
ICWE 2008 Workshops, 7th Int. Workshop on Web-Oriented Software Technologies – IWWOST 2008 

 

Modelling and Generating AJAX Applications:
A Model-Driven Approach

Vahid Gharavi, Ali Mesbah, Arie van Deursen
Delft University of Technology

The Netherlands
{S.V.VahidGharavi, A.Mesbah, Arie.vanDeursen}@ewi.tudelft.nl

Abstract

AJAX is a promising and rapidly evolving approach for
building highly interactive web applications. In AJAX, user
interface components and the event-based interaction be-
tween them form the founding elements, whereas in classic
web applications the notions of web pages and hypertext
links are central. Therefore modelling AJAX requires a dif-
ferent approach than what the current web modelling tools
are providing. In this paper we propose a UML scheme
for modelling AJAX user interfaces based on the MDA ap-
proach. We adopt ANDROMDA for creating an AJAX car-
tridge to generate an entire AJAX-based web application
with automatic back-end integration. The implementation
of this cartridge is a work in progress.

1 Introduction

In the years following the arrival of the Internet, new
web-based software technologies and platforms have been
emerging in an overwhelming pace. Recently, a broad col-
lection of new trends have appeared under the Web 2.0 um-
brella, changing the classical web interaction significantly.

A prominent enabling technology in Web 2.0 is AJAX
(Asynchronous JavaScript and XML) [5, 10], in which
a clever combination of JavaScript and Document Ob-
ject Model (DOM) manipulation, along with asynchronous
delta-communication is used to achieve a high level of user
interactivity on the Web [8]. After its inception in 2005, nu-
merous AJAX frameworks and libraries have appeared and
the technology has been evolving fast.

Maintaining web applications and keeping them up to
date with new technologies are often complex and expen-
sive tasks. Furthermore, the integration of different tech-
nologies, from front-end to back-end, seems challenging,
yet a necessity in building enterprise web applications.
When adopting a new and evolving technology such as
AJAX, it is very important to be able to cope with changing

environments from an architectural point of view. A frame-
work which is fit for the project today could easily be out
featured by a new one tomorrow.

One way to tackle these challenges is by abstracting
from the implementations through a Model-Driven Engi-
neering [13] approach, in which the AJAX application is
defined in a modelling language and the corresponding web
code is automatically generated. This approach enables us
to define the application once and generate the same appli-
cation to different frameworks.

There are different ways of modelling software systems.
The Object Management Group (OMG) has devised a num-
ber of standards for software development under its Model-
Driven Architecture (MDA) approach [12].

In this paper we explore an MDA approach for AJAX
web applications. The first step in an MDA approach to ap-
plication development is modelling; We therefore look into
how an AJAX web application can be modelled, while hav-
ing the ultimate goal of code generation from the models in
mind. We propose a UML scheme for modelling AJAX user
interfaces, and report on our intended approach of adopting
ANDROMDA for creating an AJAX cartridge to generate
the corresponding AJAX application code, in ICEFACES,
with back-end integration.

The paper is organized as follows. We start out, in Sec-
tion 2, by sketching the problem statement. In Section 3,
we explore the related work on current model-driven ap-
proaches for the web. In Section 4 we discuss AN-
DROMDA. In Section 5, the proposed AJAX meta-model
and the generation process are presented, after which Sec-
tion 6 discusses the findings and open issues. We conclude
the paper with a brief summary of our key contributions and
suggestions for future work.

2 Problem Statement

AJAX is a technique based on a collection of web tech-
nologies which can be used to create highly interactive web

32



ICWE 2008 Workshops, 7th Int. Workshop on Web-Oriented Software Technologies – IWWOST 2008 

 

applications. The interactivity aspect is manifested by the
fact that refreshing the whole page is not needed for each
client server interaction. The user interface can consist of
a single web page composed of UI components which can
be acted upon and updated independently of other compo-
nents. This technique has made it possible to port similar
versions of many desktop applications to the web, exam-
ples of which include office tools such as word processors
(Google Docs and Spreadsheets1) and e-mail management
software (Yahoo! Mail2).

