
T3: On Mapping Text To Time Series

Tao Yang and Dongwon Lee?

The Pennsylvania State University, University Park PA 16802, USA

Abstract. We investigate if the mapping between text and time series
data is feasible such that relevant data mining problems in text can
find their counterparts in time series (and vice versa). As a preliminary
work, we present the T3 (Text To T ime series) framework that utilizes
different combinations of granularity (e.g., character or word level) and
n-grams (e.g., unigram or bigram). To assign appropriate numeric val-
ues to each character, T3 adopts different space-filling curves (e.g., linear,
Hilbert, Z orders) based on the keyboard layout. When we applied T3 ap-
proach to the “record linkage” problem, despite the lossy transformation,
T3 achieved comparable accuracy with considerable speed-up.

1 Introduction

Despite significant advancement in each area, data mining research in textual
data (e.g., web pages of search engines, citations of digital libraries, relationship
data in social networks) and time series data (e.g., network traffic observations,
daily fluctuations of stock prices) have not been developed in a close synchro-
nization. New techniques developed in one area do not easily get carried over
to the other area. This is partly due to the fact that although both deal with
many similar problems such as defining appropriate distance functions or find-
ing interesting patterns, their subject domains are different – i.e., alphabetical
strings vs. numerical signals. Therefore, toward this lack of connection between
the emerging time series and the traditional text mining approaches, in this
paper, we investigate if there exists feasible transformation between two data
types such that relevant data mining problems in one data type can find their
counterparts in the other type. We are interested in whether and to what extent
the performance of mining solutions developed in one domain can be improved
over the solutions in the other domain.

Toward this objective, as a preliminary work, we present the T3 (Text To
T ime series) framework to map text data to time series data. During the trans-
formation of the entire text corpus, T3 utilizes different combinations of gran-
ularity (i.e., character level or word level) to extract text units from strings.
Furthermore, T3 utilizes n-grams (i.e., unigram, bigram or trigram) to form sub-
sequences of text units. In order to assign appropriate numeric values to each
character, T3 adopts different space-filling curves (i.e., linear, Hilbert, Z orders)
based on the keyboard layout. In addition, to associate real values to each token,
T3 uses the tf-idf weight of the traditional weighting scheme from information
? Partially supported by IBM and Microsoft gifts.

retrieval and text mining. We apply the T3 framework to the Record Linkage
problem, one of the traditional data mining problems, to determine whether or
not two entities represented as relational records are approximately the same.
Through extensive experiments using both real and synthetic data sets, the ef-
ficacy of our proposed schemes is experimentally validated. To the best of our
knowledge, this is one of the first attempts to solve a text mining problem in
time series domain. Our experiments reveal that T3 shows comparable accuracy
(despite the lossy transformation in T3) when compared to a popular distance
measure (e.g., Levenshtein distance) in text domain. However, T3 also achieves
much improved speed-up thanks to the numerical data of time series domain.

2 Related Work

Time series data mining has received tremendous attention in the data mining
community during the last decade. Many time series representation methods such
as Discrete Fourier Transformation (DFT) [7], Discrete Wavelet Transformation
(DWT) [3], Piecewise Aggregate Approximation (PAA) [12], Singular Value De-
composition (SVD) [7] and Symbolic Aggregate approXimation (SAX) [13] etc.
have been proposed together with the corresponding similarity measures such
as Euclidean Distance (ED) [7], Dynamic Time Warping (DTW) [1], Distance
based on Longest Common subsequence (LCSS) [17] and so on. Recently, [5]
summarized and evaluated the state-of-the-art representation methods and sim-
ilarity measures for time series data through extensive experiments.

