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Universidad de Concepción, Chile
{lbravo,andrea}@udec.cl

Abstract. This paper introduces a formalization of a set of spatial se-
mantic integrity constraints on an extended-relational database model.
The formalization extends traditional notions of functional and inclusion
dependencies by adding interaction with spatial attributes. This enables
to specify implicit and explicit topological conditions between geome-
tries and impose constraints on thematic attributes that depend on the
geometries. We study the consistency problem for this set of integrity
constraints, which rises issues about topological consistency and realiz-
ability of spatial constraints. We show that the consistency problem is
not tractable and provide some conditions under which it is.

1 Introduction

Spatial databases systems enhance traditional databases with models and query
languages that support spatially referenced data and provide spatial indexing
and efficient algorithms for spatial query processing [8]. The use of spatially ref-
erenced data is an essential component of such diverse applications as Geographic
Information Systems (GIS), Computer-Aided Design (CAD), multimedia infor-
mation systems, data warehousing, mobile computing, location-based services,
and NASA’s Earth Observing System (EOS).

Fundamental to spatial databases are the spatial data models or geometric

models that represent objects in a space. Examples of such models are the
spaghetti [18], topological [9, 18], and polynomial models [14]. Most of the cur-
rent spatial database management systems (SDBMSs) implement extensions to
relational databases, so called object-relational or extended-relational databases,
by defining spatial data types that represent the geometry of objects in the Eu-
clidean space (e.g. Postgres+Posgis, Oracle Spatial SQL, and MySql Spatial).

In the context of database consistency, spatial databases offer new challenges
due, particularly, to the complex nature of spatial attributes, the derivation of
implicit relations from spatial attributes, and the combination of spatial and
non-spatial attributes (called thematic attributes). SDBMSs enforce integrity
constraints used for preventing structural inconsistency of spatial attributes (i.e.
domain constraints in the relational context). For example, they enforce that
regions must be represented by closed and simple polylines [2]. The other impor-
tant type of spatial integrity constraints, which are not implemented in SDBMs,



are the spatial semantic integrity constraints (also known as topo-semantic in-
tegrity constraints) that relate geometries with semantic conditions. For exam-
ple, a semantic constraint can enforce that a city’s administrative region must
be contained within its corresponding city limits [17]. These constraints are less
formalized and are highly dependent on the application.

In this work we define a constraint language to specify spatial semantic con-
straints. This language extends functional and inclusion dependency constraints
to combine spatial and thematic attributes.

Example 1. Consider a spatial database that stores information of land parcels
and buildings using the schema R = {Landparcel(id ,owner ,area,g),Building(id ,
use,g)}. In predicate Landparcel , the thematic attributes are id , owner , and area

(in m2), and the only spatial attribute is g that stores the geometry of each land
parcel. Similarly for Building , which has id and use as thematic attributes and
g as spatial attribute. Figure 1 shows an instance of this schema. In it, dark
rectangles represent buildings and white rectangles represent land parcels.

Landparcel id owner area g

L45 J. Dupont 840 g1

L96 J. Smith 800 g2

L33 A. White 508 g3

Building id use g

B23 residential g4

B87 industry g5

g3

g2g1

g4

g5

Fig. 1. A spatial database instance

In this database, we need traditional constraints to enforce that attribute id is
unique in both predicates. But, there are other relations that cannot be captured
by traditional functional dependencies or inclusion dependencies. For example,
we need spatial constraints to ensure that land parcels do not overlap, that each
building is inside a land parcel, and that the value in attribute area corresponds
to the area of the spatial attribute g in predicate landparcel . 2

Some studies have addressed the specification of spatial integrity constraints
[1, 10, 12]; however, they treat spatial data in isolation from other integrity con-
straints, this is, without considering the interaction with the thematic attributes.
Other studies have analyzed topological [6, 12] and realizability [7] problems.
The topological problem analyzes the consistency of topological relations as ex-
pressed by inference tables. The realizability problem, on the other hand, ana-
lyzes whether or not there is a set of geometries that realizes a set of topological
relations. These problems differ from the database consistency problem, or sim-
ply consistency problem, in which the goal is to determine if there is a non-empty
database instance that satisfies a set of integrity constraints. In the consistency



problem the number of geometries in a database instance that must satisfy a set
of constraints is unknown. For topological and realizability problems, instead,
there exists a pre-defined number of geometries that must satisfy a set of con-
straints expressed by the possible topological relations between them. To the
best of our knowledge, the consistency problem of spatial integrity constraints
has not been studied so far.