AJAX applications can be seen as a hybrid of desktop
(e.g., Swing) and web applications, inheriting characteris-
tics from both worlds [10]. Therefore modelling AJAX re-
quires a different approach than what the current web mod-
elling tools are providing. Whereas in classic web appli-
cations the notion of web pages and links between them
is central, in AJAX, user interface components and the
event-based interaction between them form the founding el-
ements.

The advantages of MDA [11] encouraged us to explore
the possibilities of creating a tool which can transform
a platform independent model (PIM) to a platform specific
model (PSM) and subsequently to a single-page AJAX web
application. While tools exist for the generation of applica-
tions for specific platforms such as J2EE and .NET, we have
not encountered any such tool for AJAX. With such a trans-
formation, models used to generate legacy web applications
can be used to generate single-page web applications and
vice versa. Also the same models can be used to generate
code for different AJAX frameworks.

We are interested in an MDA approach for the main
structure of the AJAX application, as well as the possibil-
ity of integrating with back-end components such as Spring
and Hibernate. It should also be possible to model which
events affect which components (listeners). For the sake of
simplicity, we propose to leave certain layout information
such as the precise position of components and styling, out
of the abstract models.

3 Related Work

There have already been several developments in the area
of MDA for the web. In this section we explore some of the
most relevant approaches.

The Web Modeling Language (WebML) [3] is a vi-
sual notation for specifying the structure and navigation
of legacy web applications. The notation greatly resem-
bles UML class and Entity-Relation diagrams. Presentation
in WebML is mainly focused on look and feel and lacks
the degree of notation needed for AJAX web user inter-
faces [2, 14].

1 http://documents.google.com/
2 http://mail.yahoo.com

Conallen [4] proposes a UML profile for modelling web
applications. This approach is widely referenced as a web
modelling scheme. Koch and Kraus [6] propose UWE,
a UML profile and notations for modelling the navigation
and conceptual aspects of a web application. Both ap-
proaches are aimed at classic multi-page web applications.

RUX-model [2, 14] is an MDA approach towards Rich
Internet Applications (RIA) based on WebML. In this ap-
proach WebML is extended with notations which indicate
whether certain data is stored or presented on the client or
the server. In the latter stages, the RIA is modelled using the
RUX-model notation (not UML) and subsequently Flash-
based RIA instances (e.g., OpenLaszlo) are generated. Ac-
cording to the authors, also the same models can be used to
generate AJAX applications. It appears that only the user in-
terface part is generated by RUX-model since issues such as
the back-end or the toolkits employed in the generation of
the whole web application are not mentioned. RUX-model
is currently unavailable for experimenting.

Another attempt at an MDA approach for RIAs is found
in [7]. The approach is based on XML User Interface de-
scription languages and XSLT is used as the transformation
language between the different levels of abstraction. Again,
this approach is oriented towards the User Interface and
lacks flexibility in an MDA approach for the whole web
application. It also lacks a visual notation and cannot be
modelled using existing CASE-tools. This is also true in
the case of other XML-based UI languages such as XUL3,
XAML4 and UIML [1] which do not offer the simplicity of
a visual model.

Visser [15] proposes a domain-specific language called
WebDSL for developing dynamic web applications with
a rich data model. WebDSL applications are translated to
classical Java web applications, building on the JSF, Hiber-
nate, and Seam frameworks.

openArchitectureWare5 (oAW) is currently one of the
leading open-source MDA generator frameworks. It is very
extensible and supports model-to-model and model-to-text
transformations. However, oAW does not come with com-
plete integrable transformations for different web platforms,
nor does it define platform-independent elements which
can be used across web applications (and possibly other
paradigms). The lack of the aforementioned possibilities
are certainly not necessities for a good MDA framework yet
we consider them very convenient when working with a set
of varying technologies intended for web applications.