On the other hand, the gen-

Time
Series

database

Text

Record
String

database

Research Problems

1.Record Indexing
2.Record Classification
3.Record Clustering
4.Asso. Rule Mining
5.Similarity discovery

T^3
Real Values

Symbolized
Time

Series

SAX
Fourier
Wavelets
etc…

Dimension Reduction

Symbolization

Research Results

Hashing
Suffix Tree
BLAST
etc…

Algorithm

K-means
Doc Clustering
KNN
etc…

Research Results

Comparison

Text

Time Series

Fig. 1. Overview of the T3 framework.

eral linkage problem has been
known as record linkage [2,
8], merge-purge [10], citation
matching [14], object match-
ing [4], entity resolution [16],
authority control [18], and ap-
proximate string join [4, 9], to
name a few. Excellent survey
papers [6, 19] provide the lat-
est advancement of the link-
age problem. In our recent work,
we presented the novel idea
of solving the record linkage
problem using BLAST, one of
the most popular gene sequence
alignment algorithms in Bioin-
formatics [11] . We proposed four variations of linkage solutions to translate text
data into DNA sequences and demonstrated the good combination of accuracy
and speed of applying BLAST to record linkage. However, none of these ex-
isting works attempted to solve the linkage problem using time series mining
techniques as we did in this paper. Recently the authors in [15] mentioned a

method to transform text into a time series representation in the case of trans-
lating biblical text in both English and Spanish. The basic idea is to convert the
bible text into bit streams based on the occurrences of a particular word in the
text. Then a time series is generated based on the number of word occurrences
within a predefined sliding window across the bit streams. Although it is useful
in the case of generating time series for the translation versions of the same text
in two different languages, their method can not been directly applied to the
record linkage problem because each record may have different sets of words and
it would be hard, if not impossible, to find a common word among them before
the time series conversion. To the best of our knowledge, our effort is one of the
first attempts to solve the record linkage problem in time series domain.

3 The T3 Framework

The basic idea of T3 is illustrated in Figure 1. Instead of solving data mining
problems on string/text data, we first scan the string database using the pro-
posed transformation schemes in T3. After the string database is mapped to a
new time series database, we then employ dimension reduction and symboliza-
tion techniques directly on the real values of time series. In general, T3 serves
as a convenient bridge to connect two subject domains: numerical signals and
alphabetical strings. Therefore, our approach can be considered as a novel com-
plement to existing text mining algorithms which were solely built for generic
use based on string manipulation. We illustrate our idea using a simple example
in Figure 2. The first two records are referring to the same person and the third
record belongs to a different person. We can easily see that the time series of the
first two records preserve similar shapes in real-value domain (with some shift-
ing) while the time series of the third record has a rather different shape. Given
any sequence s from a database of textual sequences D, T3 utilizes different
combinations of granularity, n-grams and score assignments to convert strings
to time series as follows.

Granularity. Each record or document in text domain can be viewed as a
sequence of characters or word tokens. To transform text data into time series,
T3 can use different units of text data: (1) character level : An alphabet letter is
regarded as a single text unit. In the transformation, ignoring upper/lower cases,
we consider 64 (= 26 + 10 + 28) cases – i.e., 26 cases for 26 English alphabets,
10 cases for 10 numbers (e.g., 0 to 9), and 28 cases for all special characters
such as @, #, $. We do distinguish among special characters since some of special
characters in record strings appear in our data sets; and (2) word level : At this
granularity, an English word (also called “token”) is regarded as a single text unit
and T3 simply extracts each token from sequences and then assign appropriate
values to each token based on the weighting scheme.

N-grams. In statistical natural language processing, an n-gram is a sub-
sequence of n consecutive items from a given sequence. These items could be
symbols, letters, or words according to the application. As mentioned above, in

our T3 framework, we treat either a character or a token as the single unit of
sequences. Therefore, an n-gram in T3 is a sub-sequence of n consecutive “char-
acters” at character level and a sub-sequence of n consecutive “tokens” at word
level. In particular, T3 adopts three sizes of n-grams – unigram, bigram and tri-
gram. Table 1 shows an example of how to transform the record “time series
data mining” based on different combinations of granularity level and n-grams.

Score Assignment. At this stage,
Record #1: Steve Allen 15201-B Burbank Bl. Van Nuys CA

Record #2:

Record #3:

Allen, S., 15201 Burbank Blvd Van Nuys California

Woody Allen 930 5th Ave. New York NY

(a) Original string records

0 5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8
Record #1

0 5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8
Record #2

0 5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8
Record #3

(b)Time series after transformation

Fig. 2. A simple example of transform-
ing text to time series.

