| CWE 2008 Workshops, 7th Int. Workshop on Web-Oriented Software Technol ogies — IWWWOST 2008

Current Research on the Design of Web 2.0 Applications
Based on Model-Driven Approaches

Alessandro Bozzon, Sara Comai, Piero Fraternali, Massimo Tisi
Dipartimento di Elettronica ed Informazione, Politecnico di Milano, Milano — Italy
{bozzon, comai, fraterna, tisi } @elet.polimi.it

Abstract

This paper presents our research activities on the design
of Web 2.0 applications currently ongoing at Politecnico di
Milano. Our approaches are based on model-driven devel-
opment fechniques: in particular, they extend Web 1.0 mod-
els to cope with the technological characteristics of the new
applications and exploit design patterns to capture the de-
sired behaviors. Two main research activities are presented,
considering two orthogonal issues of Web 2.0 applications:
the social and the technological aspects. Moreover, other
ongoing research directions are outlined.

1 Introduction

The advent of the so-called Web 2.0 has shifted the focus
of Web application development towards a more prominent
role of the end-users, now considered as the critical success
factor. Among the many facets of Web 2.0 in our research
at Politecnico di Milano we have considered both the social
and the technological aspects.

From a social point of view, we are witnessing a shift
towards collaborative and community-based applications.
Community-driven applications can be defined as Web ap-
plications targeted to a set of users (the community), pur-
posely designed for encouraging the social interaction of
community members: content production and dissemina-
tion, content processing (rating, categorization, transforma-
tion), and inter-user relationship development. The success
of Web 2.0 community-based applications depends on sev-
eral factors, some of which are immaterial: quality of con-
tent, cohesion of interests, suitable mechanism for emer-
gence of outstanding contributions and contributors, which
add up to the well-known “traditional” criteria of usabil-
ity of the interface and global quality of the user’s experi-
ence. Many tools and algorithms have been developed for
addressing specific topics related to social network analy-
sis [13] and several frameworks, patterns and models have

19

been proposed to address particular issues of a social appli-
cation design (e.g., [2, 4, 1]).

From a technological point of view richer interfaces are
needed to improve user experience. Indeed, traditional
HTML interfaces are showing their limits, compared to
desktop applications, both in terms of content presentation
and manipulation (HTML was designed for documents, not
GUIs, and multimedia support is limited) as well as in terms
of interaction (server-side computation implies full page re-
fresh at each user-generated event). Web 2.0 applications
demand a novel development paradigm [12], to overcome
such limitations: the technological answer is represented by
Rich Internet Applications (RIAs) [7, 6]. RIAs extend tradi-
tional Web architectures by allowing computation to be re-
liably partitioned between the client and the server; they are
an essential ingredient of the Web 2.0, because they blend
the best of Web-enabled and desktop architectures and ad-
dress core Web 2.0 requirements, like real-time collabora-
tion among users, sophisticated presentation and manipu-
lation of multimedia content, and flexible human-machine
interaction (synchronous and asynchronous, connected and
disconnected). As RIA adoption is growing, a multitude of
programming frameworks have been proposed to ease their
development (e.g., Flex, OpenLaszlo, Google Gears, Sil-
verlight, AIR, Java Web Start, JavaFX, just to name a few).
These increase productivity, but are bound to a specific tech-
nology and therefore not easily portable across different
platforms.

In this paper we show how conceptual and platform-
independent models can be used in the design and devel-
opment of Web 2.0 applications (considering both social
and technological aspects), in the tradition of Model Driven
Development (MDD). Compared to several frameworks ad-
dressing social issues and supporting specific RIA plat-
forms, our approach is technology-neutral and can be au-
tomatically converted into implementations in all the most
popular RIA technologies and frameworks.

The envisioned development paradigm is based on the
extension of MDD approaches conceived for traditional
Web 1.0 applications and on the usage of design patterns.

| CWE 2008 Workshops, 7th Int. Workshop on Web-Oriented Software Technol ogies — IWWWOST 2008

For convenience, we will refer to the WebML [14] nota-
tion, but the considerations discussed in this paper apply to
other Web engineering notations and methodologies that al-
low the specification of the interface composition and navi-
gation.

The paper is organized as follows: Section 2 explains
how social aspects have been integrated in our methodol-
ogy. Section 3 gives an overview on the extensions of the
WebML model to capture the technological features. Sec-
tion 4 briefly describes other current research directions re-
lated to Web 2.0. Finally, Section 5 presents future trends
and draws the conclusions.