This is why in this paper we formalize a set of spatial semantic integrity
constraints that: (i) generalizes traditional functional and inclusion dependen-
cies, (ii) enables to specify topological relations between spatial objects, (iii)
enables to relate both spatial and thematic attributes, and (iv) are expressive
enough to capture constraints found in practice. Furthermore, we reason about
these constraints and determine whether or not the set of integrity constraints
is consistent, i.e., if there is a non-empty database instance that satisfies the
set of constraints. We show that this problem is not tractable and provide some
conditions under which it is.

The organization of this paper is as follows. In Section 2 we present the
data model used to represent spatial databases. Then, in Section 3 we present
the set of spatial semantic constraints for which we will study the consistency
problem in Section 4. Finally, in Section 5 we briefly discuss related work and
give conclusions.

2 A Data Model for Spatial Databases

Current models of spatial data are typically seen as extensions of the relational
data model (object-relational models), with the definition of abstract data types
to specify spatial or geometric attributes. We now introduce a general spatia-
relational data model that includes spatia-relational predicates (that can be
purely relational) and also spatial ICs. It uses some of the definitions introduced
in [15] and is independent of the geometric data model underlying the represen-
tation of spatial data types.

A spatia-relational database schema is of the form Σ = (U ,A,S,R, T ,O),
where: (a) U is the possibly infinite database domain of atomic thematic values
that includes R. (b) A = {A1, . . . , An} where each Ai is a thematic attribute
which takes values in R. (c) S = {S1, . . . ,Sn} where each Si takes admissible
values in P(R2), the power set of R

2. (d) R is a finite set of spatia-relational
predicates each of them with a finite and ordered set of attributes belonging to
A or S. We sometimes use R(A1, . . . , An) to represent the predicate with its set
of attributes. (e) T is a fixed set of binary topological predicates. (f) O is a fixed
set of geometric operators that take spatial and thematic arguments and return
a geometry or a value in U .

A database instance D of a spatia-relational schema Σ is a finite collection
of ground atoms (or spatial database tuples) of the form R(c1, . . . , ci, . . . , cn),
where (a) R(A1, . . . , Ai, . . . , An) ∈ R, (b) if Ai ∈ A, then ci ∈ U (c) if Ai ∈ S,
then ci ∈ Ad ⊆ P(R2) where Ad is the class of closed regions in the topological
space formed by point sets of the Euclidean space. These regions represent real
objects that have geographic extent, this is, they are not empty.



The elements of T are binary topological relations with a fixed semantics.
There are eight basic binary relations: Overlaps (O), Equal (EQ), CoveredBy (CB),
Inside (IS ), Covers (CV ), Includes (IC ), Touches (TO), and Disjoint (D) [16, 5]1.
In addition to the basic topological relations, SQL languages consider some de-

rived relations that can be logically defined in terms of the other basic predi-
cates: Intersects (IT ), Within (W ), and Contains (C) [13]. A lattice showing how
these relations are grouped to derive new relations is shown in Figure 2. The
eight basic relations are shown in boxes containing prototypical cases and the
relations included in current SQL are represented with thick borders. For ex-
ample, Contains is obtained by grouping Equal, CoveredBy and Includes, this is,
A Contains B if either A is Equal to, is CoveredBy or Includes B. Observe that
relation IDisjoint (IDC) (internally disjoint) was added even though it is neither
basic nor used in SQL. Nonetheless, it is added because it is useful to represent
situations found in practice. In what follows we assume that T contains all the
relations shown in Figure 2.

T

IT

W C

IDC

DTOICO CVCB

T

IS EQ

Fig. 2. Subsumption lattice of relations O (Overlaps), CB (CoveredBy), IS (Inside), EQ
(Equal), CV (Covers), IC (Includes), TO (Touches), D (Disjoint), IT (Intersects), IDC
(IDisjoint), W (Within), and C (Contains).

Given a database instance, additional spatial information is usually computed
from the explicit geometric data by means of the spatial operators in O. Some
relevant operators are: Area, Union , Intersection and Difference (cf. [13] for the
complete set of spatial predicates defined within the Open GIS Consortium).

