. 1. Example of semantic annotation in Biology.
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The GerE protein  inhibits transcription invitro  of the sigk gene

As an illustration of the production and exploibatiof a semantic annotation in the
context of IR, we present the BioAlvis variant dftAlvis framework focused on
bacteriology that performs as follows. The annotatpipeline enriches documents
with fine-grained semantic annotatioamsguired through the successive application of
NLP tools. The result is passed to the indexing mmment and exploited by the
semantic search engine. The IR service normalizesiser queries in the same way
as the documents: words are lemmatized, terms ameah entities (NE) are replaced
by their canonical forms and the concepts are ceplaby their paths from the
ontology root. This strategy differs from usual guexpansion that consists in
replacing each query term with the set of synonymd sub-concepts. The Alvis
method indeed drastically reduces the complexigrigs and makes its interpretation
legible for the user. The user can also directlyefie from the annotation of concepts
by performing ontology-based facet refinement tigtoa rich Web user interface.

2.2 NLP/ML cooperation towar ds semantic annotation

Software platforms for text corpus annotation inéég a common range of
linguistic processes into pipelines, typically: eolkzation, word and sentence
segmentation, named entity and term tagging, gaspeech tagging, syntactic
parsing and semantic concept and relation annatatitach process relies on
linguistic resources relevant to the target domaivhich requires important
acquisition efforts. Most platforms do not spedifig include automaticknowledge
acquisition facilities €.g. Luxid®, MedScan®, AKS2®, InGenuity®) or in a lired
way (e.g. Luxid I2E® for NER), although corpus-based Machirearning provides
an attractive alternative to the manual acquisitdrsuch resources. Technically, a
single annotation pipeline can process documemtagplication purposes as well as
for preparing training corpora with the intent aigairing new linguistic resources.
However, in most implementations, this virtuousdiggck does not translate into
close ML and NLP software integration. The inputteé ML is usually computed by
a subpart of the NLP pipeline but the output isdicgctly usable by subsequent NLP
components. This is the case in Gate / Amilcaje [4

We claim that semantic annotation can greatly befrem a full integration of the
ML components that feed the knowledge bases. Beyomdat homogeneity, close
integration compels the architecture designer &cip the respective roles of each
NLP component involved in the semantic annotatimtess, to identify precisely all



types of knowledge along with their interdependescand the target knowledge to
be acquired by each ML component.

Breaking down the semantic annotation task intd-wlentified NLP elementary
steps has a positive effect on the production tyuafithe associated ML component.
Relevant regularities are more easily identified thg ML system and human
annotation of training examples is easier and ghéi quality when it concerns a
singled out knowledge type. For example, in fornkabwledge representation
frameworks, the tagging of semantic types and #ugihg of properties are two
distinct steps. In the phrasembuse synaptophysin gené, the annotation of
synaptophysin as an object of typgeneis handled separately from the annotation of
its propertybelongs to the species mou3de knowledge acquisition goals for the
recognition of gene names and their related speviet be achieved by at least two
distinct ML tasks applied to two different trainingorpora. The increased
homogeneity of corpora that results from normaiiratreduces the number of
examples to annotate manually. Unfortunately, maimowledge acquisition
approaches to NER do not follow this principle [8].

Moreover, the clarification of dependencies amorg tifferent types of
knowledge provides a basis for increasing knowledgedularity and reducing
annotation inconsistencies. Operationally, the ddpacies between knowledge types
impose a constrained order of linguistic/semantmégsition processing steps that
should be made explicit. In a structured modulamwof the linguistic knowledge
base, higher level knowledge should encapsulaterdevel knowledge. Then, in
order to learn a given target knowledgethe training example representation should
be based on the knowledge on whi€ldepends and no any lower level knowledge.
For instance, for the sake of modularity, relati@zognition rules should not be
learned from shallow clues such as punctuation sia@Pkevious NLP steps should
have interpreted the punctuation marks into relewaformation such as sentence
ends (sentence segmentation) or abbreviations @h&migty normalization).

Hereafter, we present the results obtained by applyhese principles to the
development and the integration of knowledge adiipuis facilities into the Alvis
platform. We focus on the acquisition of criticasources that are required by
semantic annotation, with respect to the varietieafnable linguistic knowledgeée.
named entities, terms, concepts and relations. Whmodstrate their learnability
(section 3) and the benefit of fine-grained sentaatinotation in terms of quality and
density of annotations for a given domain and apgilbn: IR in Biology (section 4).

