
1

Knowledge Translation:
Computing the query potential of bio-ontologies

Wee Tiong Ang1, Rajaraman Kanagasabai1, Christopher J. O. Baker2

1Data Mining Department, Inst. for Infocomm Research, 1 Fusionopolis Way
Singapore,138632, 2Department of Computer Science and Applied Statistics,
University of New Brunswick, Saint John, Canada, E2L 4L5.

{wtang, kanagasa}@i2r.a-star.edu.sg, bakerc@unb.ca

Abstract. Online ontologies have become a topic of discussion in a number of
meta-data and content management communities including biology. For a number
of technical and social reasons, domain experts are unable to get close enough to
understand the conceptualization of an ontology they may wish to reuse or access
as a query model. Consequentially they face initial conceptual challenges in how
they can contribute to the ontology development process and what actual benefit
they can derive from their contributions in the short and medium term. To
ameliorate this need we report on the KnowleFinder system that summarizes
queries that can be built from ontology as a query model and translates these into
natural language statements for interpretation by the domain expert. Each natural
language statement can then be submitted as an A-box reasoning query and its
subsequent answer is retrieved. We illustrate the system with a subset of bio-
ontologies.

Keywords: Ontology, Graph Mining, Summarization, Natural Language Generation

1 Introduction

The proliferation and storage of ontologies has become a topic of discussion in a number
of meta-data and content management communities [1, 2] and bio-ontologies are
prominent in their contribution to this trend. Evidence of this can be seen from the
establishment of OBO [3] and BioPortal [4] which are repositories designed to serve the
bio-ontology professionals. In reality, communities of practice such as ontology
engineers and system engineers across all domains are concerned about reusability and
quality of ontologies. Reuse is limited by a number of factors that include access, quality
of ontologies, appropriate criteria for evaluating ontologies. To date, a number of
ontology repositories facilitate coordinated access to metrics about ontologies focusing
on algorithms for searching, ranking and classifying ontologies, OntoSelect [5],
OntoKhoj [6] Swoogle [7], AKTiveRank [8] Watson [9]. These resources make it easier
for knowledge engineers to access the ontologies and Semantic Web resources relevant
to their needs and were designed to enable consumers of ontology to make assessments
on their re-useabilty. However, there still remain barriers to the adoption of ontologies by

2

the wider community of domain experts. This is partly to do with the technical tool set
required to view, navigate and query ontologies remains non trivial. More recently
graphical query tools have become available [10, 11, 12, 13]. Moreover this is
compounded by the fact that domain experts rarely take time to learn to use new tools or
query language and have to work through a third party and that many of the tools that
exist are not robust or scalable. In addition, they can have different visualization
paradigms [14] and the psychological / human computer interaction challenges are only
beginning to be addressed. [15]. For these reasons, the domain experts are unable to get
close enough to understand the domain conceptualization of a given ontology or access
its query model. Consequentially, they can also face initial conceptual challenges in how
they can contribute to the ontology development process and what actual benefit they can
derive from their contributions in the short and medium term [16]. Together these
challenges can be summarized with the term Ontology Comprehension. While not all
these challenges can be addressed by one solution, we define a precise need for which we
have designed a prototype implementation. In summary, we provide the domain experts
with an overview of the query capacity of existing ontologies. We report on the system
that summarizes queries that can be built using the ontology as a query model and
translates these into natural language statements for interpretation by users.

1.1 Ontology Interrogation

Ontological formalisms and their corresponding query languages each have different
expressive power and have difference capacities to support queries as well as logical
inference over the conceptualizations [17, 18]. The most elementary ontology
interrogation can provide details of instances that belong to a particular class or the class
to which a given instance belongs. Binary role queries generate instances that are related
by named relations in ontology. Such basics constructs can be combined to form more
complex instance level queries and operators such as, unions, intersects, negations, can
be applied. More complex ontology interrogations involve reasoning over the T-box in
the conceptualization, namely, formal concepts hierarchies, axioms, and formal
definitions on concepts and associated constraints. Further details can be found in [18]
and in recent summary [19] which details nine types of scenario and requirements for
reasoning over OWL-formalised bio-ontologies. We focus our work on the generation of
intelligible statements in natural language derived from concept realization and transitive
relations mined from OWL ontologies. We consider multiple features of the
conceptualizations, namely concepts, relations (object properties), instances in the
ontologies. Using these constructs we can rewrite simple triples as questions. For
example instance-concept relations can be written as ‘Find instances of Gene’ and the
corresponding A-box query (nRQL) can be issued to the ontology or knowledgebase.
Real world questions that scientists often ask are often built from instance level input,
akin to keyword search. We focus also in capturing non conceptual information and
generating a corresponding conceptual query. For example, users inputting the keyword
‘p53’ (using the fuzzy matching option) can query for parent classes which asserts the
question what is p53 ? In addition to translations of concept and instance level ‘parent
look-up’ we focus on translations where users can discover concepts and instances

