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Abstract. Online ontologies have become a topic of discussion in a number of 
meta-data and content management communities including biology. For a number 
of technical and social reasons, domain experts are unable to get close enough to 
understand the conceptualization of an ontology they may wish to reuse or access 
as a query model. Consequentially they face initial conceptual challenges in how 
they can contribute to the ontology development process and what actual benefit 
they can derive from their contributions in the short and medium term. To 
ameliorate this need we report on the KnowleFinder system that summarizes 
queries that can be built from ontology as a query model and translates these into 
natural language statements for interpretation by the domain expert. Each natural 
language statement can then be submitted as an A-box reasoning query and its 
subsequent answer is retrieved. We illustrate the system with a subset of bio-
ontologies. 
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1   Introduction 

The proliferation and storage of ontologies has become a topic of discussion in a number 
of meta-data and content management communities [1, 2] and bio-ontologies are 
prominent in their contribution to this trend. Evidence of this can be seen from the 
establishment of OBO [3] and BioPortal [4] which are repositories designed to serve the 
bio-ontology professionals. In reality, communities of practice such as ontology 
engineers and system engineers across all domains are concerned about reusability and 
quality of ontologies. Reuse is limited by a number of factors that include access, quality 
of ontologies, appropriate criteria for evaluating ontologies. To date, a number of 
ontology repositories facilitate coordinated access to metrics about ontologies focusing 
on algorithms for searching, ranking and classifying ontologies, OntoSelect [5], 
OntoKhoj [6] Swoogle [7], AKTiveRank [8] Watson [9]. These resources make it easier 
for knowledge engineers to access the ontologies and Semantic Web resources relevant 
to their needs and were designed to enable consumers of ontology to make assessments 
on their re-useabilty. However, there still remain barriers to the adoption of ontologies by 
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the wider community of domain experts. This is partly to do with the technical tool set 
required to view, navigate and query ontologies remains non trivial. More recently 
graphical query tools have become available [10, 11, 12, 13]. Moreover this is 
compounded by the fact that domain experts rarely take time to learn to use new tools or 
query language and have to work through a third party and that many of the tools that 
exist are not robust or scalable. In addition, they can have different visualization 
paradigms [14] and the psychological / human computer interaction challenges are only 
beginning to be addressed. [15]. For these reasons, the domain experts are unable to get 
close enough to understand the domain conceptualization of a given ontology or access 
its query model. Consequentially, they can also face initial conceptual challenges in how 
they can contribute to the ontology development process and what actual benefit they can 
derive from their contributions in the short and medium term [16]. Together these 
challenges can be summarized with the term Ontology Comprehension. While not all 
these challenges can be addressed by one solution, we define a precise need for which we 
have designed a prototype implementation. In summary, we provide the domain experts 
with an overview of the query capacity of existing ontologies. We report on the system 
that summarizes queries that can be built using the ontology as a query model and 
translates these into natural language statements for interpretation by users. 

1.1   Ontology Interrogation 

Ontological formalisms and their corresponding query languages each have different 
expressive power and have difference capacities to support queries as well as logical 
inference over the conceptualizations [17, 18]. The most elementary ontology 
interrogation can provide details of instances that belong to a particular class or the class 
to which a given instance belongs. Binary role queries generate instances that are related 
by named relations in ontology. Such basics constructs can be combined to form more 
complex instance level queries and operators such as, unions, intersects, negations, can 
be applied. More complex ontology interrogations involve reasoning over the T-box in 
the conceptualization, namely, formal concepts hierarchies, axioms, and formal 
definitions on concepts and associated constraints. Further details can be found in [18] 
and in recent summary [19] which details nine types of scenario and requirements for 
reasoning over OWL-formalised bio-ontologies. We focus our work on the generation of 
intelligible statements in natural language derived from concept realization and transitive 
relations mined from OWL ontologies. We consider multiple features of the 
conceptualizations, namely concepts, relations (object properties), instances in the 
ontologies. Using these constructs we can rewrite simple triples as questions. For 
example instance-concept relations can be written as ‘Find instances of Gene’ and the 
corresponding A-box query (nRQL) can be issued to the ontology or knowledgebase.  
Real world questions that scientists often ask are often built from instance level input, 
akin to keyword search. We focus also in capturing non conceptual information and 
generating a corresponding conceptual query. For example, users inputting the keyword 
‘p53’ (using the fuzzy matching option) can query for parent classes which asserts the 
question what is p53 ? In addition to translations of concept and instance level ‘parent 
look-up’ we focus on translations where users can discover concepts and instances 
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related to the selected concept / instance query term. We generate queries comprising of 
membership relations and is-a relations between concepts and instances, spanning 
multiple relationship types. We also support the generation of natural language queries 
where no instances are present since our goal is to translate the query potential of 
ontologies it is the translation of syntactic knowledge to natural language that serves to 
edify the domain expert.  

