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Abstract. Data on the Semantic Web currently does not have any stan-
dardized or any de-facto agreed upon way to exhibit provenance infor-
mation, yet provenance is the foundation for any reasonable model of
privacy and trust. Yet, currently every RDF triple does not have any
coherent way of storing provenance information on the Semantic Web.
We present the hypothesis that provenance is by far the most impor-
tant data needed on the Semantic Web for privacy and trust, and review
previous work in database systems on provenance. We put forward the
concept that the three main provenances operators (insertion, deletion,
and copy) from provenance work in database systems can be used on
the Semantic Web. Furthermore, we hypothesize that such information
naturally should be stored in or using the name URI of named graphs.
We show that such an approach can help solve practical issues of privacy
and trust in social networks using a real-world example.
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1 A Theory of Provenance

Provenance has remained for the most part an undeveloped area of research,
both in traditional database systems and on the Semantic Web. The most well-
known approach presented by Berners-Lee, Kagal, and others [1] attempts to
capture provenance information in terms of proofs using a Datalog-like language
[7]. An alternative approach to provenance has been that of ‘RDF Molecules’ by
Ding et al., which proposes a level of granularity (the ‘molecule’) that allows the
original RDF statements to be re-constructed from disparate graphs [8]. Neither
of these approaches have reached large-scale usage on the Semantic Web, much
less standardization, and both approaches present a number of disadvantages.
While the approach of RDF molecules allows one to reconstruct a graph, it does
not allow the tracing of provenance of the graph if any of the information in the
graph changes. Despite appeals to the fact that ‘cool’ URIs should not change,



the data hosted at URIs will change. For example, in my social-networking pro-
file my organizational affiliation will likely change over time. How can we keep
track of this? Proof-based systems around a variant of Datalog rules are too
heavy-weight. Is it not odd that one can stick to standard RDF for describing
data, but then move to a more expressive query and rule language to explain
provenance? Also, the two most dominant Datalog-like Semantic Web languages,
the upcoming W3C RIF language [2] and the N3 language [1], both present the
syntactic problem that they themselves are not easily represented as RDF. While
the W3C RIF language has been built so that it can deal with RDF data, the
standard syntax of RIF is itself in idiosyncratic XML. N3 has its own syntax,
that while close to the Turtle syntax for RDF, expands RDF in a number of
ways that makes it semantically incompatible with RDF. Work on the Open
Provenance Model for workflows is similar to RDF but seems to attempt to pre-
maturely optimize an entire range of provenance operations without determining
whether or not these operators can be derived from a few simple operators or are
even necessary [12]. It seems a more advantageous route to some sort of prove-
nance information would be to create a minimal vocabulary for provenance that
would be expressible in standard RDF.

Recent work in provenance on relational databases has aimed precisely at creat-
ing such a minimal vocabulary, albeit for traditional relational data rather than
RDF. In particular, the foundational work on provenance distinguishes between
two kinds of provenance, the where provenance, which is the “locations in the
source databases from which the data was extracted,” and the why provenance,
which is “the source data that had some influence on the existence of the data”
[4]. Buneman et al. [4] present a Datalog-based model-theoretic semantics for
calculating this kind of where and why provenance over queries. However, the
traditional database community has been confronted with the same issues at the
Semantic Web community with regards Datalog, as it would be better for most
databases to keep the provenance in pure relational data. Therefore, current the-
oretical database work attempts to create more realistic models of provenance
whose formal semantics do not rely on Datalog yet can still trace both the where
and why provenance and can be implemented on top of run-of-the-mill SQL
databases [3].