3

related to the selected concept / instance query term. We generate queries comprising of
membership relations and is-a relations between concepts and instances, spanning
multiple relationship types. We also support the generation of natural language queries
where no instances are present since our goal is to translate the query potential of
ontologies it is the translation of syntactic knowledge to natural language that serves to
edify the domain expert.

2 KnowleFinder

In order to summarize the query potential from ontology in simple terms, we assembled
KnowleFinder, (Figure 1), a multi-tier system (web, application and data) comprising of
a customized transitive query algorithm coupled with a natural language generation
algorithm. The transitive query algorithm, named ARQ, is tailored to return all query
paths across multiple object properties found in an ontology using a single-input query
term as a source. The results of these transitive query paths are translated into natural
language statements generated using the domain knowledge expressed in the ontology
entities (NLG). These natural language statements represent valid queries that can be
made to the ontology. In cases where the syntactic queries can return instances from an
OWL-DL knowledgebase, these results are made available to users through a
hyperlinked URL. Here we detail the components of the architecture and the online
implementation. A full evaluation of this novel translation task is held back for a
subsequent manuscript.

Fig. 1 KnowleFinder. Ontologies are mined using the ARQ algorithm and transitive query paths are exported in
XML format to both the NLG algorithm and query formulator. Queries are issues to an A-box reasoner

User Selection / Query Formulator

A-box Reasoning

Entity
Extractor

Path
Finding

OWL Ontology Repository

Query
Result

 ARQ Path XML

ARQ
ARQ
Path
XML

Content
Determination and
Query Generation

Discourse
Planning

Surface
Realization

NLG

NL Query

4

2.1 Transitive ARQ Algorithm

The algorithm for mining all object properties in the ontology to discover transitive
relations between two entities is presented in Figure 2. Given two concepts Csource and
Ctarget , the algorithm seeks to trace a pathway between them using the following idea.
First, the algorithm lists all triples in which the domain matches Csource. Thereafter, every
listed concept is in turn treated as the source concept and the related object property
instances explored. This process is repeated recursively until Ctarget is reached or if no
object property instances are found. All resulting transitive paths are output in the
ascending order of path length. The algorithm considers the properties inherited from
parent concepts and adds ancestor concepts of the source terms into a search list from
which all possible object properties, linking each of the concepts in the search list to
other concepts in the ontology, are recursively added into a path list. We further extended
the algorithm to include searching for relationships between two instances of concepts,
between instances of a concept to another concept and between a concept's relationship
to an instance of another concept. Another extension is the ability to find relationships
that connect two similar OWL concepts. This is particularly useful in finding linkages
such as people-to-people relations or , protein-protein interactions.

Fig. 2 Generic ARQ algorithm for mining transitive relations

 The limitation of the algorithm with respect to human factors and usability is the
need for users to have prior knowledge of the names of the source and target entities that
exist in the OWL ontology. To remove the necessity of users having such prior
knowledge we have revised the algorithm to receive a single input term (a concept or
instance), provided from a 'Google-like' text field with auto-complete features, and
search for transitive paths to all concepts in the ontology up to a limit of 3 triples away
from the input term. All paths returned by the algorithm are conceptually correct and will
generate individuals if the concepts are instantiated. The limit of 3 triples is sufficiently
expressive for general queries that users might pose in natural language and the compute
time required for to compute the transitive paths is manageable.