3 The BioAlvis Experience

3.1 Architecture

The Alvis annotation/acquisition pipelineAZP in the following) has been
developed within the Alvis project [12]. Alvis aih@at developing an open software
platform that supports the quick development ofriisted semantic search engines
in specific domains. Alvis platform integrates a msatic crawler, the
annotation/acquisition pipeline and a semanticadeangine based on Zebra [13]. As



a proof of flexibility, various instances of Alvisave been deployed in a short time
for different languagese(g. Chinese, Slovene, English and French) and differen
genres and domaine.f textbooks, news, patents, Wikipedia entries, MieelL
abstracts, Agrobiotechnology patents). The Biolaggtance BioAlvis developed by
us, is presented here. Following the principlesaaded in section 2.2, A3P is
composed of a sequence of modules, base@gmios[14], that produce a layered
annotation of the input document (central areaigf £). The modules communicate
by the means of a common layered XML annotatiomédr

Fig. 2. BioAlvis architecture.

Information

Document Access Semantic
Collections Service Metadata
Semantic metadata production {Semantic ] Conceptualization
NE ) [DecsSentence | ({emmatization) | | Term Lf.ﬂItS (Syntacte Semantic
mapping ™ segretiaion POS i i’ 0 a.naysws' . - parsing | Lyping » Semantic relation
= - \__ Filtering ./ ° A = /| Coreference Identification
3 A - 4 (Harmsa ety | resolution §
1 ] | recognition T %
' ' : == : e
: 1 : \ [}
! 1
Lermmas | Terminology ! |Dntology 1

Grammar

" Coreference Informaticn
lia‘gmer'm p‘aue.:ns and guessing rules NER patterns resolution rules Extraction rules
elevance classifier

NE dict POS tag disambiguation -

NE dictionaries

The XML annotation format relies on a layered repré¢ation where each layer
gathers the annotations from a single type of kedgé, in a similar way as described
in [15]. The first annotation steps identi§emantic unitsi.e. named entitiesand
terms that denote the reference concepts of the domain irdtleeiment $emantic
Units box of Fig. 2.). Their recognition, their normaion and their disambiguation
require prior word and sentence segmentation andl wemmatization. The next
annotation steps assign ontology categories tséheantic unitsGonceptualization
box of Fig. 2). This includes fine-grained senssadibiguation based on selectional
restriction of the semantic units (section 3.3)ioPsyntactic parsing produces the
required syntactic dependencies. Finally, ontolaggtions among the semantic units
are identified by the application of Information tEaction rules. The rules use the
semantic categories and the syntactic dependemtgxdmf the semantic units.

A3P bootstraps by providing an annotated corpus tfer acquisition of the
knowledge for the next componentstiive pipelinesequence. As shown in Fig. 2, the
linguistic analysis modules are fed by knowledgsesa(drums). Their acquisition is
achieved by an array of corpus-based acquisitiols iavolving ML methods.

The next subsections describe four representatigaisition tasks of BioAlvis,
their target knowledgethe example representation and the principles @& th
integration of the learned knowledge into the krexige bases. Most of the learning
results described in the following were obtainaahfra representative training corpus
in bacteriology of 2,397 scientific paper referenée®m MedLine referred to as the
Bacillus corpus designed in 2001. It is the result of wiéWving query to PubMed:
“Bacillus subtillis AND (transcription OR promoteiR3sigma factor)”.



3.2 Semantic Units

3.2.1 Named Entities

The term named entityusually designates proper names associated to an
ontological category or semantic typed.place, person). The proper namesrayiel
designatordhat denote a referential entity in an unambigusag [16].

BioAlvis NER component, RenBio focuses on protein/gene and species
recognition. It achieves NE tagging by GenBank-batietionary mapping and by the
application of disambiguation and variation rul€se disambiguation rules specify
what contexts are required for each type of nametitye In parallel, variant
dictionaries and variation rules in the form of damafted regular expressions deal
with common typographic alterations. Rules for dib&yuation and recognition of
new entities are automatically acquired by supedsisnachine learning from a
reference training corpus. For example, the simyks

A word, followed by the word protein, 4 letters dorstarting and ending with an
upper-case letter, is a protein name
applied to the text, The GerE protein inhibits transcription’assignsGerE to the
protein category, even iGerEis not in the protein dictionary.