3 Spatial Semantic Integrity Constraints

In this section we present a set of spatial semantic integrity constraints that
generalizes classic integrity constraints and that are capable of dealing with
spatial data.

To simplify the presentation we will use the following notation: (i) variables
x, y, z, x1, x

′, . . . represent values in U or geometries, (ii) variables g, g1, g
′, . . .

1 The names of relations given here are in agreement with the names used in current
SQL languages [13], but differ slightly from the ones in the research literature.



represent geometries, and (iii) variables u, v, w, u1, u
′, . . . represent values in U .

(iv) symbols x̄, ū, x̄1, . . . denote a possibly empty sequence of distinct variables
or, with a slight abuse of notation, a set of variables.

Definition 1. A spatial semantic integrity constraint (SSIC) is one of the fol-
lowing:
Functional Dependency (FD):

∀ūȳ1ȳ2v1v2(P (ū, ȳ1, v1) ∧ P (ū, ȳ2, v2) → v1 = v2)
where ȳ1 ∩ ȳ2 = ∅.
Inclusion Dependency (IND):

∀ūx̄(P (ū, x̄) → ∃ȳR(ū, ȳ))
Topological Dependency (TD):

∀ūȳ1ȳ2ḡ1ḡ2(P (ū, ȳ1, g1) ∧R(ū, ȳ2, g2)
∧n

i=1 vi 6= wi → T (g1, g2))
where ȳ1 ∩ ȳ2 = ∅ and for every i, variable vi ∈ ȳ1 and variable wi ∈ ȳ2.

Spatial Referential Dependency (RD):
∀ūx̄g1(P (ū, x̄, g1) → ∃ȳg2R(ū, ȳ, g2) ∧ T (g1, g2))

Comparison Constraint (CC):
∀x̄(P (x̄) → t1 ⊙ t2)

where ⊙ ∈ {>,=, 6=} and terms t1 and t2 are constructed from variables in x̄

and operators in O. 2

FDs and INDs correspond to the traditional constraints since there are no joins
nor references between geometrical attributes. Indeed, spatial attributes are not
used in keys nor in referenced attributes since that would have a high compu-
tational cost associated in terms of space and time. Also, from a practical point
of view, geometries by themselves do not identify spatial objects, so they need
some kind of thematic key. TDs enforce topological relations between spatial
attributes and RDs enforce inclusion dependencies where the spatial attributes
of the referenced table should have some particular spatial properties. Finally,
comparison constraints can be used to compare values within a tuple in P . Note
that none of the constraints considers joins on geometric attributes.

Since all the topological relations in T have their converse (or inverse) relation
in T , there is no need to have an RD with T (g2, g1) in replacement of T (g2, g1).
Indeed the constraint ∀xg1(P (x, g1) → ∃g2R(x, g2) ∧ CoveredBy(g2, g1) can be
replaced by ∀xg1(P (x, g1) → ∃g2R(x, g2) ∧ Covers(g1, g2).

Example 2. (example 1 cont.) The following SSICs can be defined:

∀̄ (Landparcel(u, v, w, g) ∧ Landparcel(u, v
′

, w
′

, g
′) → v = v

′) (1)

∀̄ (Landparcel(u, v, w, g) ∧ Landparcel(u, v
′

, w
′

, g
′) → w = w

′) (2)

∀̄ (Landparcel(u, v, w, g) ∧ Landparcel(u, v
′

, w
′

, g
′) → Equal(g, g

′)) (3)

∀̄ (Building(u, v, g) ∧ Building(u, v
′

, g
′) → v = v

′) (4)

∀̄ (Building(u, v, g) ∧ Building(u, v
′

, g
′) → Equal(g = g

′)) (5)

∀̄ (Landparcel(u, v, w, g) ∧ Landparcel(u′

, v
′

, w
′

, g
′) ∧ u 6= u

′ → IDisjoint(g, g
′)) (6)

∀̄ (Building(u, v, g) ∧ Building(u′

, v
′

, g
′) ∧ u 6= u

′ → IDisjoint(g, g
′)) (7)



∀̄ (Building(u, v, g) → ∃xyzg
′ (Landparcel(x, y, z, g

′) ∧ Within(g, g
′))) (8)

∀̄ (Landparcel(u, v, w, g) → Area(g) = w) (9)

Functional dependencies (1-2) together with topological dependency (3) ensure
that id is a key of table Landparcel. In the same way, constraints (4-5) enforce
that id is a key of Building. The topological dependencies (6) and (7) ensure that
land parcels and buildings, respectively, are either adjacent or disjoint. Finally,
the comparison constraint (9) forces attribute area to contain the area of the
spatial attribute g. 2

4 Consistency Problem

Before checking if a database satisfies a set of spatial semantic constraints, we
need to make sure that the constraints themselves are not in conflict. Thus, we
first need to check if the integrity constraints are consistent.