1. Retrieve all ancestors, CListsource, of source concept, Csource
2. Retrieve all concepts, CListtarget of the ontology as targets.
3. For each concept Ctarget, in CListtarget, do
4. While CListsource is not empty, do
5. For each concept Csource, in CListsource, do
6. Retrieve all concepts CListrange where Csource is a domain in an object property, O
7. For each concept Crange, in CListrange, do
8. If Crange == Ctarget then
9. For each triple link Triplelinked, in TListlinked, do
10. Add Triplelinked as ARQvalid into ARQListvalid
11. Endfor
12. Add Csource O Crange as ARQvalid into ARQListvalid
13. Remove Csource from CListsource
14. Add Csource into CListvisited
15. Else
16. Add Csource O Crange as Triplelinked into TListlinked
17. If Crange not in CListvisited then
18. Add Crange into CListsource
19. Endif, Endif, Endfor, Endfor, Endwhile, Endfor

5

2.2 Natural Language Query Generation (NLQG)

Natural language generation (NLG) is the process of deliberately constructing a natural
language text in order to meet specified communicative goals [20]. In our context we
define NLG as the task of translating non-linguistic representation of information into a
human understandable natural language text. In this paper, the non-linguistic information
to be translated is the path produced by the transitive-ARQ algorithm. The NLG
subsystem takes this path and generates a natural language query for consumption by
domain experts. A technical description of the NLG subsystem is as follows:

The input to the NLG subsystem is generated by the ARQ algorithm and is represented
as triples, which consist of 3 components: ARG1, PREDICATE and ARG2, where
ARG1 and ARG2 can be concepts or instances and PREDICATE is an Object property.
See Figure 3 for an illustration. To translate the triple into natural language, we primarily
use a template-based NLG methodology. In this approach, the domain-specific
knowledge and language-specific knowledge required for NLG are encoded as rule
templates. Given a triple, a rule matching engine is invoked to find the best matching rule
and the resulting rule is applied on the input triple to extract entities. The entities are
used to fill a template from which the natural language text is generated.

Fig. 3. Illustration of ARQ Query Representation

Content Determination and Query Generation Content determination recognizes the
domain entities in the triples and extracts them for use as content terms. Upper level
entities such as concepts, object properties are identified and extracted directly via a rule
template. However, extracting the lower level entities, e.g. the verb and noun in an object
property, is not straight forward. We employ an in-house Text Mining toolkit
[http://research.i2r.a-star.edu.sg/kanagasa/BioText/] to perform part of speech tagging
and term extraction. This is done as a preprocessing of the ARQ triples and the results
are passed to a rule matching engine. The rule matching engine applies the best matching
rule and retrieves a corresponding template to generate the natural language query.

Discourse Planning and Query Aggregation: When two or more text components are
generated in the previous step they are aggregated to generate a compact query. We
employ a set of aggregation patterns that are applied recursively to combine two or more
queries sharing the same entity as a conjunction, Figure 4. as well as a generalized
aggregation pattern that employs property hierarchy for combination.

1. Path Representation
 simtech -> has_employees -> Person -> is_related_to_academic_institution -> Academy
2. Triples Representation

<query><triple>
<arg1 type="INSTANCE">simtech</arg1>
<predicate type="OBJECTPROPERTY">has_employees</predicate>
<arg2 type="CONCEPT">Person</arg2>
</triple>
<triple>
<arg1 type="CONCEPT">Person</arg1>
<predicate type="OBJECTPROPERTY">is_related_to_academic_institution</predicate>
<arg2 type="CONCEPT">Academy</arg2>
</triple></query>

6

Surface Realization: In this step, we check the query statement after sentence
aggregation for grammar and generate a human understandable query. We employ an
open source grammar checker, called LanguageTool (http://www.languagetool.org/),
which is part of the OpenOffice suite. We added several rules to enrich the grammar
verification checker.

Rule Generation: To construct the rule-base used for encoding the domain-specific
knowledge and language-specific knowledge, we developed a rule learning algorithm that
takes user-provided example tuples of the form (triples generated by the ARQ algorithm,
and equivalent natural language statements) and outputs possible rules in an automated
fashion. After training, we let the rule learner generate rules and ranked them in
descending order of precision, where rules with equivalent rank were resolved using
recall. A threshold of 90% precision was used to discard inaccurate rules. All non-
duplicate rules from the rest formed the final rule-base.