2   KnowleFinder  

In order to summarize the query potential from ontology in simple terms, we assembled 
KnowleFinder, (Figure 1), a multi-tier system (web, application and data) comprising of 
a customized transitive query algorithm coupled with a natural language generation 
algorithm. The transitive query algorithm, named ARQ, is tailored to return all query 
paths across multiple object properties found in an ontology using a single-input query 
term as a source. The results of these transitive query paths are translated into natural 
language statements generated using the domain knowledge expressed in the ontology 
entities (NLG). These natural language statements represent valid queries that can be 
made to the ontology. In cases where the syntactic queries can return instances from an 
OWL-DL knowledgebase, these results are made available to users through a 
hyperlinked URL. Here we detail the components of the architecture and the online 
implementation. A full evaluation of this novel translation task is held back for a 
subsequent manuscript.   
 

Fig. 1 KnowleFinder. Ontologies are mined using the ARQ algorithm and transitive query paths are exported in 
XML format to both the NLG algorithm and query formulator. Queries are issues to an A-box reasoner  
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2.1   Transitive ARQ Algorithm 

The algorithm for mining all object properties in the ontology to discover transitive 
relations between two entities is presented in Figure 2. Given two concepts Csource and 
Ctarget , the algorithm seeks to trace a pathway between them using the following idea. 
First, the algorithm lists all triples in which the domain matches Csource. Thereafter, every 
listed concept is in turn treated as the source concept and the related object property 
instances explored. This process is repeated recursively until Ctarget is reached or if no 
object property instances are found. All resulting transitive paths are output in the 
ascending order of path length. The algorithm considers the properties inherited from 
parent concepts and adds ancestor concepts of the source terms into a search list from 
which all possible object properties, linking each of the concepts in the search list to 
other concepts in the ontology, are recursively added into a path list. We further extended 
the algorithm to include searching for relationships between two instances of concepts, 
between instances of a concept to another concept and between a concept's relationship 
to an instance of another concept. Another extension is the ability to find relationships 
that connect two similar OWL concepts. This is particularly useful in finding linkages 
such as people-to-people relations or , protein-protein interactions. 
 

Fig. 2 Generic ARQ algorithm for mining transitive relations 
 
 The limitation of the algorithm with respect to human factors and usability is the 
need for users to have prior knowledge of the names of the source and target entities that 
exist in the OWL ontology. To remove the necessity of users having such prior 
knowledge we have revised the algorithm to receive a single input term (a concept or 
instance), provided from a 'Google-like' text field with auto-complete features, and 
search for transitive paths  to all concepts in the ontology up to a limit of 3 triples away 
from the input term. All paths returned by the algorithm are conceptually correct and will 
generate individuals if the concepts are instantiated. The limit of 3 triples is sufficiently 
expressive for general queries that users might pose in natural language and the compute 
time required for to compute the transitive paths is manageable.  

 

 

1. Retrieve all ancestors, CListsource, of source concept, Csource 
2. Retrieve all concepts, CListtarget of the ontology as targets. 
3. For each concept Ctarget, in CListtarget, do 
4.    While CListsource is not empty, do 
5.       For each concept Csource, in CListsource, do 
6.          Retrieve all concepts CListrange where Csource is a domain in an object property, O 
7.          For each concept Crange, in CListrange, do 
8.             If Crange == Ctarget then 
9.                For each triple link Triplelinked, in TListlinked, do 
10.                   Add Triplelinked as ARQvalid into ARQListvalid 
11.                         Endfor 
12.                 Add Csource  O  Crange as ARQvalid into ARQListvalid 
13.                 Remove Csource from CListsource 
14.                 Add Csource into CListvisited 
15.             Else 
16.                 Add Csource  O  Crange as Triplelinked into TListlinked 
17.                 If Crange not in CListvisited then 
18.                Add Crange into CListsource 
19.                 Endif,             Endif,          Endfor,       Endfor,        Endwhile,          Endfor 
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2.2   Natural Language Query Generation (NLQG) 