The consistency problem for a database schemaΣ and a set of ICs IC , consists
on determining whether there exists a non-empty database instance D over Σ
that satisfies IC . This is, checking if there exists a nontrivial database that
satisfies the constraints.

This consistency problem is related but different from the topological and real-

izability problems [6, 7]. A set of topological relations defined over a set of objects
is said to be topologically consistent if there are no contradictions among the
relations. For example three objects A, B and C and the relations Covers(A,B),
Covers(B,C), Disjoint(A,C) are topologically inconsistent since the first two re-
lations imply that A and C cannot be disjoint. There are some cases in which
even if the topological relations are not inconsistent, the geometries may not be
realizable due to reasons of planarity, this is, there are no geometries in R

2 that
satisfy those relations. The problem of determining if those geometries exist is
the realizability problem.

Those problems differ from our consistency problem for two reasons. First,
since we do not know in which tables we have tuples nor how many tuples there
are, it is unknown the number of objects there are in the spatial database. Sec-
ond, we do not know the topological relations that will be imposed since that
will depend on the values not only in the spatial attributes but in the thematic
attributes. Even though the problems differ from the consistency problem, some
settings of the topological and realizability problem can be reduced to the con-
sistency problem.

The following example illustrates the case when the topological relations
imposed by spatial integrity constraints contradict topological consistency.

Example 3. (example 2 cont.) Consider the set of integrity constraints imposed
in example 2. The database administrator could have, by mistake, written con-
straints (6) and (7) as follows:

∀̄ (Landparcel(u, v, w, g) ∧ Landparcel(u′

, v
′

, w
′

, g
′) → IDisjoint(g, g

′))

∀̄ (Building(u, v, g) ∧ Building(u′

, v
′

, g
′) → IDisjoint(g, g

′))



The first constraint will also be checked when u = u′ and therefore it requires
that a land parcel should be disjoint of or adjacent to itself. This, of course, is
not possible. The second constraint enforces the same for Building. Since none
of the predicates can contain tuples, the set of ICs is inconsistent. 2

The following example shows a situation in which, even though the topological
relations are consistent, it is not possible to find geometries in R

2 that satisfy
them, this is, the geometries are not realizable.
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Fig. 3. The non-planar graph K5

Example 4. A graph is said to be non-planar if it is not possible to draw it in the
plane without edge intersection. A well known example of non-planar graph is
K5, the complete graph with five nodes (see Figure 3). In this graph, even though
all the topological relations are satisfied, it is not realizable in the plane. We can
map the topological relations on K5 as a set of spatial integrity constraints IC 5

defined over a schema S5 in such a way that the set of constraints is consistent
iff K5 can be drawn in the plane. Let S5 contain five and ten spatia-relational
predicates of the form Xi(id, gi) and Yj(id, gj) respectively, which represent the
nodes and edges of K5, respectively, and where id is a thematic attribute, and
gi and gj are spatial attributes. Now, let IC 5 contain:

1. For all Z ∈ {X1, . . . , X5, Y1, . . . , Y10}
∀ug1g2(Z(u, g1) ∧ Z(u, g2) → Equal(g1, g2))

2. For all Xi ∈ {X1, . . . , X5} and Yj ∈ {Y1, . . . , Y10}, where Xi and Yj are
incident in K5:
∀ugi (Xi(u, gi) → ∃gj Yj(u, gj))
∀ugj (Yj(u, gj)) → ∃gi Xi(u, gi))
∀ugigj (Xi(u, gi) ∧ Yj(u, gj) → Overlaps(gi, gj))