The linguistic features of the training examples abomputed by segmentation,
lemmatization and typographic analysésd; length, case, presence of symbols and
digits, co-occurring words) of the training corppsrformed by the annotation
pipeline. The annotation of positive examples is@dy first mapping the NE
dictionary and then its manual correction by doneiperts. Negative examples are
automatically generated under the closed-worldrapson.

The RenBiorules for gene and protein name annotation in BisAwere learnt
from theBacillus corpus. The dictionary mapping on the trainingpesrtagged 7,185
occurrences. 10 biologists analyzed, correctedcantpleted the tagging. They found
12% false positives due to ambiguities and 12%efalsgatives due to new names.
We applied the C4.5 algorithm of induction of demistrees (J48 WEKA library
version [17]) to the revised training corpus. Thess-validation evaluation reported
in Table 1 showed significantly better results arnts of recall and precision
compared to the best results of the two gene/pratiognition challenges NLPBA
[18] and BioCreative Il [19].

Table 1. NER performances (recall-precision).

BestNLPBA Best BioCreative Il RenBioBacillus

76% - 69% 86% - 88% 94% - 92%

We claim that the example representation featunesacurate specifications of
the learning goal permitted higher quality of thaining examples, thus improving
the conditions for the learning algorithms. The djgesults were not due to any
breakthrough in ML since we apply a regular welt¥m algorithm.

On the one hand, the automatic linguistic pre-meitgy by BioAlvis of the
examples has contributed to drastically reduce dimaension of the example
description space and to remove potential souréesrors. Moreover in order to
discriminate between NE and non-NE by their contesxt picked the most relevant



trigger words by feature selection. For instancards like gene operon or
transcriptionare more likely present around gene names thaotuey word.

On the other hand, the learning goal was specif@brding to the role of the NER
in the semantic annotation process. This strongherdnines the guidelines for the
manual annotation of the training examples by espe©Our strict annotation
guidelines address several phenomena that couttththe quality of the annotation.
The principles are as follows: NE annotation shdgdestricted to single entities for
learnability and knowledge modeling reasons, itudthaexclude terms that denote
general semantic categories and properties ancentity span should exclude the
description of entity qualifiers (e.g. iinecA gene”, only “recA” is annotated). The
detailed description of the guidelines can be foun@0].

Our experiments demonstrate that the combination tieé appropriate
normalization of the data with the consistent aatioh of training examples by
experts improve machine learning performance imseof precision, recall and size
of training sample (see [20] for more details).

3.22Terms

The BioAlvis term analysiscomponent identifies the phrases that represent
semantic units. These are single or multi-word maior verbal expressions that
refer to specific domain conceptsd.plant pest. The term analysis module achieves
term recognition and normalization, which consiststagging the term with its
canonical form. Semantic ambiguities are processierwards by the semantic
typing module (section 3.5), while inflections ablandled beforehand by the
lemmatization module. Similarly to NE, off-the-shis$ts of terms are not sufficient
to annotate documents because terms may be ambigual subject to variation.
Moreover, in scientific and technical domains, temtogies are generally incomplete
with respect to the specific application needs [ZHus less than 1% of the 410 000
terms of MeSH [22] and Gene Ontology [23] occurthie 16,000 sentences of the
Bacillus corpus. In addition to being mostly related to ayktes, those terms are
suitable for manual indexing as they do not appsasuch in NL documents.

BioAlvis includes two acquisition modules for ermiag the terminology with new
terms and variants from a training corpus. The tewquisition component is the
YaTeAterm extractor [24]. It takes as input a trainingrpus with segmented
sentences and words, lemmas and POS tags. YaTefifiele candidate terms in an
unsupervised way. Its strategy is based on denlaréihguistic rules for boundary
detection and term analysis and on endogenous digaation. Extracted candidate
terms are usually validated by domain experts.