2 Capturing Web 2.0 Social Features in
WebML

Our research on Web 2.0 social features aims to inte-
grate the social perspective typical of emerging Web 2.0 ap-
plications within a structured Web Engineering approach,
based on model-driven development. The result is a seam-
less development paradigm that is capable of capturing both
conventional Web development issues (data storage, publi-
cation, management, Web service publication and invoca-
tion, user profile management, etc.) and the essential de-
sign patterns that appear in state of the art social Web 2.0
applications. Our current results comprise a set of classified
model-driven design patterns for community-based Web ap-
plications, validated by means of an analysis of pattern oc-
currence in top-ranking Web 2.0 social applications and the
extension of well-known Web development processes (i.e.,
RUP [9] or WebML [14]) to incorporate activities specific
to community-driven development.

To identify best practices in social Web applications we
analyzed ten of the most popular Web 2.0 community appli-
cations and distilled a number of recurring design patterns.
The analysis of the pattern set lead to the individuation of
nine core concepts that are the main focus of the social ac-
tivities in Web 2.0 applications. Table 1 shows the design
patterns grouped by their underlying social concept. Pat-
terns are further distinguished into front-end patterns and
back-end patterns: front-end patterns relate to the inter-
face for the community members to express their activity,
back-end patterns reflect the system responses to member-
generated interaction.

The complete list of social features and relative patterns
can be found in [10]. As a simple example, Item Clustering
is the feature that allows to group in a Container Element
items that share some common properties. Depending on
the type of items, the Item Clustering feature is usually im-
plemented allowing the user to create and manage photo
sets, content hierarchies, playlists, and so on. Item Clus-
tering answers a twofold purpose. First of all, it provides
a structured access to content items: the browsing of shared

20

Concept Front-end Back-end
Design Pattern Design Pattern
Item Clustering Organization -
Browse by Tag

User Clustering Group Creation -

Group Participation

Item Relevance Rating

Flagging

Rel. Adjustment

User Reputation Social Visualization

Rep. Adjustment

Connections Relationship Setting

Browse by Connection
Scoring - Payment

Reward

Communication Talk Notification

Recommendation

Invitation
Permissions Permission Setting Permission Check
Interoperability Exportation Syndication

Table 1. Community-driven design patterns.

content and the individuation of interesting items can be
eased by providing the user with a group hierarchy. Secon-
darily, Item Clustering can be used by the community mem-
bers, like any metadata, as further information to understand
the properties of a given item. While traditional Web appli-
cations usually provide users with a standard classification
(e.g., a hierarchy) for content items, most social application
prefer to implement a collaborative approach to Item Clus-
tering.

A general solution for collaborative Item Clustering is
the Organization front-end pattern [10]. The pattern is pro-
posed together with several variants that describe different
implementation mechanisms. One of the more common
variants of the Organization pattern is the content tagging
variant. A tagging mechanism gives to the users the pos-
sibility to associate freely chosen words with the shared
items and can be considered as an instance of the Orga-
nization pattern where any user determines the inclusion
of each item into an implicit container associated with the
tag. In general, tag containers are public and they can be
freely created by any community member. Figure 1 shows
the Organization pattern variant based on content tagging,
expressed using the WebML notation.

Design patterns are not applied in isolation, but within
the framework of analysis and design activities forming the
development process of a certain class of artifacts. Several
process schemes have been tailored to Web applications,
starting from the more general notion of software life-cycle
model. We extended the WebML process [14] to cope with
community-based Model-Driven development. In essence,
the focus on community features affects both the require-
ments analysis phase, in which ad hoc functional require-
ments stem from the goal of fostering community life, and
design, where the data model must reflect the members pro-

| CWE 2008 Workshops, 7th Int. Workshop on Web-Oriented Software Technol ogies — IWWWOST 2008

Organization

Alternative

Item Selected

Disconnect Tag

| Mo ltem Selected

My Items ltem

Item Tags

O

r————H

; 2
ltems ltem |

o

| ltemToC antainer
Connect Tag

R

r——-

W

ltemToCantainer

[0 \'-FEI'I l—
| L
Current User Existing Tags
O—» 4|—~
UserCtParam 12 é)
Tag
— [ltemToC ontainer]
—/

e

=]

Create Tag
Tag

Figure 1. Organization design pattern (Tagging variant).

file meta-data and the application design must incorporate
the appropriate community patterns in the front-end and in
the back-end.