One approach which has gained much attention in the
web-based MDA community is the ANDROMDA MDA
generator6. We have based our approach on ANDROMDA

3 http://www.mozilla.org/projects/xul/
4 http://www.xaml.net/
5 http://www.openarchitectureware.org
6 http://www.andromda.org

33



ICWE 2008 Workshops, 7th Int. Workshop on Web-Oriented Software Technologies – IWWOST 2008 

 

which is an open-source extensible MDA framework.
This framework provides platform-independent modelling
schemes to model and integrate a wide variety of scenarios
and comes with a set of plugins, called cartridges, which
manage transformations to several different web settings
that use a combination of frameworks such as JSF, Struts,
JSR/EJB, Spring, and Hibernate.

One point in favour of openArchitectureWare is the clean
separation between the different models. Where in AN-
DROMDA it is not possible7 to tweak the PSM before trans-
forming to code or other PSMs, this remains attainable with
openArchitectureWare.

Aside from RUX, none of the approaches mentioned
above explore an MDA approach for AJAX web applica-
tions.

4 MDA using AndroMDA

In Section 5 we will investigate how an MDA tool such
as ANDROMDA can be used to model AJAX applications.
Before doing that, we first discuss ANDROMDA itself.

4.1 Example Application

In order to demonstrate the concepts more clearly, we
have created an example CRUD application for managing
persons. The example has been built using ANDROMDA
and uses the JSF, Spring and Hibernate frameworks. The
application is called PERSONMANAGER and can be used to
create new persons, remove or update existing ones and to
display the list of all persons found in the database.

4.2 AndroMDA

We have decided to use ANDROMDA to create an MDA
AJAX cartridge. The main reason behind this decision is
the availability of cartridges for different technologies and
platforms, as well as the ease of integration which AN-
DROMDA provides for these web technologies. In AN-
DROMDA we can use the same models to generate a web
application which uses JSF-Spring-Hibernate as well as one
which uses Struts-Hibernate. Furthermore, ANDROMDA
already defines PIM meta-elements which should hold for
a variety of different platforms. This makes the implemen-
tation of an AJAX cartridge easier since we can concentrate
on the transformation and the creation of an AJAX-specific
meta-model.

While the PSM specifications are contained in the car-
tridges, ANDROMDA contains a list of platform indepen-
dent elements which can be used to model the PIMs. These
elements should generally be enough to model most cases

7 The latest version of ANDROMDA is 4.0 and our work is based on version 3.3

Figure 1. PERSONMANAGER Use Cases used
by ANDROMDA.

but it is possible to add new PIM elements such as UML
stereotypes and tagged values. The transformation be-
tween the PIM, PSM, and code is carried out by what AN-
DROMDA calls metafacades (metamodel facades). Metafa-
cades are gateways to metamodel elements derived form the
models and they provide access to the model from the car-
tridge templates. The function of metafacades is best de-
scribed through an example. For instance, in a PIM model,
a class exists with a stereotype called TextInput. Let’s say
in our cartridge, we want to transform such a stereotyped
class to either a text field or a text area in an HTML page.
In the UML metamodel, TextInput is an instance of the
Class class. ANDROMDA allows access to this instance via
metafacades, which are classes with methods for accessing
various properties of this instance, such as it’s fully quali-
fied name. Such a metafacade could be called TextInputFa-
cade. A cartridge wanting access to the TextInput instance
can define its own metafacades, which can access the higher
level facades such as TextInputFacade. Thus for our car-
tridge we can define an HTMLTextInputFacade which can
decide whether to interpret a text input as an HTML text
area or a text field. This cartridge metafacade can base this
decision on the properties of the TextInput instance which it
can access through TextInputFacade.