Variation spectrum is much larger for terms than K. In addition to minor
graphical variations, it includes morpho-syntactiterations that can deeply modify
the form of the termeg(g. plant pestpests on plantand pests that attack plants
Term normalization involves complex linguistic addmain knowledge encoded in
variation rules. BioAlvis integratdSASTR[25], a tool that computes candidate term
variants from training corpora and controlled terolbgies as produced by YaTeA
and experts. For instance, FASTR insertion ruleaektgenetic competendeom the
Bacillus corpus, as a variation afompetenceDomain experts then validate the
proposed variation relations as synonymy, hypongmgther relations. Note that sets



of synonym variants of the same term are similawordNet synsets. A canonical
form is chosen for normalization purposes to regmethe synonym set.

Applied to theBacillus corpus, YaTeA extracted 6,699 candidate termsroogu
at least twice, among which 3,560 were validated abgroup of 3 experts in
terminology and biology, yielding 52% precision. eThecall evaluated on a gold
standard subset dacillus was 67%. FASTR then extracted 2,335 variants. The
validation by two experts was done in a few dayd @sulted in 676 synonym sets
and 1,569 hyponyms. Additionally, from 715 MeSHmsrfound to occur in the
Bacillus corpus, FASTR identified 1,899 new variants amuaigch 397 hyponyms
and 117 synonyms.

Such methods, when integrated in a pipeline, appeabe very competitive
compared to manual acquisition. The approach offelmustiveness regarding to a
corpus that is a clear advantage for knowledgeebapplication.

3.3 Semantic Types

Semantic typing relates concepts from the ontolmggemantic units in the text
after their identification by the term and NE reoitigpn components. The ontology
concepts are organized into hierarchies. Semaygiod annotates the semantic units
with the whole concept path to the hierarchy rotheut any a priori assumption on
the concept level relevance. In A3P, the ontolaggelon relation is explicit: the
concepts of the ontology are represented at thiedkbevel by the canonical forms of
terms and named entities. In case a given semamitiés polysemic, disambiguation
rules select the right concept in the ontology wihpect to its syntactic context in
the document; BioLG [26, 27], the dedicated versidbhink Grammar, is integrated
in BioAlvis for computing the syntactic contexts.

The acquisition of concept hierarchies and disaomdtign rules is supported by the
ML hierarchical conceptual clustering toélsium [10]. Asium takes as input a
training corpus annotated in the same manner asnthe of the semantic typing
module,i.e. semantic unit tagging and parsing. The formatiboancept classes by
Asium is based on distributional analysis assuntired semantic units occurring in
similar syntactic contexts in specific domain cagare semantically close. Asium
suggests their corresponding concepts as candidatebers of a same semantic
class. The disambiguation rules are automaticeblyried together with the semantic
classes. They are expressed as restrictions oftieele stating the syntactic
dependency constraints on the context of the secnanit being typed. For instance,
cat may both denote mammalianor ageneas defined by the ontology. In the phrase
hypokalaemaic myopathy of Burmes, cat must be tagged asammalianrather
than asgene myopathyis a diseaseand thedisambiguation constraints express the
knowledge that mammalians have diseases, but devesnot. Semantic classes are
successively merged according Asium distance formulaAsium includes a user
cooperative interface to validate, revise and némedearned classes and hierarchies
on the fly as they are built. This iterative pracasoids error amplification along the
hierarchy formation. Like all distributional semigstbased methodgsiumproduces
large coverage classes that may include three tgpesyrors: the input syntactic
dependencies computed by the parser may be intofees: between 20 and 30 % of
the dependencies computed by BioLG [27]); the sitacontext may reflect
different meaningse(g.the prepositioin expresses either time or place relation as in



transcription in mitotic cell cycle transcription in cell), which implies splitting the
class; the semantic relation may not represent ololge meanings but antonyms or
lexical variations that were missed by the term aaugants analysis.

A large part of the potential learning errors i®ided upstream by choosing an
appropriate representation of the training exampld@grminology and NE
normalization significantly improve the quality tfe learned classes by increasing
the homogeneity of the training data. It also dases the number of parsing errors
and reduces the computation time, since the panggids computing dependencies
inside the terms as detailed in [26]. Indeed, ndimaBon removes irrelevant
variations by a factor of 3 to 4. Moreover, syntacbntexts as used #siumreflect
more accurately the semantic roles than typographidows can do. Extensive
evaluation of the quality of the semantic classpiaed by distributional semantics
based methods has not been conducted yet. Howegeneral comparison of Asium
with other systems can be found in [28].