The most simple and accessible work from the database community is focused
on providing a simple update language that tracks provenance, by focusing on
three primary provenance operators : insertion (ins), deletion (del), and copy
(copy). This is given by the grammar u, where for given fields in database q

and p and a specific value v and a specific field a, u ::= (ins a : v into p) ∨
(del a from p) ∨ (copy q into p) [3]. Buneman et al. considers this a ‘cut-and-
paste’ model that can take into account the movement of data [3]. Such a model
can then be easily implemented on top of normal databases by expanding the
database so that sections of the database can store their provenance informa-
tion, called the provenance trace. This trace can be queried, such that a user



should be able to query the ultimate ‘source’ of some data and its change his-
tory. Implementation-wise, every sector of rows and columns that has either been
changed or copied from another database can have its provenance tracked by ex-
panding the database with further rows and columns. So, whenever an insert,
delete, or copy operation is committed, the corresponding provenance trace is
tracked with identifiers for the source and target. A simple approach that records
provenance with every interaction that changes the state of the database would
lead to an explosion of database size, so current research is studying ways of
optimizing provenance storage [3]. In an attempt to find a more solid semantic
foundation for provenance, Cheney et al. [6] proposed a semantic characteri-
zation of provenance using functional dependency analysis, although they also
proved that such a minimal dependency provenance is not computable, although
dynamic and static techniques can approximate it. Another alternative for the
semantics has been suggested by Green et al. [10], who used semi-rings to gen-
eralize algorithms over both why-provenance and relational algebras.

2 A Provenance Framework for the Semantic Web

It is our hypothesis that a simple vocabulary, composed of insert, delete, and
copy operations as introduced by Buneman et al. provides a flexible format for
provenance on the Semantic Web [3]. The current activity in the database com-
munity can then be used by the Semantic Web community in order to bootstrap
a realistic implementation and scalable model of provenance. However, a few
design issues are needed to be made in order to make the database approach
compatible with the Semantic Web.

The first design choice is that the provenance operations be rephrased to operate
over graphs rather than traditional relational data. Another question is whether
or not separate ins and copy operators are needed by the Semantic Web. The
ins operator in the context of databases (including XML databases) inserts a
specific value, which may be a new value not in the graph or a replacement of a
current value, at a determined location in the graph, while copy merely copies an
entire graph. Thus, a ins function should be employed when one wishes to actu-
ally change or ‘update’ a given particular graph, as when changing the subject
literal of a graph, while the copy function merely changes the name (often the
host) URI of a graph or merges graphs, not necessarily changing any values. So,
re-phrasing the provenance operator grammar u into RDF, given source graph
G and target graph T as well as graph update a, u ::= (ins a into T ) ∨ (del
G from T ) ∨ (copy G into T ). Traditional graph merge is then just when ins a

into T without any deletion and where at least one node x is shared by at least
one a and T .

The problem with phrasing provenance operators in RDF is that for the most
part they deal with operations amongst entire graphs, and RDF lacks official sup-
port for identifying graphs. However, there is unofficial yet widely implemented



support in the form of named graphs, where each graph G is then identified with
a name URI [5]. The idea of using named graphs for provenance is not new [5],
but previously has been restricted to assertions that identify who is making a
claim, not the provenance story championed by Buneman et al. [3]. If we assume
the implementation of named graphs and the restriction of insertion values to
(possibly typed) literal values, then we can phrase each of the provenance oper-
ations as RDF properties between the URIs of named graphs. The named graph
approach solves the problem of where to store the provenance traces. Obviously,
the provenance stores for each graph should be accessible, ideally using Linked
Data principles, from the name URI of the named graph. This allows the name
URI to ideally also serve as a SPARQL endpoint through which provenance
queries can be done.

3 An Example of Provenance for Privacy and Trust

Most current efforts at privacy and trust within social networks make two as-
sumptions. The first is that they assume that privacy can be handled via some
sort of access control language, such as the unstandardized access language or
an ontology like the Rei ontology developed by Kagal [11]. Assuming that policy
languages can be phrased in terms of access control makes a certain amount
of sense. Yet at minimum, this viewpoint is predicated upon certain behavior
being either explicitly allowed or not, with the main behavior likely being the
copying (equivalent to ‘viewing,’ as with a view one can doubtless copy), inser-
tion, and deletion operations of the provenance. So, any access control language
should operate over at least the three provenance operators. Second, Semantic
Web research like Goldbeck’s Trust Ontology makes the radically simplistic as-
sumption that trust can be quantified as integer-valued rating between 1 to 10
(or some other arbitrary numbers, such as real-valued rating between 0 and 1)
[9]. Where do such ratings come from? Obviously, they may come from the often
unreliable subjective impression of the users. It is far better to calculate ‘trust’
from actual data sources and its changes. Therefore, it is of utmost concern to
track the provenance of the data, and the use of provenance traces with named
graphs allow such trust ratings to be calculated in a principled and algorithmic
manner, and then privacy constraints built on top of such trust ratings.