For a typical application which contains a user inter-
face, ANDROMDA uses UML use case diagrams to define
the possible scenarios and to split up the application into
smaller parts. Figure 1 contains an ANDROMDA use case
diagram for our PERSONMANAGER example application.
It can be applied to different cartridges which are capable

34



ICWE 2008 Workshops, 7th Int. Workshop on Web-Oriented Software Technologies – IWWOST 2008 

 

Figure 2. Add Person Activity Diagram.

of generating a UI. In the context of a web application these
four use cases should be presentable to a user through the
browser. The ANDROMDA FrontEndUseCase stereotype
is applied to use cases which are used in the front-end of
an application. The FrontEndApplication stereotype defines
which use case is the application’s entry-point. Evidently
there can be only one use-case which can be an instance of
this stereotype.

The inner workings of each use case is subsequently
specified using UML Activity Diagrams. Figure 2 shows
the activity diagram corresponding with the add person use
case of Figure 1. The activities are either server side or
client side. The FrontEndView stereotype denotes an ac-
tivity which is client side, meaning it should be rendered
as a user interface. The server side activities can initiate
events which initialise form fields or store data retrieved
from forms. Outgoing associations from FrontEndView can
contain triggers with a list of parameters. These parameters
will be transformed to input fields in the form.

The diagrams mentioned above are concerned with the
front-end and should be connected to diagrams which are
used to model the back-end.

In ANDROMDA, the back-end of the web application is
modelled using stereotyped class diagrams, similar to the
conceptual models of UWE and WebML. The classes in
these diagrams represent controllers and persistence entities
of frameworks such as Hibernate and Spring. The methods
described in the activities of 2 refer to the methods of the
back-end controller classes.

5 Modelling Ajax User Interfaces

In this section we discuss the metamodel we propose for
modelling AJAX UIs and the code generation aspects for the
AJAX cartridge. Finally, we apply the modelling concepts
to the PERSONMANAGER example.

Figure 3. The proposed AJAX metamodel.

5.1 A Metamodel for AJAX

We have devised an AJAX metamodel to be used in the
PSM layer of ANDROMDA. This metamodel should be
able to capture the main structure of most AJAX user in-
terfaces.

The semantics of an AJAX user interface closely resem-
bles that of a native desktop application. In both cases the
user interface consists of a tree of application artifacts such
as windows, labels and buttons. Therefore examining how
the UI of desktop applications is modelled seems to be a rea-
sonable starting point to creating a modelling scheme for
AJAX. Desktop and AJAX applications generally offer the
following UI components [9]: Input components (e.g., text
field with auto-completion feature, text area, button, file, an-
chor, radio button and checkbox); Output components (e.g.,
label and media); Layout components (e.g., panel layout,
tab bar and menu bar).

Based on the structure of the Swing API, the tree like
structure of markup languages (e.g., XUL), and general
components of AJAX frameworks (ICEFACES) we have
created a modelling scheme for AJAX. Figure 3 shows
a simplified version of the AJAX metamodel which can be
expanded by adding more UI components. In principle, this
metamodel can also be used to model the UI of desktop ap-
plications employing event-based libraries such as Swing.

Containers and Navigation. As can be seen in Figure 3,
an instance of AjaxContainer is the owner of one or more
AjaxUseCase objects. It should provide access to the ap-
plication use cases by using one of the several navigation

35



ICWE 2008 Workshops, 7th Int. Workshop on Web-Oriented Software Technologies – IWWOST 2008 

 

mechanisms available to the object. An AjaxUseCase in-
stance is the result of the transformation of the PIM Fron-
tEndUseCase element. In the context of the PSM, a use
case defines a section of an AJAX UI which contains the
elements responsible for performing a use case and should
be navigable using a single-page mechanism. Ideally, infor-
mation such as which navigation mechanism is to be used
should be specified in the PSM, once it has been generated
from the PIM. As we mentioned earlier, this is not possible
in the version of ANDROMDA we have been working on
and therefore marks should be defined in the PIM to sup-
port a correct and complete generation of a PSM. Marks are
pointers in the PIM which give hints as to how certain PIM
elements should be transformed to PSM elements [11].

Nested containers are possible by allowing an instance
of AjaxUseCase to own a container which in turn consists
of one or more use cases. Examples of this behaviour can
be seen in nested menus or navigation trees.