T3 assigns appropriate numeric val-
ues in order to actually convert strings
to time series. Based on different lev-
els of granularity, T3 adopts different
weighting schemes in order to assign
scores to subsequences of text units.
At character level, first, T3 uses the
QWERTY keyboard layout to allo-
cate each text unit (i.e., alphabets,
numbers or special alphabets) into equal-
length or varying-length bins within
the range of [0,1]. Then the median
value of each bin is used to represent
the corresponding character. During
the allocation of bins, we consider the
following three possible layouts: (1)
Linear order is simply based on each
key position on the keyboard follow-
ing the order of row by row. Each
character is then assigned an appro-
priate real value within the range [0,1]; (2) In the Hilbert order, we regard the
keyboard as a small 2D space and then adopt the space-filling curve techniques
to map 2D space to 1D sequence. After we get the 1D sequence, we then allo-
cate it to uniform bins within the range [0,1] so that each character is assigned
a real value. Hilbert order has good locality-preserving behaviors so that alpha-
bets from similar locations in the keyboard layout have the similar real values
during the score assignment. Our idea is motivated by the fact that alphabets
from the similar locations in the keyboard have a higher probability of typo,
a common issue in the record linkage problem; and (3) In addition to Hilbert
space-filling curve, we also implement the Z order space-filling curve. Z order
also has a good locality-preserving behavior similar to the Hilbert order. We are
interested in whether there is a significant performance difference between these
two space-filling curves.

At word level, second, T3 uses the tf-idf (term frequency-inverse document
frequency) weight of the traditional IR weighting scheme. The tf-idf weight is
a statistical measure to estimate how important a token in a string record is
within a record database such that it increases proportionally to the number of
times that the token occurs in the string but is offset by its frequency in the

database. Each token of a record string is assigned an importance weight using
the tf-idf weight such that the whole string can be converted into a time series.

Discussion. Note that the Coding Transformation

char + unigram {t,i,m,e,s,e,r,i,e,s,d,a,t,a,m,i,n,i,n,g}
char + bigram {ti,im,me,es,se,er,ri,ie,es,

sd,da,at,ta,am,mi,in,ni,in,ng}
char + trigram {tim,ime,mes,ese,ser,eri,rie,ies,esd,sda,

dat,ata,tam,ami,min,ini,nin,ing}
word + unigram {time, series, data, mining}
word + bigram {time series, series data, data mining}
word + trigram {time series data, series data mining}

Table 1. Examples of T3 transformation.

three dimensions of approaches
(i.e., granularity, n-gram, and
score assignment) in T3 are
not exhaustive at all. One can
easily devise more sophisticated
transformation schemes from
text strings to numeric time
series. For instance, as to the
score assignment dimension,
in addition to the keyboard layout based assignment for the character level or
weighting based assignment for the word level, one may use Linguistic char-
acteristic (e.g., while a character-level bigram “on” occurs frequently, another
bigram “xz” rarely occurs in English) to assign different assignment scores. Sim-
ilarly, domain-specific characteristics of text data can be adopted. For instance,
instead of character-level or word-level, one may use phrase-level or paragraph-
level summary as the basic text unit when dealing with documents. Since the
immediate goal of this paper is first to evaluate the validity of T3 framework
to show that “there exist some reasonable information-lossy conversion schemes
from text domain to time series domain so that text-based data mining problems
can be solved in time series domain”, we rather leave the development of more
sophisticated conversion schemes in T3 framework to the future work.

4 Experimental Validation

In order to validate our proposed T3 framework, we use the record linkage prob-
lem. In a nutshell, once we transform all textual records into time series data
using T3 framework, for a given query time series q, we attempt to retrieve q’s
true duplicate time series. Then, we compare the performance of T3 with that
of a traditional record linkage solution that uses the text string as input. If the
performance of T3 in solving the record linkage problem in time series domain
is comparable to that of a traditional record linkage solution, then it shows the
validity of our proposed T3 framework. Since the transformation schemes in T3

“lose” some information of original text string (i.e., lossy conversion), we expect
the accuracy of T3 framework to drop slightly, compared to the accuracy of a tra-
ditional record linkage solution. However, what we are more interested in these
experimentations is the comparison among different schemes in T3 framework
and any possible benefits of those schemes.