Natural language generation (NLG) is the process of deliberately constructing a natural 
language text in order to meet specified communicative goals [20]. In our context we 
define NLG as the task of translating non-linguistic representation of information into a 
human understandable natural language text. In this paper, the non-linguistic information 
to be translated is the path produced by the transitive-ARQ algorithm. The NLG 
subsystem takes this path and generates a natural language query for consumption by 
domain experts. A technical description of the NLG subsystem is as follows:  

The input to the NLG subsystem is generated by the ARQ algorithm and is represented 
as  triples, which consist of 3 components: ARG1, PREDICATE and ARG2, where 
ARG1 and ARG2 can be concepts or instances and PREDICATE is an Object property. 
See Figure 3 for an illustration. To translate the triple into natural language, we primarily 
use a template-based NLG methodology. In this approach, the domain-specific 
knowledge and language-specific knowledge required for NLG are encoded as rule 
templates. Given a triple, a rule matching engine is invoked to find the best matching rule 
and the resulting rule is applied on the input triple to extract entities.  The entities are 
used to fill a template from which the natural language text is generated. 
 

 
Fig. 3. Illustration of ARQ Query Representation 
 
Content Determination and Query Generation Content determination recognizes the 
domain entities in the triples and extracts them for use as content terms. Upper level 
entities such as concepts, object properties are identified and extracted directly via a rule 
template. However, extracting the lower level entities, e.g. the verb and noun in an object 
property, is not straight forward. We employ an in-house Text Mining toolkit 
[http://research.i2r.a-star.edu.sg/kanagasa/BioText/] to perform part of speech tagging 
and term extraction. This is done as a preprocessing of the ARQ triples and the results 
are passed to a rule matching engine. The rule matching engine applies the best matching 
rule and retrieves a corresponding template to generate the natural language query.  

Discourse Planning and Query Aggregation: When two or more text components are 
generated in the previous step they are aggregated to generate a compact query. We 
employ a set of aggregation patterns that are applied recursively to combine two or more 
queries sharing the same entity as a conjunction, Figure 4. as well as a generalized 
aggregation pattern that employs property hierarchy for combination.  

1.          Path   Representation 
                  simtech -> has_employees -> Person -> is_related_to_academic_institution -> Academy 
2.                    Triples Representation 

<query><triple> 
<arg1 type="INSTANCE">simtech</arg1> 
<predicate type="OBJECTPROPERTY">has_employees</predicate> 
<arg2 type="CONCEPT">Person</arg2> 
</triple> 
<triple> 
<arg1 type="CONCEPT">Person</arg1> 
<predicate type="OBJECTPROPERTY">is_related_to_academic_institution</predicate> 
<arg2 type="CONCEPT">Academy</arg2> 
</triple></query> 
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Surface Realization: In this step, we check the query statement after sentence 
aggregation for grammar and generate a human understandable query. We employ an 
open source grammar checker, called LanguageTool (http://www.languagetool.org/), 
which is part of the OpenOffice suite. We added several rules to enrich the grammar 
verification checker.  

Rule Generation: To construct the rule-base used for encoding the domain-specific 
knowledge and language-specific knowledge, we developed a rule learning algorithm that 
takes user-provided example tuples of the form (triples generated by the ARQ algorithm, 
and equivalent natural language statements) and outputs possible rules in an automated 
fashion. After training, we let the rule learner generate rules and ranked them in 
descending order of precision, where rules with equivalent rank were resolved using 
recall. A threshold of 90% precision was used to discard inaccurate rules. All non-
duplicate rules from the rest formed the final rule-base. 
 

 
Fig. 4. Illustration of Query Aggregation 

2.2    Query Formulation for DL A-box Reasoning 

In order to answer the questions written in natural language, the ARQ link that is used for 
NLQG is automatically translated into an the syntax of an ontology A-box query 
language by a query formulator before submission to a reasoning server. An ontology 
query is expressed in the form of a directed graph in terms of concepts and role 
assertions. This directed graph is modeled into a set of triples where a triple consists of a 
predicate (role) and, its subsequent domain and range. Complex queries are formulated 
based on multiple triples found in a graph and their connection is based on how each set 
of domain and range in different predicates has similar properties. A valid DL query in 
KnowleFinder must have at least one triple and an optional set of domain and range in a 
role assertion query. The second component of the query formulation for reasoning, 
namely, the specification of how multiple triples can be incrementally joined, allows user 
to formulate more complex queries which involves multiple conjunction of predicates, 
unknowns (variables) and constraints. An unknown or variable, employed in reasoning 
over the ontology, is a concept container that allows all instances related to a particular 
concept to be retrieved. Variables are used by default in a typical object property query. 
For instance, in the example shown in Figure 5, in the nRQL query there are three 
variables, ?X1, ?Y1 and ?Y2, related to the object properties, 
Has_been_reported_to_be_found_in and Acts_on_substrate. In this case, KnowleFinder 
retrieves all combinations of concepts Enzyme, Fungi and Substrate from the FungalWeb 
ontology. A constraint in KnowleFinder (searching an instance), on the other hand, is 
similar to using a WHERE clause in a SQL SELECT statement to conditionally select 

Without query aggregation 
 Which enzyme has been reported to be found in fungi?  
 Which fungi act on substrate? 
 