For a quick example, we will use the infamous real-world ‘dump your pen friend’
scenario.1 A young student has her picture taken and uploaded by a friend to
Flickr with a Creative Commons license that allows commercial use. A major
company finds the photo on Flickr and proceeds to use it in an advertising cam-
paign across Australia (where the student lives), with an unflattering slogan
beneath the photo that says “Dump Your Pen Friend.” The young student feels
emotionally damaged and sues the company in court. The problem at hand can
be confronted one of two ways. The first is to assume that the owner of the photo

1 http://ipandentertainmentlaw.wordpress.com/2007/10/15/update-dumb-your-pen-
friend/



perhaps did not fully understand what situation they were putting their friend
in by releasing their photo under the Creative Commons License, in which case
all that is needed is to offer a more full explanation of the license. However, it is
more likely to assume that the original owner of the photo understood Creative
Commons, but did not notify their friend that an unflattering picture of them
was being uploaded that could be used for-profit by a company, and the com-
pany did not alert the young student. However, in order to both determine who
was in the picture and the chain of events of copying the photo that led to the
incident, what precisely is needed is provenance.

One can see how a provenance framework could have led to a solution to this
scenario. When the photo was originally taken, the provenance information
about the date the picture was taken and its owner could be taken, phrased
as FOAF RDF statements involving the URI of the picture, using ex as the
http://www.example.org/ namespace, foaf: is http://xmlns.com/foaf/spec/, prov:
as a yet undetermined provenance namespace, and all examples given using the
Turtle syntax (assuming the student whose picture was taken is ‘Jane Doe’ and
the taker of the picture was ‘John Doe’). So the graph ex:photo.jpg rdf:type
foaf:Image, foaf:maker ex:JohnDoe could be given a name URI ex:thephoto#it.
When the picture was uploaded to a popular social-networking site, the stu-
dent could have seen themselves in the photo and so ‘tagged’ themselves in the
photo, and thus inserted a new value using prov:ins, with the new value being
the triple ex:newtriple which contains ex:photo.jpg foaf:depicts ex:JaneDoe. This
provenance information is recorded using ex:/photo#it prov:ins ex:newtriple. Af-
ter the photo was uploaded, the company then copied the photo, and this is
stored in the provenance trace of the named graph by using the prov:copy op-
erator. Assuming the company’s URI to be http://thecompany.info, this could
be recorded as ex:photo#it prov:copy http://thecompany.info/copyOf/photo#it.
Relevant temporal information could also be added to the named graph records
in the provenance trace. Therefore, the provenance trace of the photo could be
followed, so that before the photo was used in a nation-wide advertising cam-
paign, the company and student both could determine who was in the photo.

4 Conclusion and Future Work

We have argued so far in this paper that a simple model of provenance, based
around the central three provenance operators and the storage of provenance
traces, can be used on the Semantic Web by merging it with an approach
based on named graphs. This is at best a sketch towards the completion of
a provenance-aware Semantic Web. A small vocabulary of provenance operators
need to be standardized and given a namespace URI. Second, the interaction
of provenance operators and traces with RDF and named graphs needs to be
given a formal semantics and implemented. This step may not be as difficult as
it seems, as simple operations such as ‘copy’ or where provenance are already
implemented by many as the default use of named graphs, and the deletion and



copy operators are already implemented in the form of the proposed SPARQL
Update language [14]. There has already been work on the formal semantics
for provenance operators and traces within the nested relational calculus [6] as
well as giving RDF provenance over named graphs a formal semantics [13]. So,
a practical RDF vocabulary for provenance with a formal semantics should be
possible to deploy and standardize.
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