Set-Up. Table 2 shows the summary of data sets that we used in our experi-
ments. The first five data sets map, bird, business, census, and university
are real data sets1 which contain real string data and real errors. The data
1 Downloaded from: http://secondstring.sourceforge.net/

Name Data Error Domain # of records Max # of duplicates # of queries # of targets

map real real map name 337 2 19 19
bird real real bird name 982 2 67 67

business real real business name 2,139 2 279 279
census real real census info. 841 2 326 326

university real real university name 116 16 15 15

cora real real citation 1,326 5 98 194
restaurant real real restaurant info. 864 2 111 111
celebrity real real celebrity address 2615 2 276 276

dblp real synthetic citation 5359 5 1,369 3,991

dbgen synthetic synthetic mailing list 9,947 19 960 8,987

Table 2. Summary of data sets.

Name Sample Data

bird “Gavia stellata Red-throated Loon”

business “3Com Corporation”

restaurant “cassells 3266 w sixth st la 213 480 8668 hamburgers”

celebrity “ANDRE AGASSI 8921 ANDRE DR. LAS VEGAS NV 89113”

dblp “Bell Data Modelling of Scientific Simulation Proams SIGMOD Conference 1982”

dbgen “Colbri P Beer 478 Naftel St 6j2 Rio Blanco PR 00744”

Table 3. Examples of some data sets.

sets cora, restaurant2, and celebrity3 are also real data sets containing real
string data and real errors. We pre-processed each data set to delete some of
the duplicates which were incorrectly labeled. The citation data set dblp was
generated using real citation records from similar venues of DBLP. We randomly
selected ten venues from similar research domains such as SIGMOD, PODS, and
EDBT, and again randomly selected citations published in those venues. Then,
we generated duplicates by injecting typographical errors. Using the data gen-
eration tool, DBGen [10], we generated one synthetic data set dbgen containing
mailing list information. Note that unlike aforementioned data sets, this data set
contains only synthetically generated data and errors. In order to get a general
idea, Table 3 shows examples of record strings in some of the data sets.

As for distance measures, we use the Levenshtein Distance (LD) in text
domain and Euclidean Distance (ED) and Dynamic Time Warping (DTW) in
time series domain. All measures are known to work well for order-conscious
text or time series data [1]. Since ED requires two time series to have the same
length, in our experimentation, we augment the shorter time series to have the
same length as the longer time series by simply adding prefix or suffix of median
values (i.e., 0.5). To evaluate the efficiency and effectiveness of the proposed
T3 framework, we mainly use two evaluation metrics – speed and accuracy. In
particular, to measure the speed of a method, we use the Running Time (T)
excluding any pre-processing steps. To measure the accuracy, we use the average
Precision (P) and Recall (R). Suppose that T denotes a set of true matching
records and S denotes a set of records retrieved by an algorithm. Then, we have:

2 Downloaded from: http://www.cs.utexas.edu/users/ml/riddle/
3 Provided by Ned Porter at US Census Bureau.

precision= |S∩T |
|S| and recall= |S∩T |

|T | . We will use the precision-recall (PR) graph
to present the accuracy.

Comparison of Transformation Schemes in T3. We first compare the per-
formance of different combinations of granularity, n-grams and score assignment
in T3. In this comparison, we choose one distance function (i.e, either ED or
DTW) and then perform tests of all major coding schemes using the same dis-
tance measure. Figures 3(a) and (b) present the precision of the record linkage
task using ED and DTW, respectively. Among data sets, the results of tests on
celebrity, restaurant, and cora are presented. In Figure 3(a) with ED, note
that both Hilbert and Z order based schemes outperform the others with re-
spect to the precision. This is reasonable because both Hilbert and Z order have
a good locality-preserving behavior such that alphabets in the neighborhood in
the keyboard have the similar real values during the score assignment. Therefore,
this can reduce a number of false positives in cases when true duplicates have
some dissimilar characters caused by typos or data entry errors. Between these
two orders, Hilbert order performs slightly better than Z order scheme, but not
significantly. Figure 3(b) shows the similar results when DTW is adopted as the
distance function in the experiment.