With query aggregation 
 Which enzyme has been reported to be found in fungi that acts on substrate? 
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data from a relational table. For instance, in the object property query shown in Figure 6, 
the Enzyme variable, ?X1, is replaced with an individual, Laccase. This constrains the 
retrieval of all the instances of Fungi to those in which Laccase has been found and that 
act on the instances of Substrate. 
 

Definition 1 (Triple) A KnowleFinder graph triple, T is a set of elements: T = (Dm, P,Rn | m, n ≥ 1) 
where: P is the predicate (object property), D is the concept of the object property as its domain 
and R is the concept of the object property as its range, such that D → R by relationship, P. 

 

Definition 2 (Query Graph) A KnowleFinder directed graph, G is a set of triples:  
G = {(T)+} such that a valid query graph must have at least one triple.  

 

Definition 3 (Triples Connection)  Given T = {(D1, P1, R1)} and T’domain = {(D1, P2, R2)}, there 
exists a connection between T and T’domain due to the similarity property of their domain, D1 where 
D1 = Dv or D1 = Dc.Similarly, given T’range = {(D2, P2, R1)}, there exists a connection between T 
and T’range due to the similarity property of their range, R1 where R1 = Rv or R1 = Rc. 

 

In defining the notion of connecting triples, we use the following notations: 
• Dv is a domain variable (unknown). 
• Dc is a domain constraint (individual). 

• Rv is a range variable (unknown). 
• Rc is a range constraint (individual). 

Given a graph Q, a pair of triples that is connected to one another is a function mapping 
the domain or range of the first triple to the domain or range of the second triple.  

The final component of the query formulation is the translation of graph triples into 
nRQL query atoms, facilitating transfer of information from KnowleFinder to a reasoning 
engine. nRQL is an A-box query language for Description Logic, ALCQHIR+(D−). 

2.  Applying KnowleFinder to Bio-Ontologies  
KnowleFinder http://datam1.i2r.a-star.edu.sg/user/knowlefinder/index.jsp has been 
deployed as an online search portal for the domain experts to identify ontologies which 
support queries relevant to their needs. Currently it serves up queries to a subset of bio-
ontologies in the domains of Lipidomics [14], FungalWeb [21] and the gene regulation 
ontology available from OBO [4]. The working examples we present in this paper, 
Figure 5 and 6 are from queries to the FungalWeb Ontology, a knowledgebase designed 
to represent fungal enzymes with industrial applications.  

3.       Conclusion 
We motivate the need for a knowledge translation capability, often requested by 
biologists and other domain experts involved in the knowledge elicitation and ontology 
creation process. While this task may appear elementary in its goals, it requires non 
trivial technical solution and serves a crucial role saving significant amounts of time for 
domain experts with entry level computational skills. Moreover, knowledge translation 
tasks are increasingly recognized to be important in health and life sciences [22] and here 
in particular, we address the access barriers to knowledge reuse. Since bio-ontologies are 
the richest subset of online ontologies, with dedicated community support, we applied 
our translation tool to this subset of knowledge resources to further facilitate adoption of 
ontologies to a broader audience. We achieve this by simplifying the conceptualizations 
to a series of natural language queries and illustrate our approach with examples.    
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Fig. 5a and b: KnowleFinder Interface: User starts by keying in a concept keyword, Enzyme. A list of natural 
language interpretation of the ARQ links found is then displayed. 'Asking a question' (10. Which Enzyme has 
been reported to be found in Fungi that acts on a substrate?) is simulated by clicking on the hyperlink of the 
question, the answer is shown below. e.g. Laccase has been found in Agaricus bisporus and acts on  Ascorbate   

 
 

 
Fig. 6: Query Constraint: User input an individual keyword, Laccase identified in the previous question. The 
questions generated focus on relationships that include Laccase as the Enzyme constraint. (not shown) The 
answer to the displayed question contains only individals of Fungi and Substrates that are linked to Laccase. 
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