In the analysis of requirements of social Web applica-
tions, community governance and social processes emerge
with a prominent role. Communication experts should iden-
tify the social processes needed to foster user participation:
which user activities are critical for the community, which
strategies are due for community monitoring (e.g., moder-
ation, codes of conduct), and what reward and reputation
mechanism to install; social network experts, instead, de-
fine the abstract models that represent member relationships
and meaningful indicators for monitoring them, which will
allow community administrators to trace the community’s
trends and govern its evolution. Furthermore, the analysis
of requirements about users is expanded, to address multi-
ple perspectives:

e Content management: as in conventional Web applica-
tions, functional roles must be identified, e.g., by clas-
sifying users into stakeholders, administrators, editors,
etc. The question is “who can read/update what?”.

e Governance: social roles must be elicited. The ques-
tion is: “who is controlled by whom?”. Different gov-
ernance models may require alternative social roles:
democratic moderation relies on a shared code of con-
duct whereby every member can monitor others and
draw attention to violations. In such a system, the

21

users’ hierarchy consists simply of moderators and
contributors. Alternatively, in more structured commu-
nities, the governance model could reflect some exist-
ing formal organization (e.g., a company’s hierarchy).

e Social behavior: another classification of users can be
obtained by the observation of their participation: be-
haviors such as pioneers, killers, lurkers can be defined
and help monitor the community’s status and plan re-
inforcement or corrective activities.

Besides users’ roles, the analyst should pinpoint the re-
lationships that members can set-up (e.g., group creation,
friend-of-a-friend linking, etc) and the degree of collabora-
tion they can establish (e.g., application sharing, invitation,
etc). Once user roles are identified under all the relevant
perspectives and the allowed relationships are determined,
roles can be mapped into user types and associated to the
activities that each type is entitled to perform, including
relationship-setting activities.

In the design of Web applications, several tasks are af-
fected by a community-driven focus: 1) the design of the
data model of the application should encompass the meta-
data needed to reflect the members roles, relationships, pro-
file data, and reward policies; 2) the design of the hypertext
front-end should integrate the selection of the navigation,
contribution and social interaction pattern; 3) the design of
the hypertext back-end should comprise the back-end de-

| CWE 2008 Workshops, 7th Int. Workshop on Web-Oriented Software Technol ogies — IWWWOST 2008

sign patterns needed to support the supported social com-
munity governance and processes.

Once the main design patterns are identified, the model-
driven design of the Web application is guided by the pat-
tern instantiation process and by the gradual integration of
the pattern instances. When WebML is used as the mod-
eling language, the WebML models for the front-end and
back-end can be directly obtained by instantiation and com-
position of the proposed patterns.

As an example, the instantiation procedure of the Orga-
nization pattern follows these subsequent steps:

1. The units specified in the pattern and their connections
are first instantiated in the page (e.g., into a page called
My Videos). The instantiation requires the use of a par-
ticular entity (e.g. a Video entity) to perform the Item
role in the pattern. The role instantiation is usually re-
flected by the data model where the role entity and in-
stantiated entity are both included in the model, linked
by the means of a specialization relationship (e.g., the
Video entity is a specialization of an abstract Item en-
tity).

2. The pattern is enriched by selecting the suitable data
elements to show (e.g. the information attributes of the
current video in the Video DataUnit, typically Title,
Description and the Video itself).

3. The pattern is integrated with other patterns and model
elements to obtain the desired functionalities. For ex-
ample, by design-time decision, the upload function-
ality can be added to the My Videos page eventually
reusing suitable units of the pattern. Finally the page
is integrated with the rest of the application with in-
coming and outgoing hypertext links.

The last phase is particularly delicate, as it can involve
a high level of complexity, especially when the design re-
quires merging several patterns in the same hypertext page.
The definition of a formal procedure to address the WebML
pattern composition issues is one of our current research
topics.

3 Capturing RIA Technological Features in
WebML

Our works on the technological aspects of Web2.0 ap-
plications focused on the definition of a conceptual model
that supports RIA application design, by abstracting from
specific implementation technologies [3]; this model cap-
tures the essential features offered by RIAs such as: dis-
tribution of computation and logic across client and server,
temporal and persistent data storage at the client-side, and

22

asynchronous, possibly bidirectional client-server commu-
nication. The proposed RIA model extends the WebML no-
tation conceived for traditional data-intensive applications:
the same notation can be used both for Web 1.0 and Web
2.0 applications.

A RIA application can be described by its structure and
behavior. The former comprises a data model, which spec-
ifies the content objects underlying the applications, and an
interface model, which describes the front-end exposed to
the user. The latter is represented by a dynamic model that
describes what happens when the user or other sources of
events interact with the application.