Fig. 4. Illustration of Query Aggregation

2.2 Query Formulation for DL A-box Reasoning

In order to answer the questions written in natural language, the ARQ link that is used for
NLQG is automatically translated into an the syntax of an ontology A-box query
language by a query formulator before submission to a reasoning server. An ontology
query is expressed in the form of a directed graph in terms of concepts and role
assertions. This directed graph is modeled into a set of triples where a triple consists of a
predicate (role) and, its subsequent domain and range. Complex queries are formulated
based on multiple triples found in a graph and their connection is based on how each set
of domain and range in different predicates has similar properties. A valid DL query in
KnowleFinder must have at least one triple and an optional set of domain and range in a
role assertion query. The second component of the query formulation for reasoning,
namely, the specification of how multiple triples can be incrementally joined, allows user
to formulate more complex queries which involves multiple conjunction of predicates,
unknowns (variables) and constraints. An unknown or variable, employed in reasoning
over the ontology, is a concept container that allows all instances related to a particular
concept to be retrieved. Variables are used by default in a typical object property query.
For instance, in the example shown in Figure 5, in the nRQL query there are three
variables, ?X1, ?Y1 and ?Y2, related to the object properties,
Has_been_reported_to_be_found_in and Acts_on_substrate. In this case, KnowleFinder
retrieves all combinations of concepts Enzyme, Fungi and Substrate from the FungalWeb
ontology. A constraint in KnowleFinder (searching an instance), on the other hand, is
similar to using a WHERE clause in a SQL SELECT statement to conditionally select

Without query aggregation
 Which enzyme has been reported to be found in fungi?
 Which fungi act on substrate?

With query aggregation
 Which enzyme has been reported to be found in fungi that acts on substrate?

7

data from a relational table. For instance, in the object property query shown in Figure 6,
the Enzyme variable, ?X1, is replaced with an individual, Laccase. This constrains the
retrieval of all the instances of Fungi to those in which Laccase has been found and that
act on the instances of Substrate.

Definition 1 (Triple) A KnowleFinder graph triple, T is a set of elements: T = (Dm, P,Rn | m, n ≥ 1)
where: P is the predicate (object property), D is the concept of the object property as its domain
and R is the concept of the object property as its range, such that D → R by relationship, P.

Definition 2 (Query Graph) A KnowleFinder directed graph, G is a set of triples:
G = {(T)+} such that a valid query graph must have at least one triple.

Definition 3 (Triples Connection) Given T = {(D1, P1, R1)} and T’domain = {(D1, P2, R2)}, there
exists a connection between T and T’domain due to the similarity property of their domain, D1 where
D1 = Dv or D1 = Dc.Similarly, given T’range = {(D2, P2, R1)}, there exists a connection between T
and T’range due to the similarity property of their range, R1 where R1 = Rv or R1 = Rc.

In defining the notion of connecting triples, we use the following notations:
• Dv is a domain variable (unknown).
• Dc is a domain constraint (individual).

• Rv is a range variable (unknown).
• Rc is a range constraint (individual).

Given a graph Q, a pair of triples that is connected to one another is a function mapping
the domain or range of the first triple to the domain or range of the second triple.

The final component of the query formulation is the translation of graph triples into
nRQL query atoms, facilitating transfer of information from KnowleFinder to a reasoning
engine. nRQL is an A-box query language for Description Logic, ALCQHIR+(D−).

2. Applying KnowleFinder to Bio-Ontologies
KnowleFinder http://datam1.i2r.a-star.edu.sg/user/knowlefinder/index.jsp has been
deployed as an online search portal for the domain experts to identify ontologies which
support queries relevant to their needs. Currently it serves up queries to a subset of bio-
ontologies in the domains of Lipidomics [14], FungalWeb [21] and the gene regulation
ontology available from OBO [4]. The working examples we present in this paper,
Figure 5 and 6 are from queries to the FungalWeb Ontology, a knowledgebase designed
to represent fungal enzymes with industrial applications.

3. Conclusion
We motivate the need for a knowledge translation capability, often requested by
biologists and other domain experts involved in the knowledge elicitation and ontology
creation process. While this task may appear elementary in its goals, it requires non
trivial technical solution and serves a crucial role saving significant amounts of time for
domain experts with entry level computational skills. Moreover, knowledge translation
tasks are increasingly recognized to be important in health and life sciences [22] and here
in particular, we address the access barriers to knowledge reuse. Since bio-ontologies are
the richest subset of online ontologies, with dedicated community support, we applied
our translation tool to this subset of knowledge resources to further facilitate adoption of
ontologies to a broader audience. We achieve this by simplifying the conceptualizations
to a series of natural language queries and illustrate our approach with examples.

8

Fig. 5a and b: KnowleFinder Interface: User starts by keying in a concept keyword, Enzyme. A list of natural
language interpretation of the ARQ links found is then displayed. 'Asking a question' (10. Which Enzyme has
been reported to be found in Fungi that acts on a substrate?) is simulated by clicking on the hyperlink of the
question, the answer is shown below. e.g. Laccase has been found in Agaricus bisporus and acts on Ascorbate

Fig. 6: Query Constraint: User input an individual keyword, Laccase identified in the previous question. The
questions generated focus on relationships that include Laccase as the Enzyme constraint. (not shown) The
answer to the displayed question contains only individals of Fungi and Substrates that are linked to Laccase.