Another interesting finding is that the word-level transformation schemes
using tf-idf weighting as scores do not show a significantly better precision,
although they can find true duplicates faster because of the shorter time se-
ries generated. The reason is that using the word-level schemes based on tf-idf
weights, the resulting time series is entirely determined by the tf-idf weight of
each token. To some extent, we lose the lexical information of tokens. For in-
stance, there might exist a situation where two tokens are completely different
but happen to carry equal or similar tf-idf weights. This can affect the shapes of
time series and hence generate false positives.

Also note that from Figures 3(a) and (b), we do not see much difference
between unigram and bigram schemes (trigram schemes have similar patterns
and not shown for limited space). This is partially because our record linkage
solutions are obtained in real-value domain after record stings are converted to
time series, and higher-gram techniques may not be as effective as in the case of
string manipulation in text domain. Overall, the transformation scheme based
on the combination of character-level granularity, unigram and Hilbert order
appears to be the best scheme. Therefore, we adopt this scheme (denoted as
char-uni-hilbert) in the following experiments.

Comparison of Distance Functions with Baseline. Next, we compare the
performance of different distance functions in our proposed T3 framework. In this
comparison, we fix the transformation scheme to char-uni-hilbert and then
compare among ED and DTW (in time series domain), and LD (in text domain)
as the baseline. Figures 3(c) and (d) show the precision and running time of three
distance measures in the context of record linkage problem. The results of tests
on map, bird, business, restaurant and celebrity are presented. In these
data sets, each query string has exactly one duplicate. Therefore record linkage

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

celebrity restaurant cora

P
re

ci
si

on

char+uni+linear
char+bi+linear
char+uni+hilbert
char+bi+hilbert
char+uni+z
char+bi+z
word+uni+weight
word+bi+weight

0

0.1

0.2

0.3

0.4

0.5

0.6

celebrity restaurant cora

P
re

ci
si

on

char+uni+linear
char+bi+linear
char+uni+hilbert
char+bi+hilbert
char+uni+z
char+bi+z
word+uni+weight
word+bi+weight

(a) Comparison using ED (b) Comparison using DTW

0

0.1

0.2
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

map bird business restaurant celebrity

P
re

ci
si

on

ED
DTW
LD

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

map bird business restaurant celebrity
Ti

m
e(

s)

ED
DTW
LD

(c) Precision (d) Running time per query (in sec.)

Fig. 3. (a)-(b) Comparison among eight different transformation schemes based on
distance function ED and DTW using three data sets. (c)-(d) Comparison among ED,
DTW, and LD using five data sets (based on char-uni-hilbert).

on these data sets is straightforward and aims to find the other duplicate for
each of the query records.

In Figure 3(c), note that LD consistently produces better precision than ED
and DTW, except map data set. This is as expected because LD directly operates
on the original record strings in text domain without the loss of any information.
What we are more interested is: as a complementary approach for solving the
record linkage problem in time series domain, how good is the performance of
T3 techniques compared to the baseline? Figure 3(c) shows that T3 with ED and
DTW can yield comparable precision on four data sets (and better precision on
one data set). Since the various transformation schemes in T3 tend to lose some
information from original text strings during the conversion, we expect to lose
some degree of accuracy in T3, when compared to LD. Therefore, although there
appears to be degraded accuracy in T3, since it is comparable to the baseline
without using T3, we believe that the result is still promising. Also note that
the overall precision of either our proposed schemes or the baseline is around 0.6
across all the data sets in Figure 3(c). This is due to the characteristics of our
data sets. As shown in Table 3, our data sets are real data sets which contain
a lot of mis-spelling errors and mis-alignments. Therefore, we expect low degree
of accuracy of matching similar records. More research is needed so that one
can transform text to time series while maintaining or improving the accuracy.
Another interesting finding is that DTW mostly performs better than ED (i.e.,
in map, restaurant, and celebrity data sets) and the difference increases as