Views and Components. The core of the user interface
which is presented to the user is contained in instances of
AjaxView. Each use case can hold one or more views. Sub-
sequently, each view can contain a number of ordered user
interface components. Multiple views are convenient in
cases where all the components should be replaced by new
components, e.g., a large form spanning several pages.

The views are holders of the categorised UI components
mentioned above. While the layout components are re-
flected in the AjaxContainer stereotype, the core UI compo-
nents fit into the view and are either components handling
input from the user, or displaying information (output) on
the browser.

Events and Listeners. The way events are initiated
and handled is one of the fundamental differences between
AJAX and classical web applications. With AJAX a whole
refresh of the page is not required as a consequence of an
event. Just as in desktop applications, components which
are interested in an event can be registered as listeners and
be notified when the event has occurred. The AjaxEvent
stereotype is designed to capture this information for com-
ponents contained in a view. Each view contains zero or
more events. For each event it should be specified which
element has initiated it (srcId), which element should be
displayed as a result, and a list of elements which have been
registered as listeners of this event.

5.2 Code Generation

Code generation for the metamodel described above is
carried out in the same manner as in the other cartridges of
ANDROMDA. Apache Velocity8 template files gain access
to model elements through metafacades. They can subse-
quently iterate through the model abstract syntax tree and

8 http://velocity.apache.org/

Figure 4. An instance of the AJAX metamodel
for PERSONMANAGER.

write web application files. These files will be based on the
ICEFACES AJAX framework, which is itself based on the
JSF framework. The completeness9 of ICEFACES in terms
of the AJAX components it offers persuaded us to make
this choice. Furthermore, we have chosen to implement
a facelets10 version of ICEFACES, which constitutes that the
implemented files concerned with the view are actually very
similar to a component-tree, so the model has a somewhat
intuitive mapping with the generated code. Facelets uses
file inclusions to form a tree of .xhtml files which represent
the UI of the web application. This is very similar to XML-
based UI descriptors such as XUL and can be created by the
templates while iterating through the model elements. The
files generated by ANDROMDA form the structure of the
web application and are already integrated with the other
employed frameworks through the back-end classes. The
core business logic which typically resides in the controller
part of the web application should be coded manually by the
developer.

5.3 Case Study Using the AJAX Cartridge

We apply the above concepts for modelling AJAX UIs to
the PERSONMANAGER example mentioned earlier. PER-
SONMANAGER has already been built using the AN-
DROMDA JSF cartridge, which uses a legacy UI. A shift
to AJAX would mean each of the use cases should be ac-
cessed through a single-page mechanism. An example

9 http://component-showcase.icefaces.org/
10 Facelets is a view technology for JSF, and a powerful templating system based

on XML-style templates, https://facelets.dev.java.net

36



ICWE 2008 Workshops, 7th Int. Workshop on Web-Oriented Software Technologies – IWWOST 2008 

 

model for PERSONMANAGER based on the AJAX meta-
model is shown in Figure 4. In this model, the navigation
to the use cases is managed through a tab bar and the only
event described for the remove person use case is captured
using the AjaxEvent stereotype. This event only causes the
view to be changed but it could also have a list of listeners
(other components) be updated.

The development of the AJAX cartridge for AN-
DROMDA is a work in progress and a working cartridge
will be available for download as soon as enough code can
be generated for a simple AJAX application.

6 Discussion

Issues regarding which data resides on the server or the
client are currently not captured by our model, since we be-
lieve these are framework-specific (for example GWT and
Echo2 designs differ in this issue). The choice of AJAX
framework may somewhat affect the AJAX metamodel pro-
posed in this paper. This will be mainly in the area of the
offered components and not the main structure of the web
application.

Many web applications seen today are a blend of AJAX
and classical multi-page applications where small compo-
nents in the page use AJAX to avoid refreshing the whole
page. Our aim has been to devise a metamodel for single-
page user interfaces and the aforementioned applications do
not fit in this category. Nevertheless we believe that with
minor adjustments to the metamodel these hybrid applica-
tions can also be modelled, e.g., events which cause a redi-
rect to a new instance of AjaxContainer.