9

Acknowledgments. Thanks are also due to Mathieu d’Aquin, Arash Shaban-Nejad, and
Patrick Lambirx, and Jacob Koehler for valuable discussions on this topic.

References
1. Baker CJO, Warren RH, Haarslev V, Butler G. The Ecology of Ontologies in the Public

Domain, The Monist: Biomedical Ontologies, Vol. 90, No. 4, October 2007,
2. Ontology Summit 2008, http://ontolog.cim3.net/cgi-bin/wiki.pl?OntologySummit2008
3. Smith B, etal. Nature Biotechnology 25, 1251-1255 (2007). The OBO Foundry: coordinated

evolution of ontologies to support biomedical data integration.
4. BioPortal, http://www.bioontology.org/ncbo/faces/index.xhtml
5. Buitelaar P., Eigner T., and Declerck T., OntoSelect: A Dynamic Ontology Library with

Support for Ontology Selection. In Proceedins of the Demo Session at the International
Semantic Web Conference. Hiroshima, Japan 2004.

6. Patel C., Supekar K., Lee Y., and Park E.K. OntoKhoj: A Semantic Web Portal for Ontology
Searching, Ranking and Classification. In Proceedings of the Workshop on Web Information
and Data Management, ACM 2003.

7. Ding L., Pan R., Finin T., Joshi A., Peng Y., and Kolari P. (2005) Finding and Ranking
Knowledge on the Semantic Web. In: Proceedings of the 4th International Semantic Web
Conference Date: November 07, 2005, LNCS 3729, p. 156.

8. Alani H and Brewster C. EON2006, Evaluation of Ontologies for the Web 4th International
EON Workshop May 22nd, 2006 Edinburgh, United Kingdom

9. Watson, Semantic Web Gateway http://watson.kmi.open.ac.uk/Overview.html
10. Krivov S, Williams R, Villa F: GrOWL: A tool for visualization and editing of OWL

ontologies. J. Web Sem. 5(2): 54-57 (2007)
11. Baker CJO, Su X, Butler G, Haarslev V, (2006) Ontoligent interactive query tool, Edited by

Koné, M.T.,and Lemire, D. Canadian Semantic Web Series, Springer, Semantic Web and
Beyond, Vol. 2, Springer-Verlag Inc, New York.

12. Fadhil A. and Haarslev V. Ontovql: A graphical query language for owl ontologies. In
Proceedings of the 2007 International Workshop on Description Logics (DL-2007), Brixen-
Bressanone, near Bozen-Bolzano, Italy, pages 267–274, 2007.

13. Baker CJO, etal.Towards ontology-driven navigation of the lipid bibliosphere. BMC
Bioinform 2008; 9(784 Suppl. 1):S5.

14. Wang X, Almeida J. Techniques Ontology Visualization. In: Semantic Web: Revolutionizing
Knowledge Discovery Life Sciences, Baker CJO, Cheung KH, Eds. 185-203, 2007

15. Falconer SM, Storey MAD: A Cognitive Support Framework for Ontology Mapping.
ISWC/ASWC 2007: 114-127

16. Garcia Castro A etal. Use of concept maps during knowledge elicitation in ontology
development processes: nutrigenomics. BMC Bioinformatics 2006, 7:267

17. Haasep, Broekstra J, Eberhart A, Volz R. A comparison of RDF query languages, In Proc.
Third International Semantic Web Conference, Hiroshima, Japan, 2004.

18. Wolstencroft K, etal. Applying OWL reasoning to genomic data. In Semantic Web: Revolution.
Knowledge Discovery Life Sciences Baker, CJO, Cheung, KH (Eds.) 2007 pp 225-248.

19. Keet CM,etal. A survey of requirements for automated reasoning services for bio-ontologies
in OWL, in:3rd Int’l.Workshop OWL Experiences & Directions. 2007

20. Reiter E & Dale R, Building Natural Language Generation Systems, Camb Uni Press, 2000.
21. Baker CJO, etal, Semantic web infrastructure for fungal enzyme biotechnologists, Jnl. Web

Sem., 4, 3, 2006, 168-180
22. The Knowledge Translation Portfolio at the Canadian Institute for Health Research

http://www.cihr-irsc.gc.ca/e/29418.html]