3. For all Xi ∈ {X1, . . . , X5} and Yj ∈ {Y1, . . . , Y10}, where Xi and Yj are not
incident in K5

∀ugigj (Xi(u, gi) ∧ Yj(u, gj) → Disjoint(gi, gj))
4. For all Xi, Xj ∈ {X1, . . . , X5} with i 6= j:

∀ugivgj (Xi(u, gi) ∧ Xj(v, gj) → Disjoint(gi, gj))
5. For all Yi, Yj ∈ {Y1, . . . , Y10} with i 6= j:

∀ugigj (Yi(u, gi) ∧ Yj(u, gj) → Disjoint(gi, gj))

The INDs enforce that if there is a tuple in any predicate, there will be at
least one tuple in all the rest. Since a database is consistent if there is at least



one tuple in the database, this constraints will ensure that there is at least one
tuple in every predicates. The TDs enforce the topological relations between
the different nodes and edges. It is easy to see that IC 5 is consistent iff K5 is
planar. Since K5 is not planar, there is no non-trivial database that satisfies
IC 5. This situation is interesting since the topological relations enforced by the
TDs are not contradictory, but it is not possible to find tuples with objects in
two dimensions that satisfy them. 2

The constraints we have defined are able to express most of the constraints
commonly needed in spatial databases. However, this expressiveness comes with
a cost: the consistency problem for SSICs is not tractable.

Proposition 1. The consistency problem for SSIC is np-hard. 2

Proof. Hardness can be proven by reduction of the explicit low level conjunctive

realizability problem [7] which is np-complete. This problem consists in deter-
mining if there exists a planar model that satisfies a conjunctive topological
expression like ψ = (A intersects B) ∧ (B disjoint C) ∧ (A disjoint C). More
formally it consists on determining if for a set of objects O there exists a pla-
nar model for the topological expression ψ =

∧n

i=1(Ai ◦i Bi) where (1) each
◦i ∈{intersects,disjoint}2, (2) if (Ai ◦i Bi) and (Ai ◦j Bi) belong to ψ, ◦i = ◦j ,
and (3) for every A,B ∈ O such that A 6= B there exists ◦ ∈{intersects,disjoint}
such that (A ◦B) ∈ ψ. The problem is said to be “explicit” since for every pair
of objects there always exists a relationship which is unique.

We need to construct a set of constraints ICψ defined over a schema Σψ such
that ICψ is consistent iff there exists a planar model of ψ for objects in O. Let
Σψ = (R,A,S,R, T ,O) where A = {id}, S = {g} and R = {PA(id, g)|A ∈ O},
T = {Intersects,Disjoint} and O = ∅. Let ICψ contain:

1. For every PA ∈ R, a topological dependency:
∀ug1g2(PA(u, g1) ∧ PA(u, g2) → Equal(g1, g2))

2. For every A,B ∈ O where A 6= B, the spatial referential dependency:
∀ug1(PA(u, g1) → ∃g2(PB(u, g2) ∧ T (g1, g2)))

where T =

{

Intersects if (A intersects B) ∈ ψ or (B intersects A) ∈ ψ

Disjoint if (A disjoint B) ∈ ψ or (B disjoint A) ∈ ψ

Intuitively, each relation represents one of the objects in ψ, the TDs enforce that
for each relation and value u in the first attribute there is a unique geometry, and
RDs enforce that all the objects sharing the same value in attribute id satisfy
the topological constraints given in ψ.

First let us show that if ICψ is consistent, then there is a planar model for
ψ. If ICψ is consistent, there exists a database D defined over Σψ that satisfies
the constraints and that has at least one tuple in one of the relations. Then,
from constraints in (2), it follows that every relation will have at least one tuple.
Furthermore, for every predicate PA there exists a constant c and a geometry
gA such that (c, gA) ∈ PA. Since this geometries will also satisfy the topological

2 The topological relation called intersects in this paper is referred as overlaps in [7]



constraints, if we assign to each object Ai geometry gAi
, we have found a planar

model for ψ.
Now, let us prove that if there is planar model of ψ, ICψ is consistent. For

every object A ∈ O, let gA be the geometry of A in the planar model of ψ. Now,
choose a constant c ∈ U and let D be such that (c, gA) ∈ PA for every A ∈ O.
Clearly D satisfies ICψ and ICψ is consistent. 2

It is an open problem to determine if the realizability problem used in the re-
duction is in np since in some cases the objects need to be of exponential size.