Data distribution among client and server can be re-
flected by refining the data model in order to provide a de-
signer with entities and relationships to represent distributed
query execution: in RIAs, contents reside both on the server
and in the clients, in the form of main memory objects as-
sociated with the server/client applications both in terms of
visibility and duration; persistent storage is provided, on the
server, by means of standard mechanism (e.g., database, file
systems etc.), while, on the client, some technologies also
allow the permanent storage of data for local (or offline)
application access. Data of RIA applications are therefore
characterized by two different dimensions: (1) the architec-
tural tier of existence, which can be the server or the client,
and (2) the level of persistence, which can be permanent
or temporary. Figure 2 depicts an example of a RIA data
model: it represents a simplified version of a multimedia,
collaborative platform for the publication, sharing and dis-
covery of contents produced by user’s communities. Graph-
ically, we mark client entities and relationships with a “C”
icon, and server elements with a “S” symbol; a filled icon
denotes temporary persistence and a non-filled icon perma-
nent persistence.

The entities/relationships on the left-hand side represent
data persistently stored on the server, like in traditional Web
applications. Content items are the main interaction ob-
jects for the application: the MMItem entity represents con-
tent published on the platform (e.g., photos, videos or au-
dio tracks), while the Member entity represents all applica-
tion users. A self-relationship connects each user with his
friend list; members manage one or more Playlist, each one
aggregating a set of content items. A MMItem belongs to
a given member and it is associated to one or more Tag and
Comment instances, created by registered users. Data about
content items, playlists, comments and tags are persistently
stored also on the client, to allow disconnected usage of the
application: while off-line, the user can process new items
to upload on the platform, update his playlists, and man-
age associated tags and comments. Reconciliation with the
server can be triggered when he goes online.

As data model elements are partitioned considering the
architectural tier of existence, a similar approach can be

| CWE 2008 Workshops, 7th Int. Workshop on Web-Oriented Software Technol ogies — IWWWOST 2008

NotificationFilter S 0:N| Friend
oD Member SO_N c B MMitem [C
QueryString CreatedBy | OID ' ommen oD
FilterFileType 11 0:N| Name WrittenBy oID Title
| Username : —1 Text Description
0:N 0:N 11
Password Timestamp 0:N| File 0:N
AddressedTo O:N| E-mail 1:1 MMFileType
Vessaae B ON UploadTS
Message -
o PublishedBy ON
TimeStamp . Contains Al
Subject O:N 1 s TaggedWith e
Body MMitem About
OID . ‘ . .
BelongsTo Title O:N - 0:N . 1:1 .
. 51111 0:N| Description Tag O:N c Tag Comment
Playlist File Taggedwith | O'D Playlist oD olls}
oD o:N MMFileType N onl T_ext oID Tfext T_ext
Name Contains UploadTS : Y| Timestamp Name Timestamp Timestamp

Figure 2. Data model with permanent client and server Entities/Relationships.

used to mark interface model elements in order to distribute
computation competencies across client and server. In par-
ticular, the designer should be able to specify how the com-
putation of the page and of its content is distributed between
the client and the server, how distributed data are managed
(to minimize data transmissions), how and when replicated
data are synchronized, etc. We therefore distinguish three
different aspects of interface modeling, each one related to
a specific feature to represent: structural composition, con-
tent publication, and content management.

From the technological standpoint, RIAs have a different
physical structure than traditional Web 1.0 applications: the
latter consist of multiple independent templates, processed
by the server and simply rendered by the client. RIAs,
instead, typically consist of a single application “client-
container” (e.g., a Java applet or a FLASH movie), which
loads different data and components based on the user’s in-
teraction, Moreover, the structure of the interface consists
of a topmost page (eventually contained into a traditional,
server-computed HTML page) partitioned into peer-level
sub-pages, independently calculated and rendered by the
client, possibly in collaboration with the server. As a con-
sequence, we design the structural composition of RIAs
by distinguish between two types of pages, classified into
server pages (marked with a circled “S”, and represent-
ing traditional Web 1.0 pages, where content and presen-
tation are calculated by the server, whereas rendering and
event detection are handled by the client) and client pages
(marked with a circled “C”, and representing pages incor-
porating content or logics managed — at least in part — by
the client). To reflect the complex, single-application shell
structure of RIA applications, client pages can contain other
client sub-pages.