Although the concepts are validated along theirstroiction by Asium, they
cannot be integrated as such in the ontology. Tsteircture does not necessarily
represent the model needed for the application @ag require validation and
revision. The alignment between learned ontology existing ones also remains a
critical problem. The modeling strategy we adoptied the development of
BacteriOntologyis based on an ontology skeleton crafted by hargiddogist experts
and computer scientists from MIG-INRA laboratonheThierarchical model results
from the integration of several existing resourcél: the highest levels of the
ontologies and thesauri GO and MeSH; (2) relevahain-specific information
resourcesRiley and Subtilist function classifications and NCBI species taxonmy
(3) concepts denoted by the 300 most frequent tésaxtion 3.2.2) acquired from our
corpus.Asiumresults were then used to extend this core onyologl populate its
classes. The current version of the resulBagteriOntologydefines5,888 concepts,
structured into 6 generality levels (excluding tharemely deep species hierarchy).
The quality ofBacteriOntologyacquired with Asium support was globally evaluated
through IR (section 4).

3.4 Domain-specific Relations

Domain specific relations are usually more diffictd identify in the text than
concepts because they are less directly supporyedohtiguous text fragments.
BioAlvis annotation of relations focuses on genteriaction and relies on relation
extraction rules. For a given relation, the rulesak the type of the semantic units in
the ontology in order to spot candidate relatioguaments, and the type of the
syntactic dependencies between them. For instancthe text: GerE inhibits the
expression of sigkthe gene interaction between the protein aGemE and the target
genesigK is identified in the simplest case, by the rulpressed in first-order logic:

gene_interaction (X,Z) :- type(X,Protein), subj¥c¥), type(Y,Interaction_action),
obj(Z,Y), type(Z, Gene).
where Protein, Interaction_Actionand Gene are ontology concepts, amabj and
subjectare syntactic dependencies. Many complex geneaittien cases are handled
with the same method including those involving tegumembership and promoter



binding (detailed method in [29]). Relation extiaot rules are learned by the
supervised Inductive Logic Programming method, kBp@l. The training examples
are expressed in the same way as the input cofghe oelation tagging component:
typed semantic units and syntactic dependencies.sEntences are selected by the
naive Bayes classifier STFilter [30], so that marmunmotation focuses on the relation
arguments in the sentences that most probably xpaegenic interaction. The
successive filtering, disambiguation and normalirabf the lexicon and syntactic
analysis improve the training set homogeneity.

The LLL dataset on genic interaction [31] has beesigned from théacillus
corpus for evaluation. Experiments on the sulzgion without coreferencg70
positive examples) yielded 89.4% F-measure. Thasltes significantly better than
the 65.5% best LLL challenge score on the samesdatf82] and than the
BioCreative Il result (48%) on the protein-prot@iteraction task [33]. We tested our
system with an altered representation of the saae, evhere syntactic dependencies
were replaced by word neighborhood relations. Gtaigig the poor results (34.7%
recall and 22.8% precision), we proved that syitagépendencies convey major
semantic relation information.

4 |R Experimentation in Biology

We have designed the BioAlvis version of Alvis tbe evaluation of ML-based
semantic annotation benefit and the delivery of wedge-based application to
biologists €.g. IR). This section reports on the experimental eatibn of the
BioAlvis semantic annotation for semantic searchl ats comparison to other
indexing and search models. We characterize Alweggch asemanticin the sense
that it automatically interprets the meaning of theery with respect to the
terminology and the ontology: Alvis searches forrenspecific and variant terms and
it assists query refinement by ontology and teraigp navigation (see [34] for more
details). We compare Alvis retrieval capabiliti@sthree representative IR services
that are intensively used by specialists in specifomains and particularly in
Biology: (1) Google and (2) Google Scholar représartomatic full-text indexing
with shallow linguistic processing and (3) PubMentrBz is representative of hand-
crafted indexing by thesaurus keywords and fult-texdexing without linguistic
processing. The comparison focuses on the effeseofantic annotation and query
expansion on the answer set quality. We excludetfeets of result sorting (ranking)
and of interface facilities (query refinement). idtigh they are obviously important
features, they are outside the scope of the evaluat