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1
Recall

P
re

ci
si

on

ED
DTW
LD

0
0.1

0.2
0.3
0.4
0.5

0.6
0.7
0.8

0.9
1

0 0.2 0.4 0.6 0.8

Recall

P
re

ci
si

on

ED
DTW
LD

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1
Recall

P
re

ci
si

on

ED
DTW
LD

(a) cora (b) dblp (c) dbgen

Fig. 4. PR graphs of ED, DTW and LD methods using char-uni-hilbert.

the size of data sets and lengths of record strings increase. This is reasonable
as DTW is usually regarded as a much more robust distance measure for time
series [1] and allows similar shapes to match even in the case that two time series
are not aligned well in the time axis.

Figure 3(d) shows the average running time per query. We can clearly see
that both ED and DTW methods consistently run much faster than the baseline
LD, across all data sets. Furthermore, ED method even performs faster than
DTW. While ED is the fastest (with low accuracy), overall, DTW shows a good
trade-off of having faster running time with comparable accuracy. The running
time of DTW increases as the length of record strings increases. This is partially
due to the cost of dynamic programming in DTW, which is in the magnitude of
square of record length.

The precision-recall (PR) graphs in Figure 4 are generated with both preci-
sion and recall of the ED, DTW and LD methods by increasing k, which is the
number of answers returned by an algorithm to solve the record linkage task.
The value of k changes from 1 to 30. At each point, corresponding precision and
recall values are measured and plotted. The PR graphs of three large data sets,
cora, dblp and dbgen, are presented. As we can see from Figure 4, DTW and
the baseline LD outperform ED by a large margin. Furthermore, DTW produces
PR curves that are comparable to the baseline. This is consistent with what we
found in Figure 3(c). In addition, note that both LD and DTW run much faster
than LD (in Figure 5), again consistent with Figure 3(d).

Scalability. Since the scalable processing is a critical issue in the record linkage
problem, we also study the scalability of T3 framework. We select two large data
sets, i.e., dblp and dbgen. From dblp with 5,359 real citation records, we prepare
different subsets of 500, 1000, 2000, 3000, 4000 and 5000 records. Furthermore,
we generate four different datasets of 10,000, 20,000, 50,000 and 100,000 records
from the original dblp dataset. Also, from dbgen with 9,947 mailing lists, we
generate subsets of 1000, 2000, 4000, 6000, 8000, and 10000 records (we add 53
more mailing lists to generate 10000 records). Again, we generate three different
datasets of 20,000, 50,000 and 100,000 records from the original dbgen dataset.

0
2

4
6

8
10

12
14

16
18

20

500 1000 2000 3000 4000 5000 10k 20k 50k 100k

Ti
m

e
(s

)

ED
DTW
LD

0

2

4

6

8

10

12

14

1000 2000 4000 6000 8000 10k 20k 50k 100k

Ti
m

e
(s

)

ED
DTW
LD

(a) Scalability on dblp (b) Scalability on dbgen

Fig. 5. Running time per query (s) on different sizes of dblp and dbgen subsets.

With these data sets and the fixed transformation scheme of char-uni-hilbert,
we measure the running time as the data size increases.

Figure 5 shows the results. In general, Figures 5(a) and (b) show similar
patterns. As the size of data sets increases, the running time per query increases
linearly for both ED and DTW. However, the running time for LD increases
more rapidly compared to that of our approaches. This indicates that our record
linkage solution is more scalable to handle a large amount of data. Furthermore,
ED consistently outperforms DTW in terms of speed. This is as expected be-
cause DTW involves a procedure of dynamic programming in calculating the
distance, which decreases the overall speed as the size of data increases. But as
we mentioned earlier, DTW method has better precision in terms of accuracy of
record linkage.

5 Conclusion and Future Work

In this paper, we present our preliminary design of the T3 framework to trans-
form text to time series data. We propose two variations of granularity, three
variations of n-grams, and four variations of score assignments based on space-
filling curve techniques for characters or tf-idf weighting technique for tokens.
We adopt two similarity measures, Euclidean Distance (ED) and Dynamic Time
Warping (DTW), to calculate the distance between two time series and show
the efficacy of our proposed schemes using both real and synthetic data sets.