A natural question is if we can find a set of constraints which are less expres-
sive than SSIC, but that is still useful and tractable. We now explore the use of
constraints that do not consider geometric operators O nor built-ins B.

Definition 2. A basic spatial integrity constraints (BSIC) is one of the following:

Functional Dependency (FD):
∀ūȳ1ȳ2v1v2(P (ū, ȳ1, v1) ∧ P (ū, ȳ2, v2) → v1 = v2)

where ȳ1 ∩ ȳ2 = ∅.
Inclusion Dependency (IND):

∀ūx̄(P (ū, x̄) → ∃ȳR(ū, ȳ))
Topological Dependency (TD0):

∀ūȳ1ȳ2ḡ1ḡ2(P (ū, ȳ1, g1) ∧R(ū, ȳ2, g2) → T (g1, g2))
where ȳ1 ∩ ȳ2 = ∅.

Spatial Referential Dependency (RD0):
∀ūx̄g1(P (ū, x̄, g1) → ∃ȳg2R(ū, ȳ, g2) ∧ T (g1, g2)) 2

Even though these constraints are much simpler, the consistency problem is still
np-hard. This follows directly from the proof in the general case since only TD0s
and RD0s are used.

Corollary 1. The consistency problem for BSIC constraints is np-hard. 2

However, these constraints have better properties in some cases. For example
consistency of a set of FDs and TD0s can be checked in polynomial time.

Proposition 2. Consistency of a set of FDs and TD0s can be checked in poly-
nomial time. 2

Proof. First, observe that if a set IC of FDs and TD0s is consistent, then there
will exist a database with only one tuple in one predicate that satisfies the
constraints. Thus, a possible algorithm consists on checking in each predicate
P if a tuple with fresh constants in each attribute satisfies the FDs and TD0s
defined over it. If this is true in any of the predicates, then the set IC is consistent.
Otherwise, it is not. 2

A more general an interesting result is that if there are no cycles through INDs
and RD0s, consistency can be checked in polynomial time.



Definition 3. Given a schema S and a set of BSIC IC , let the dependency graph

G of IC be a digraph where the nodes corresponds to predicates in S with an
edge from predicate P to R if there is an IND ∀ūx̄(P (ū, x̄) → ∃ȳR(ū, ȳ)) or a
RD0∀ūx̄g1(P (ū, x̄, g1) → ∃ȳg2R(ū, ȳ, g2) ∧ T (g1, g2)) in IC . A set of BSICs is
said to be acyclic if its dependency graph is acyclic. 2

Proposition 3. Consistency of an acyclic set of BSICs can be checked in poly-
nomial time. 2

Proof. If a set IC of acyclic BSICs is consistent, then there will exist a database
with only one tuple in a leaf predicate that satisfies the constraints. Thus, IC

is consistent iff one of the leafs satisfies its FDs and the TD0. Since consistency
of FDs and the TD0 can be done in polynomial time, consistency of IC can be
checked in polynomial time. 2

5 Related Work and Conclusion

In the spatial domain, some related studies address the specification of topologi-
cal constraints (domain constraints) [1] and spatial semantic constraints [12, 10].
There have been also studies concerning models for checking topological con-
sistency at multiple representations and for data integration [4, 19, 6, 11]. In all
these studies, however, the consistency problem has not been addressed, and spa-
tial integrity constraints have been treated without considering the interaction
with thematic attributes in a database model. The specification of constraints
involving topological relations and alphanumeric attributes was studied at the
conceptual level in [3]. This study, however, does not address the association of
the constraints at the conceptual level with already existing semantic constraints
at the logical level.

Unlike previous works, we have presented a formalization of integrity con-
straints that combine thematic with spatial attributes in a database model and
that extends classical notions of functional and inclusion dependency. We have
analyzed the consistency problem and found that it is not tractable in general.
However, we have identified an interesting case for which the problem can be
solved in polynomial time.

We plan to extend our results by analyzing other interesting cases in which
the problem is tractable and to develop heuristics for those cases that it is
not. In this direction, we would like to study the complexity of the consistency
problem if we remove the requirement of realizability and only require topological
consistency. This can be easily achieved by assuming that the spatial attributes
take values in R

3 instead of R
2. Since the topological consistency problem is

tractable in most settings, this can be a good approximation of the consistency
problem.
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