4.1 Test Data

The reported experiments concern the adaptatientd#robacteriato changes in
their environmentEnterobacteriaceaés a large family of bacteria of the intestine,
including many human pathogens, like the well-kno®almonellathat causes
inflammation of the intestingdastroenteriti$. Their virulence is due to their capacity
to survive and grow in hostile environment condiomposed by their hosts (acidity,



high temperature or oxidative stress induced bw istarvation and superoxide
radicals). Part of these conditions is due to #sponse of the host organisms to
pathogen infection. The deep understanding of Hwebia response mechanisms at a
molecular level to these stress factors is a kentpmoward the design of more
efficient drugs. The goal of the search is to fawkcriptions of pathogen reactions
and was translated into the following quesgpterobacterisstress genome component

In order to tesBioAlvis, the Bacteriologydocument collection was built by first
querying PubMed with all bacterial genera nameshftbe GenBank taxonomy. Then
we used a Bayesian filter to exclude documents Wt not bacteriologgtricto
sensu The result is a medium-size corpus containing @22 references of 70 words
on average. This corpus was processed by BioAtvi6G hours on a cluster of 20
processors. The resulting semantic annotation n@dexied and supplied to the Alvis
search engine. Table 2 summarizes the main figofethe acquired linguistic
resources (as described in section 3) and taggaigfes.

Table 2. Annotation of the Bacteriology corpus.

Type of resource Size of the resource Tagging

2,046,262 occurrences
1,686,244 different forms 200,225 different names
666,797 canonical forms 12% of the dictionary

Avg. 6 gene or prot. names/doc.

Gene/protein names

1,309,801 occurrences
748,262 different forms 30,985 different names
270,159 canonical forms 4% of the dictionary

Avg. 4 species names / doc.

Species names

2,449,669 occurrences

5,804 different terms
Terms 7,279 canonical forms 80% of the dictionary

Avg. 7 terms / doc.

2,305,747 occurrences
5,888 concepts 740 concepts of level > 0
(831 > level 0) 89% of the concepts > 0

Avg. 11 concepts / doc.

Conceptual hierarchy

The annotation is dense due to the type of docwrerd the corpus-based strategy of
the lexicon acquisition. For instance, the BioCxeatl corpus contains on average
4.6 gene or protein names per document while ther® in our corpus.

4.2 Compared Systems

Google and Google Scholar index very large coliersti Google references around
24 billions of web pages. The size of Google Sahi@astimated at more than one
billion references. Both systems perform simplensténg on documents and queries.
Our hypothesis is that in specific domains, thely (@) retrieve more incorrect results



compared to semantic search, because they do sainbiguate words; (2) miss
relevant documents by not exploiting synonymy agldted terms.

In Entrez PubMed, each indexed reference is manaasigned a set of terms
representative of the document topic from the MeSidsaurus. The manual
annotation avoids ambiguities in document indexibmg is quite expensive to
maintain since it requires highly-trained experteowead the full-text articles. Entrez
PubMed searches query terms in the full-text wittemy linguistic analysis as well
as in the MeSH term index by expanding the quetih @ynonyms and more specific
terms according to the MeSH thesaurus. In all gaffes resolution of query
ambiguity is postponed to query refinement by theru

To illustrate the strategy of BioAlvis, we detailoln the example query
enterobacterisstress genome componéstrocessed: the words are lemmatized; the
recognized semantic units are normalized and asdigo the BacteriOntology
concepts that belong to taxonomiestterobacteria stressand genome component
BioAlvis expands the search to documents wherecsmgepts of the query term
occur. For instance, the taxonomic groupenferobacteriacontainsEscherichia coli
and Salmonellaentericaamong hundreds of other bacteria species. Indaheesvay
stress defines 17 different types of stress such hasat-shockand phosphate
starvation Again, genome componenepresents 62 different sub-concepisg(
operonand promote). Each of these concepts references its variamdssgnonyms.
For instanceheat-shockis synonym oftemperature upshifthermal upshockand
temperature upshockaccording to our terminology. Additionally, query
lemmatization allows BioAlvis to search regardlegé word inflections and
derivations §tress/ stressing/ stresses The interface displays the detail of the
interpretation so that the result is understandable