In terms of record linkage, our schemes in the T3 framework show promis-
ing results with good combination of speed and accuracy, compared to conven-
tional string matching methods such as Levenshtein Distance (LD). In particular,
Hilbert space-filling technique at character-level granularity is the best variation
of transformation schemes while DTW is a better distance measure regarding
precision and ED outperforms regarding running time. With respect to accuracy
and speed, the experimental results confirm that our T3 framework can generate
precision-recall curves comparable to the baseline LD. We believe our approach
can shed new insights in both areas of text mining and time series mining.

Many future research directions are ahead. First, we plan to extend T3 frame-
work to other text mining areas such as document clustering and classification.

The sizes and dimensions of the data increase dramatically when documents are
considered. Second, more sophisticated transformation schemes and advanced
similarity functions need to be devised to provide comparable accuracy using
time series data to their counterpart using text data.

The implementations and test data sets used in this paper are publicly avail-
able at: http://pike.psu.edu/download/amw09/

References

1. D. J. Berndt and J. Clifford. “Using dynamic time warping to find patterns in
time series”. In KDD Workshop, 1994.

2. M. Bilenko, R. Mooney, W. Cohen, P. Ravikumar, and S. Fienberg. “Adaptive
Name-Matching in Information Integration”. IEEE Intelligent System, 64, 2003.

3. K. P. Chan and A. W.C.Fu. “Efficient Time Series Matching by Wavelets”. In
ICDE, 1999.

4. S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. “Robust and Efficient Fuzzy
Match for Online Data Cleaning”. In SIGMOD, 2003.

5. H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. J. Keogh. “Querying
and Mining of Time Series Data: Experimental Comparison of Representations and
Distance Measures”. In VLDB, 2008.

6. A. Elmagarmid, P. Ipeirotis, and V. Verykios. “Duplicate Record Detection: A
Survey”. TKDE, 19(1), 2007.

7. C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. “Fast Subsequence Matching
in Time-Series Databases”. In SIGMOD, 1994.

8. I. P. Fellegi and A. B. Sunter. “A Theory for Record Linkage”. J. of the American
Statistical Society, 18(5), 1969.

9. L. Gravano, P. G. Ipeirotis, N. Koudas, and D. Srivastava. “Text Joins in an
RDBMS for Web Data Integration”. In WWW, 2003.

10. M. A. Hernandez and S. J.Stolfo. “The Merge/Purge Problem for Large
Databases”. In SIGMOD, 1995.

11. Y. Hong, T. Yang, J. Kang, and D. Lee. “Record Linkage as DNA Sequence
Alignment Problem”. In QDB, 2008.

12. E. J. Keogh, K. Chakrabarti, M. J.Pazzani, and S. Mehrotra. “Dimensionality
Reduction for Fast Similarity Search in Large Time Series Databases”. Knowl.
Inf. Syst., 3(3), 2001.

13. J. Lin, E. J. Keogh, L. Wei, and S. Lonardi. “Experiencing SAX: a novel symbolic
representation of time series”. Data Min. Knowl. Discov., 15(2), 2007.

14. B. W. On, D. Lee, J. Kang, and P. Mitra. “Comparative Study of Name Disam-
biguation Problem using a Scalable Blocking-based Framework”. In JCDL, 2005.

15. C. A. Ratanamahatana and E. J. Keogh. “Three Myths about Dynamic Time
Warping”. In SDM, 2005.

16. S. Sarawagi and A. Bhamidipaty. “Interactive Deduplication using Active Learn-
ing”. In KDD, 2002.

17. M. Vlachos, D. Gunopulos, and G. Kollios. “Discovering similar multidimensional
trajectories”. In ICDE, 2002.

18. J. W. Warnner and E. W. Brown. “Automated Name Authority Control”. In
JCDL, 2001.

19. W. E. Winkler. “The State of Record Linkage and Current Research Problems”.
Technical report, US Bureau of the Census, 1999.