For each page (or sub-page) the interface model speci-
fies the data to be shown, the available interaction mecha-

23

nisms, and the operations that may be triggered by the user
using the provided interaction mechanisms. To this aim,
we refined all the WebML concepts related to content pub-
lication and management with the explicit specification of
distribution between the server and the client: content and
operation units, selectors, and ordering clauses can be de-
fined either as server or as client, with some constraints
on the possible combinations. Units contained in a server
page are computed by the server and are defined as server
units, while units contained in a client page are computed
by the client (possibly invoking the server) and are defined
as client units. For a client unit it is possible to: 1) publish
or manipulate content locally stored at the client-side or (by
invoking the server) at the server-side (i.e., the reference en-
tity/relationship of the unit can be either a server or a client
one, persistent or temporary, as seen in the data model);
2) have client-side selector conditions and/or server-side se-
lector conditions; the former are computed locally at the
client, whereas the latter are executed at the server-side.
3) have client-side or server-side ordering clauses; the for-
mer are computed locally at the client, whereas the latter are
executed at the server-side. Instead, server units are entirely
computed by the server and therefore cannot use client-side
entity/relationships and cannot comprise client-side selec-
tors and ordering clauses.

As in Web 1.0 applications all the computations per-
formed by the server must rely only on data and operations
computable at the server side to cope with the asymmetric
nature of the Web (where the client calls the server and not
vice versa), in RIAs, instead, Web applications are allowed
to manage bidirectional communications in order to provide
advanced features like distributed event management. Pre-
vious works [8] explored the implications and possibilities
stemming from such capabilities but, due to space reasons,
we invite the reader to refer to the original paper.

| CWE 2008 Workshops, 7th Int. Workshop on Web-Oriented Software Technol ogies — IWWWOST 2008

g Content Navigation

Search Content
Keyword: String

Search Result

Content Details
selltem: OID

L |
L]

File Type Filter

L |
L]

MMitem

Title contains Keyword]
MMFileType = fileType]

O O

MMIltem
[[S]OID = selitem]

Figure 3. Example of RIA interface model.

Figure 3 shows an examples of RIAs interface models
based on the data model for the multimedia, collaborative
platform of Figure 2. The Content Navigation client page
contains two entry units: Search Content accepts a key-
word to be matched in the item’s title, while File Type Fil-
ter accepts its file type (e.g., audio, video). Both entry units
are linked to the Search Result index unit, defined over the
server entity MMItem and provide the parameters to be used
in the parametric conditions of the index unit (e.g., param-
eter Keyword:string is used by the selector condition
[Title contains Keyword]). Notice that the com-
putation of the page is managed by the client: however, be-
ing the Search Result defined over a server entity, the data
of the searched items are retrieved from the database server.
The query is then refined by the client, through the appli-
cation of the second, client selector condition, which filters
the retrieved instance without the need for a further server
request. The selection of a result from the list triggers the
calculation of the Content Details data unit, which retrieves
the data about the selected item from the server.

This example shows how the computation of the selec-
tors of the client index unit can be partitioned between the
server to comply with the trade-off between efficiency and
usability of the designed functionality: server-side selec-
tors allow reducing the data to be transmitted to the client,
client-side selectors avoid to invoke the server for their com-
putation. Similar considerations apply also to the partition-
ing of ordering clauses.

Further examples combining units defined over client
and server entities/relationships to exploit the client storage
capacities are available in [3].

While the data and interface model allow to represent
how content and data management can be distributed be-
tween the client and the server, the dynamic model explains
what happens upon the interaction of the user or, possibly,
of other events (like, for example, Web service calls). Rich
Internet applications offer a very flexible runtime behavior:
they allow one to selectively (re)compute or refresh only

24

a portion of the interface of the application and to main-
tain unchanged all the pieces of information that are not af-
fected by the interaction, so that unneeded re-computation
can be avoided. Dually, the interaction may cause some
pieces of content, which were previously displayed, to be
deactivated or invalidated because they are no longer con-
sistent with the rest of the page. The interface model pre-
sented in the previous subsection has been extended in [5]
with the specification of the behavior required to support the
possible effects of user’s interaction, expressed as compu-
tation sequences activated in response to interaction events.
The proposed dynamic model associates each occurrence of
interaction with the application (e.g., link navigation, Web
service calls, temporal events, and data-driven events like
data updates) with an ordered sequence of operators that
allow to (re)compute or invalidate the content and the pa-
rameters (used in parametric selectors) of the units of the
application.

4 Other Research Directions

Currently, we are working also on other research
projects, which can benefit from the Web 2.0 features.