4.3 Experiment and Evaluation

As we could benefit from Bacteriology expert anaysve opted for a qualitative
evaluation of our system. Beyond rough figurespmpgarative study of the answer
sets has characterized the missing and irrelevanirdents retrieved by each service.
More complete results can be found in [34]. TableuBimarizes the features of the
answer set for the four IR services, including Alvi

The very large answer set of Google (245,000) wgseeed because of the
document collection size and the generality ofgbery. Google and Google Scholar
search for the stemmed query words in the docum@éstsio semantics is used, all
documents with sub-concepts of the query words weassed. We tested the query
with a replacement ofjenome componerty (gene OR promoterjhat are two
productive sub-concepts and found that 50 % momuments were retrieved. As
Google and Google Scholar make use of stemming,fihe 8 times more documents
than with exact matches. For instance, documeriis eviterobacterialwere found
thanks to stemming.

Table 3. Size of the query answer sets for tested seargitee

Google Entrez Entrez

Scholar PubMed PubMed BioAlvis

Google




w/o MeSH

245,000 2,740 1031 0 1,870

Entrez Pubmed expands queries in a similar wayi@&lds by following MeSH
relations top-down. The terenterobacterias expanded into tens of subconcegis
well asgenome componenthe query yields 1,031 relevant answers, but oheruis
about specific stresses, suchpa®sphate starvatio(97) were missed becauskess
is not defined in MeSH despite of its importanceBinlogy and it is then searched
without any specialization. Five more documentslacave been found if Entrez
PubMed had lemmatized the documents. When MeSH tedex is disabled, no
document is retrieved as no paper full-text costailhthe query words.

BioAlvis retrieved fewer documents than Google S$ahéor two reasons: (1) its
document collection is smaller (2) Google Schotateixes scientific papers full text
whereas BioAlvis only indexes abstracts and tittedoes not question the semantic
annotation approach but the document collectiompgmagion. BioAlvis missed also
relevant documents because of the lack of someamiesub-concepts atressin the
ontologylike acid shock This can be addressed by completing the ontofogy a
larger training corpus.

Regarding relevance of the documents, the accwhthe answer sets varies a lot
among the services. Google and Google Scholartsesphtain a vast amount of false
positives. This is mainly due to the fact that #mswer set contains many documents
that mention only a subset of the query terms. famk of these documents is very
low but they are however counted in the answerTd®t. amount of false positives in
Google Scholar is less important because the ilexepus is smaller and more
focused. Beyond the main problem of spurious casgenice of the query words
mentioned above, the indexing of irrelevant sulgpaftthe document caused many
errors. For instance, citations of the document casurring in Citeseer or
SpringerLink sites are indexed with the documeselit BioAlvis retrieves false
positives to a much lesser extent. Most of thdeuant documents were papers about
organisms other thaknterobacteriaceamany of them including a mention of a
homology with the extensively studied enterobaatariEscherichia coli. This
observation stresses the importance of filteringagic annotations for IR purposes,
so that semantic annotation focuses on the maingap the paper.

5 Conclusion

While formal languages for ontology representatiane made great advances, there
are few formal or operational proposals designedig¢oontologies to linguistic
knowledge [35]. Ontologies can no longer be consides organized vocabularies or
hierarchies of terms that can be simply mappedhé&téxt for semantic markup.
Intermediate linguistic knowledge levels are neasssto connect the textual
information to the conceptual knowledge. Sophistidaand operational NLP
platforms such as Alvis are available for develgpBuch integrated applications.
Still, the cost of maintaining and configuring themponentially increases with the
complexity of the linguistic knowledge. As highligll above, the linguistic



knowledge is scattered into various heterogeneessurces in order to feed distinct
successive linguistic analyses.

In this paper, we pointed out the challenge ofgrdéng ontology knowledge and
linguistic knowledge into a consistent model. Irder to alleviate the lack of
specialized knowledge to feed NLP tools, knowledgguisition and ML methods are
applied to training corpora. This raises the problef integrating the processes of
knowledge resource acquisition and the exploitatibthese resources. We proposed
an operational approach based on the clear spaaificof the learning task and the
normalization of the example representation. Falhaw these principles, we
developed large resources in Biology for each lisiiistep and demonstrated their
efficiency through the semantic annotation of aespntative Web corpus and its use
in an IR application [36].
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