7 Concluding Remarks

The main contributions of this paper can be summarised
as follows: an overview of the current model-driven web ap-
proaches; a meta-model for modelling AJAX user interfaces
in UML and the proposed approach for creating an AJAX-
based ANDROMDA cartridge with ability to integrate with
back-end components such as Spring and Hibernate.

Future work consists of completing and testing the im-
plementation of the AJAX cartridge and conducting case
studies to evaluate our proposed meta-model and the overall
MDA approach for modelling and generating AJAX web ap-
plications. The cartridge will be made available for down-
load soon.

References

[1] M. Abrams, C. Phanouriou, A. L. Batongbacal, S. M.
Williams, and J. E. Shuster. UIML: An appliance-
independent XML user interface language. In WWW ’99:

8th International Conference on World Wide Web, pages
1695–1708, 1999.

[2] J. Carlos Preciado, M. Linaje, S. Comai, and F. Sanchez-
Figueroa. Designing Rich Internet Applications with Web
engineering methodologies. In Proceedings of the 9th IEEE
International Symposium on Web Site Evolution (WSE’07),
pages 23–30. IEEE Computer Society, 2007.

[3] S. Ceri, P. Fraternali, and A. Bongio. Web modeling lan-
guage (WebML): a modeling language for designing web
sites. Computer Networks, 33(1-6):137–157, 2000.

[4] J. Conallen. Building Web Applications with UML (2nd Edi-
tion). Addison-Wesley, 2003.

[5] J. Garrett. Ajax: A new approach to web applications.
Adaptive path, 2005. http://www.adaptivepath.com/
publications/essays/archives/000385.php.

[6] N. Koch and A. Kraus. The expressive power of UML-based
web engineering. In IWWOST ’02: 2nd International Work-
shop on Web-oriented Software Technology, pages 105–119.
CYTED, 2002.

[7] F. J. Martı̀nez-Ruiz, J. Munoz Arteaga, J. Vanderdonckt, and
J. M. Gonzàlez-Calleros. A first draft of a model-driven
method for designing graphical user interfaces of Rich In-
ternet Applications. In LA-Web ’06: Proceedings of the 4th
Latin American Web Congress, pages 32–38. IEEE Com-
puter Society, 2006.

[8] A. Mesbah, E. Bozdag, and A. van Deursen. Crawling Ajax
by inferring user interface state changes. In Proceedings
of the 8th International Conference on Web Engineering
(ICWE’08). IEEE Computer Society, 2008.

[9] A. Mesbah and A. van Deursen. Migrating multi-page web
applications to single-page Ajax interfaces. In Proceedings
of the 11th European Conference on Software Maintenance
and Reengineering (CSMR’07), pages 181–190. IEEE Com-
puter Society, 2007.

[10] A. Mesbah and A. van Deursen. A component- and push-
based architectural style for Ajax applications. Journal of
Systems and Software (JSS), 2008. To appear.

[11] J. Miller, J. Mukerji, et al. MDA Guide Version 1.0.1, 2003.
http://www.omg.org/docs/omg/03-06-01.pdf.

[12] OMG. MDA, 2008. http://www.omg.org/mda.
[13] D. C. Schmidt. Model-driven engineering. Computer,

39(2):25–31, 2006.
[14] M. L. Trigueros, J. C. Preciado, and F. Sánchez-Figueroa. A

method for model based design of Rich Internet Application
interactive user interfaces. In ICWE ’07: Proceedings of the
7th International Conference Web Engineering, pages 226–
241. Springer, 2007.

[15] E. Visser. WebDSL: A case study in domain-specific lan-
guage engineering. In Generative and Transformational
Techniques in Software Engineering (GTTSE 2007), Lecture
Notes in Computer Science. Springer, 2008.

37