Within the European PHAROS project' we are devel-
oping an audio-visual Web search portal, permitting users
to pose advanced queries to multi-media materials, access
results of queries using multi-modal and multi-channel in-
terfaces, and personalize the search experience by saving
queries in a personal profile, so that they can be exploited
for asynchronous notification of new relevant audiovisual
information. This ongoing research demonstrates that the
model-driven approach can help the design of such a com-
plex application and the generation of code of sophisticated
Rich Internet Application front-ends, typical of the multi-
media portals of the future.

IPlatform for searcHing of Audiovisual Resources across Online
Spaces — http://www.pharos-audiovisual-search.eu/

| CWE 2008 Workshops, 7th Int. Workshop on Web-Oriented Software Technol ogies — IWWWOST 2008

We are addressing also the problem of defining a Web
design process suitable for the multi-cultural audience of
a Web application in the globalization era [11]. Cultural
markers are defined as Web design elements and patterns
that meet the preferences of a specific cultural group, due to
some influential cultural factor. We are studying a method-
ology for identifying cultural markers, validating them by
user testing and turning them into design guidelines.

5 Future Trends and Conclusions

In this paper we have presented some research directions
ongoing at Politecnico di Milano on Web 2.0 applications,
mainly focussing on the social and the technological aspects
of Web 2.0. The two aspects are orthogonal and in the de-
sign of an application including both of them, they can be
considered in different steps: for example, first the design of
the application including the patterns for the social aspects
can be defined, then it can be refined with the extensions
proposed for implementing the application in a RIA plat-
form.

We believe that in the future social Web applications will
be more and more integrated in conventional Web applica-
tions: we foresee that in the next years companies will start
integrating also social features in their B2C portals, organi-
zations will foster user generated content and peer to peer
interaction in their Intranets, and so on. As far as the tech-
nological aspects are concerned, the current trend is already
showing an increasing supply of new tools and several new
Web applications are adopting the new technologies. How-
ever, the focus of the available tools is on the implementa-
tion of the applications for a specific framework/platform.

We believe that the integration of traditional model-
driven Web Engineering methods supporting conventional
Web development issues (data storage, publication, man-
agement, Web service publication and invocation, user pro-
file management, etc.) with RIAs and social Web 2.0 char-
acteristics is an essential factor for supporting the devel-
opment of well-crafted, maintainable, usable, and socially
effective Web 2.0 applications.

References

[1] Welie Interaction Pattern Library.
http://www.welie.com/patterns/.

J. Bishop. Increasing participation in online communities:
A framework for human-computer interaction. Comput.
Hum. Behav., 23(4):1881-1893, 2007.

A. Bozzon, S. Comai, P. Fraternali, and G. Toffetti Carughi.
Conceptual modeling and code generation for Rich Internet
Applications. In ICWE, pages 353-360, 2006.

R. Cheng and J. Vassileva. User- and community-
adaptive rewards mechanism for sustainable online commu-
nity. pages 332-336. 2005.

(2]

(3]

(4]

25

(3]
(6]

(7]
(8]

(9]

[10]

(11]

[12]

[13]

[14]

S. Comai and G. T. Carughi. A behavioral model for rich
internet applications. In /ICWE 2007, 2007.

M. Driver, R. Valdes, and G. Phifer. Rich Internet Applica-
tions Are the Next Evolution of the Web. Technical report,
Gartner, May 2005.

J. Duhl. White paper: Rich Internet Applications. Technical
report, IDC, November 2003.

G. Toffetti Carughi et al. Modeling distributed events in
data-intensive rich internet applications. In WISE 2007,
pages 593-602, 2007.

I. Jacobson, G. Booch, and J. Rumbaugh. The unified soft-
ware development process. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1999.

P. Fraternali and M. Tisi. Building community-based Web
applications with a Model-Driven approach and design pat-
terns [Submitted]. 1GI Global, 2008.

P. Fraternali and M. Tisi. Identifying Cultural Markers for
Web Application Design Targeted to a Multi-Cultural Audi-
ence. In ICWE2008, 2008.

Preciado, J.C. et al. Necessity of methodologies to model
Rich Internet Applications. In WSE 2005, pages 7-13,
September 2005.

J. Preece. Online Communities: Designing Usability and
Supporting Socialbilty. John Wiley & Sons, Inc., New York,
NY, USA, 2000.

S. Ceri et al. Designing Data-Intensive Web Applications.
Morgan Kaufmann Publishers Inc., 2002.

